当前位置:文档之家› 压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算-(3)
压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算

苏权生

摘要:压裂施工管柱摩阻计算对压裂施工过程中压力波动判断和压后净压力拟合具有重要意义。目前对压裂液在层流状态下的摩阻计算比较成熟,计算结果可信度高,但对压裂液在紊流状态下性质还未找出一定的规律,摩阻计算结果误差较大。本文以降阻比法为基础进行压裂管柱摩阻计算,通过理论计算与现场实测数据进行对比分析,提高计算精度。

关键词: 管柱摩阻 紊流 降阻比 计算精度

压裂管柱摩阻计算是压裂施工过程中压力变化判断的基础,是进行井底压力和裂缝净压力计算的关键。在实际压裂设计中经常采用经验估计法对管柱摩阻进行粗略计算,往往不能准确地预测实际管柱摩阻。本文以降阻比法为基础,分别对HPG 压裂液的前置液、携砂液沿程管柱摩阻进行理论计算,并结合胜利油田现场施工井的实际数据进行对比分析,对影响管柱摩阻计算的影响因素进行修正,提高理论计算和现场施工数据的一致性,形成适合胜利油田压裂施工管柱摩阻计算的相关计算程序。

1、降阻比管柱摩阻计算

Lord 和MC Gowen 等人在前人研究的基础上提出了HPG 压裂液前置液,携砂液摩阻计算的新方法,称为降阻比法,其基本原理是在相同条件(如排量、管径、管长相同)下,压裂液摩阻与清水摩阻之比称为降阻比,用公式表示为:

w

f p f P P )()(??=

δ (1)

式中:p f P )(?:压裂液摩阻,Mpa ;w f P )(?:清水摩阻,Mpa ;δ:降阻比系数,无单位。

1.1 清水摩阻计算

从公式(1)可以看出,降阻比法要首先计算清水摩阻,且其值的准确性对压裂液摩阻计算有较大的影响,水力学中伯拉休斯清水摩阻计算式:

L Q D P ***10*779.775.175.461--=? (2)

式中: 1P ?:清水摩阻,Mpa ; D :管柱内径,m ; Q :施工排量m 3

/s ; L: 管柱长度,m ;

用车古201井数据进行清水摩阻验证,车古201井酸化施工管柱为Φ73mm 光油管,下深4505m ,施工前用20m 3

清水正洗井降温,排量1.5m 3

/min ,测得沿程管路摩阻为31Mpa ,用公式(2)计算管柱摩阻值为30Mpa ,计算值与实际值误差3.2%。

1.2压裂液摩阻计算

Lord 和MC.Gowen 研究认为,降阻比系数δ是压裂液平均流速v ,稠化剂浓度g C 和支撑剂浓度

s C 的函数,即),,(s g C C v f =δ,通过对大量数据的线性回归,提出了矿物条件下适用于HPG 压裂

液体系的降阻比经验关系式:

s

C s g g e C C Q

D C Q D 1198

.024

24

234.01198

.0ln 1639.010*285.010

*16.138.21

ln

+-?--=--δ

(3)

未加砂时s C =0,将设计参数带入式(3),即可求得压裂液降阻比系数δ,进而用式(1)计算压裂液摩阻。根据式(1),(2),(3)对胜利油田部分压裂施工井沿程管路摩阻进行计算,结果显示最大误差47.9%,最小误差35.0%,计算摩阻值与实测值一致性较差,需要对计算方法进行改进。

表1 管柱摩阻实测值与计算值

1.3压裂液摩阻计算方法改进

从本质上讲,降阻比是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源、交联特性两方面的影响。目前胜利油田所用HPG 压裂液体系与国外存在着较大的差异。因此,认为计算摩阻值与实测摩阻值误差较大的主要原因在于计算降阻比与目前所用HPG 压裂液体系实际降阻能力不符。为此,在不改变降阻比影响因素的情况下,以实测摩阻数据为基础,通过改变式(3)的系数,对计算方法进行改进:

s

C X

s g g e C X X C Q D C X Q D X X 6

54

23221ln 1639.01

ln +-?--=δ……………(4) 通过实测管柱摩阻数据,运用正交方法对公式(4)中未知系数进行计算,最终确定胜利油田所用HPG 压裂液体系降阻比计算式:

Cg

S g g e

C C Q

D C Q D 11983

.0424

24

**10*015.311983

.0ln 1639.010*28194.010

*1525.14902.11

ln

-----?--=δ

(5)

2、压裂施工管柱摩阻计算实例

以改进的摩阻计算方法为基础,用VB 语言编制管柱摩阻计算程序,应用该程序对表(1)管柱摩阻进行重新计算,计算结果显示最大误差8.9%,最小误差0.1%,计算结果与实测结果一致性较高。 表2 管柱摩阻实测值与计算值

3、结论及认识

(1)本文用现场实测数据对降阻比计算方法进行改进,得到了适合胜利油田现场压裂施工管柱摩阻计算的新方法,适用于HPG压裂液体系在油管注入方式下的压裂液管柱摩阻计算。

(2) 施工参数(排量,管柱结构,粉比等)不同,降阻比系数变化范围较大,表(2)各井降阻比变化范围在0.39-0.53之间

(3)用VB语言编制了摩阻计算程序,可以用来在施工前进行地面施工压力预测,也可用来在施工过程中进行井底压力,净压力的计算分析。

(4)建议增加带井下压温计施工井数量,以便获得精确的管柱摩阻数据,不断对管柱摩阻计算方法进行修正,提高计算精度。

参考文献

[1]袁恩熙. 工程流体力学.北京:石油工业出版社,1996.3

[2]王鸿勋,张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998.6 [3]蒋廷学.压裂施工中井底压力的计算方法及其应用. 天然气工业,1997.9

[4]黄禹忠.川西地区压裂施工过程中管柱摩阻计算. 特种油气藏,2005.12

[5]J.L.吉德利.水力压裂技术新发展.北京.石油工业出版社.1995

[6]万仁溥.采油技术手册(第九分册).石油工业出版社,1998

钻具摩阻与扭矩(仅供参考)

1、管柱的摩阻和扭矩 钻大位移井时,由于井斜角和水平位移的增加而扭矩和摩阻增大是非常突出的问题,它可以限制位移的增加。 管柱的摩阻和扭矩是指钻进时钻柱的摩阻和扭矩,下套管时套管的摩阻和扭矩。 (1) 钻柱扭矩和摩阻力的计算 为简化计算,作如下假设: * 在垂直井段,钻柱和井壁无接触; * 钻柱与钻井液之间的摩擦力忽略不计; * 在斜井段,钻柱与井壁的接触点连续,且不发生失稳弯曲。 计算时,将钻柱划分为若干个小单元,从钻柱底部的已知力开始逐步向上计算。若要知道钻柱上某点的扭矩或摩阻力,只要把这点以下各单元的扭矩和摩阻力分别叠加,再分别加上钻柱底部的已知力。 钻柱扭矩的计算 在弯曲的井段中,取一钻柱单元,如图2—1。

该单元的扭矩增量为 F r R M =? (2—1) 式中 △M — 钻柱单元的扭矩增量,N·m R — 钻柱的半径,m ; Fr — 钻柱单元与井壁间的周向摩擦力,N 。 该单元上端的扭矩为 式中 M j — 从钻头算起,第j 个单元的上端的扭矩, N·m ; Mo — 钻头扭矩(起下钻时为零),N?m , △ M I — 第I 段的扭矩增量,N.m 。 钻柱摩阻力的计算(转盘钻) 转盘钻进时,钻柱既有旋转运动,又有沿井眼轴向运动,因此,钻柱表面某点的运动轨迹实为螺线运动。在斜井段中取一钻柱单元,如图2-2。图2中,V 为钻柱表面C 点的运动速度V t ,V r 分别为V 沿钻柱轴向和周向的速度分量;F 为C 点处钻柱 所受井壁的摩擦力,其方向与V 相反;Ft ,Fr 分别为F 沿钻柱轴向和周向的摩擦力的分量,即钻柱的轴向摩擦力和周向摩擦力。

钻井过程中摩阻监测

钻井过程中摩阻和扭阻监测 1.为什么要监测摩阻? 帮助追踪井下环境和井眼不稳定性问题; 帮助在接立柱前的循环、循环一周或多周、用高粘/高密度/低粘等泥浆密度清洗井眼、短起下等作业时,判断井眼清洁效果; 帮助确认岩屑床(和ECD,震动筛上的岩屑返出量一起进行); 帮助确定扭矩问题,钻井设备的负荷能力以及最大可钻达深度和最大套管可下入深度; 帮助判断泥浆的润滑性,泥浆比重的效果,泥浆性能的变化; 帮助确定每口井的裸眼和套管摩擦系数,为丛式井施工建立摩擦系数数据库; 判断井眼轨迹增/降斜、增/降方位井段对摩阻的影响; 帮助解决下套管/尾管时遇到的问题; 帮助优化BHA和套管串,以及是否需要使用降扭矩工具。 2.理论摩阻曲线 由D&M根据实际井眼尺寸,实际BHA结构,设计轨迹,正确的泥浆性能等参数建立理论上的摩阻曲线。如果能获得实际井眼测斜数据和实际BHA工具,最好根据这些参数重新绘制; 理论摩阻曲线应显示起钻,下钻和提离井底时的旋转扭矩; 确保考虑了套管和裸眼在根据泥浆性能和实际经验确定的摩擦系数; 非常重要的是,理论曲线中应有一条摩擦系数为0的悬重曲线,这条曲线将用于标定理论曲线。如果理论曲线是正确的,旋转时的悬重将和理论曲线完全吻合。 在理论摩阻表中加入最大悬重曲线,该曲线将用于表明钻具使用或钻井设备极限负荷。 注意:理论摩阻曲线是根据动态摩擦系数来确定的。监测摩阻时,悬重是在钻具开始运动且旋重稳定后的读数。 3.需要监测的参数 总共需要四个参数: 上提旋重:保持同样的速度,上提钻具至少5-6米。 下放旋重:保持同样的速度,下放钻具至少5-6米。 旋转悬重:离开井底至少1-2米后,旋转钻具时的悬重。 扭矩:离开井底以旋转钻进时的转速旋转钻具时的扭矩。 注意:在进行摩阻测试时,也需要记录开始上提钻具时最大的静态悬重,这一数据将用于确定从静态到动态的悬重是否会超过钻井设备或钻具的极限。确保任何时候悬重都不要超过钻具或钻井设备的极限负荷。

压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算 苏权生 摘要:压裂施工管柱摩阻计算对压裂施工过程中压力波动判断和压后净压力拟合具有重要意义。目前对压裂液在层流状态下的摩阻计算比较成熟,计算结果可信度高,但对压裂液在紊流状态下性质还未找出一定的规律,摩阻计算结果误差较大。本文以降阻比法为基础进行压裂管柱摩阻计算,通过理论计算与现场实测数据进行对比分析,提高计算精度。 关键词: 管柱摩阻 紊流 降阻比 计算精度 压裂管柱摩阻计算是压裂施工过程中压力变化判断的基础,是进行井底压力和裂缝净压力计算的关键。在实际压裂设计中经常采用经验估计法对管柱摩阻进行粗略计算,往往不能准确地预测实际管柱摩阻。本文以降阻比法为基础,分别对HPG 压裂液的前置液、携砂液沿程管柱摩阻进行理论计算,并结合胜利油田现场施工井的实际数据进行对比分析,对影响管柱摩阻计算的影响因素进行修正,提高理论计算和现场施工数据的一致性,形成适合胜利油田压裂施工管柱摩阻计算的相关计算程序。 1、降阻比管柱摩阻计算 Lord 和MC Gowen 等人在前人研究的基础上提出了HPG 压裂液前置液,携砂液摩阻计算的新方法,称为降阻比法,其基本原理是在相同条件(如排量、管径、管长相同)下,压裂液摩阻与清水摩阻之比称为降阻比,用公式表示为: w f p f P P )()(??= δ (1) 式中:p f P )(?:压裂液摩阻,Mpa ;w f P )(?:清水摩阻,Mpa ;δ:降阻比系数,无单位。 1.1 清水摩阻计算 从公式(1)可以看出,降阻比法要首先计算清水摩阻,且其值的准确性对压裂液摩阻计算有较大的影响,水力学中伯拉休斯清水摩阻计算式: L Q D P ***10*779.775.175.461--=? (2) 式中: 1P ?:清水摩阻,Mpa ; D :管柱内径,m ; Q :施工排量m 3 /s ; L: 管柱长度,m ;

梁体的摩阻测试方案

1. 检测目的及测试内容 预应力摩阻测试包括锚口摩阻、管道摩阻、喇叭口摩阻三部分。预应力摩阻损失是后张预应力混凝土梁的预应力损失的主要部分之一,对它的准确估计将关系到有效预应力是否能满足梁使用要求,影响着梁体的预拱变形,在某些情况下将影响着桥梁的整体外观等。过高的估计会使得预应力张拉过度,导致梁端混凝土局部破坏或梁体预拉区开裂,且梁体延性会降低;过低的估计则不能施加足够的预应力,进而影响桥梁的承载能力、变形和抗裂度等。 预应力管道摩阻损失与管道材料性质、力筋束种类以及张拉工艺等有关,相差较大,最大可达45%。工程中对预应力管道摩阻损失采用摩阻系数μ和管道偏差系数k来表征,虽然设计规范给出了一些建议的取值范围,但基于对实际工程质量保证和施工控制的需要,以及在不同工程中其管道摩阻系数差别较大的事实,在预应力张拉前,需要对同一工地同一施工条件下的管道摩阻系数进行实际测定,从而为张拉时张拉力、伸长量以及预拱度等的控制提供依据。 摩阻测试的主要目的一是可以检验设计所取计算参数是否正确,防止计算预应力损失偏小,给结构带来安全隐患;二是为施工提供可靠依据,以便更准确地确定张拉控制应力和力筋伸长量;三是可检验管道及张拉工艺的施工质量;四是通过大量现场测试,在统计的基础上,为规范的修改提供科学依据。 2. 检测依据 (1)《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) (2)《高速铁路桥涵工程施工技术规程》(Q/CR9603-2015) (3)《铁路工程预应力筋用夹片式锚具、夹具和连接器技术条件》TB/T3193-2008 (4)××桥设计文件。 3. 仪器设备 (1)张拉千斤顶及配套设备;

压裂施工中摩阻计算

压裂施工中摩阻计算-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

*川西地区压裂施工过程中管柱摩阻计算摘要:以降阻比法为基础,分别对有机硼交联(HPG) 压裂液的前置液、携砂液的沿程管柱摩阻计算方法进行分析,结合川西地区部分井压裂施工现场的施工数据,对管柱摩阻计算公式进行修正改进后,提高了压裂施工设计和数值模拟中摩阻参数计算的准确性;同时用计算机程序实现了施工过程管柱沿程摩阻的计算,可用于模拟压裂施工全过程的摩阻计算。对四川川西地区以油管方式注入井的水力压裂施工设计及现场施工过程中井底压力的分析具有重要意义。 关键词:压裂施工;降阻比;管柱摩阻;公式;计算前言 压裂施工管柱沿程摩阻值的准确性直接影响到压裂工艺的设计过程,是确定井底压力的必要数据,也是压裂施工成功与否的主要因素。在实际压裂设计中,大多数采用经验估计法对管柱的摩阻损失进行计算,往往不能准确地预测实际摩阻,尤其不能模拟压裂施工整个过程的实际摩阻值。管柱的摩阻计算单纯的从流变学和水力学的角度去计算,目前还不能被实际应用。文章以降阻比法为基础,分别就HPG压裂液、相应的携砂液沿程管柱摩阻计算方法进行分析对比,并结合川西地区大部分压裂井的现场施工数据,对压裂液的沿程摩阻有关计算公式进行改进,实现压裂施工全过程摩阻计算的计算机程序化。实例计算表明,改进后的摩阻计算公式以及压裂施工过程摩阻计算结果与现场实际数据有较高的符合率,可以用于川西地区压裂施工过程摩阻的模拟计算。 1 压裂液摩阻的计算 Lord和MC Gowen等人[1,2]利用其他人的实验资料提出了计算溶胶及混砂液摩阻的方法。采用延迟交联技术,使交联HPG与HPG溶胶在井筒中的摩阻相差不大,因此,Lord等人仍用溶胶的数据提出了一个降阻比(δ)的概念:(1) 式中:(△Pf)0为清水的摩阻损失,MPa;(△Pf)P为压裂液的摩阻损失,MPa。清水的摩阻损失可以用经典水力学雷诺数与摩阻系数关系进行计算,或者同样采用Lord等人提出的回归公式: (2) 式中:D为压裂油管柱的内径,mm;Q为施工过程泵注排量,m3/min;H为油管长度,m。 在实验数据处理中认为,降阻比δ是压裂液平均流速υ、稠化剂浓度CHPG、支撑剂浓度CP的函数,通常表示为δ=f(υ、CHPG、CP)。通过对1 049个实验数据的线性回归,结合实际矿场条件,提出了实用于HPG压裂液降阻比的计算经验关系式: (3) 式中:CP为支撑剂的浓度,kg/m3;CHPG为稠化剂HPG的浓度,kg/m3。 从本质上讲,降阻比就是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源及交联特性的影响[3]。因此,由上述公式计算所得到的压裂液摩阻与现场实测数据还有很大的误差,必须利用获得的实际压裂液的摩阻损失值进行现场校正,以便更为真实地反映压裂液的摩阻值。 前置液摩阻计算

水平井裸眼完井砾石充填步骤

The Baker Hughes CSAP gravel pack system has all of the same field proven features of CS-300 system. The definition of CSAP is Cake-Saver-Acid-Placement, before running in hole with the gravel pack assembly, displace the open hole section in casing to brine. It’s critical to the successive hole cleaning to maximize the fluid velocity at 300 ft/min near the well bore wall. 贝克休斯CSAP砾石充填系统具有CS-300已经验证的所有相同的属性。在向井下下砾石充填的组合工具时,向套管下的裸眼部分打入盐水,这对裸眼井壁附近液流速度达到300英尺每分,连续地洗井起着非常关键的作用。 For this reason, it’s important to fully maintain turbulent fluid possible. Low-viscosity fluids are desired to help to retain turbulence. However, while low-viscosity fluids help maximize velocity near the wall. It’s commonly assumed that their use also makes it somewhat more difficult to remove solids from the wellbore. To carry solids completely out of the wellbore,elevated flow velocities are required. 由于这个原因,完全保持湍流的液体很重要。低剪切速度的液体有助于保持湍流。然而,尽管低剪切速度的流体能保证井壁附近的流体高流速。但是通常它们也存在一个缺点那就是更难将井眼的固体携带出来。为了将固体百分之百地携带出井眼,就要求液体具有很高的流速。 The steps to compete the procedure are: 步骤如下: 1、Pick up gravel pack assembly and run in hole to setting depth. 将砾石充填组合工具下放到井下预定的深度。 2、Circulate brine down the work string and out the GPV shoe around the screen annulus at a rate below 25ft/sec pass the SC packing element. 将盐水循环到工作管住从GPV引鞋流出,到筛管环空周围,速度为25英尺没秒以内,通过防砂充填工具。 3、Drop a stainless steel ball to set the SC packer, this section will shift the ball seat isolation sleeve downward, opening the return bypass ports in the crossover tool, and locking the primary ball on the ball seat. 将一个不锈钢球丢手,坐在防砂封隔器上,会使球座封隔套筒向下移动,打开crossover tool 的回路旁通通道,将初始的那个不锈钢球锁在球座上。 4、Set the packer, pull the packer tech-unit, perform an anchor test on the SC packer. 坐封隔器,拉动封隔器部分,在防砂封隔器上做一个锚定测试。 5、Pull 30000 pounds over the last recorded up-weight, followed by slacking off 30,000 pounds below the last recorded down-weight. This is your running in hole position. Followed by picking up the work string to confirm the crossover tool is free from the gravel pack packer assembly. 最后一个记录的上提载荷重加到30000磅,然后将最后一个记录的释放重量加到30000磅。这是下工具的位置。接下来上提工作管住以确保crossover tool脱离了防砂封隔器组合,可以自由上提下放。 6、Pick up the work string to position the SMART Collet above the first indicating coupling, slack off 30,000 pounds, this is your test packer position. Apply the required test pressure to the annulus, to confirm the SC packing element is packed off on the casing inside diameter. 上提工作管住到SMART Collet 的第一个位置指示接箍,释放30000磅的重量,这个是测试封隔器的位置。对环空进行要求的压力测试,来保证防砂封隔工具坐封在了套管避上。7、Pick up the work string to position the SMART Collet above the second indicating coupling.

泥浆材料及用途

加重材料 指标 名称主要成份分子式密度数目可配最高密度 石灰石粉碳酸钙 CaCO3 2.7-2.9 200 1.68 超细粉碳酸钙 CaCO3 2.8-3.1 600 1.80 重晶石粉硫酸钡 BaSO4 3.9-4.2 200 2.3 活性重晶石粉硫酸钡 BaSO4 3.9-4.2 200 3.1 铁矿粉氧化铁 Fe2O3 4.9-5.3 150 4.0 方铅矿粉硫化铅 PbS 7.4-7.7 150 5.2 三无机盐类 一、碳酸钠 1、物理性质 碳酸钠(Na2CO3)又称纯碱、打,白色粉末结晶,密度2.5,易溶于水,水溶液呈碱性,在空气中易吸潮结块,要注意防潮。 2、化学性质 a、电离: Na2CO3=2Na ++ CO32– b、水解: CO32– + H2O = HCO3– + OH– HCO3– + H2O = H2CO3 + OH– c、沉淀钙离子、镁离子 Ca2++ CO32–= CaCO3↓ Mg2++ CO32–= MgCO3↓↓ 3、作用

沉淀膨润土中的钙离子、镁离子,改善水化性能,促进膨润土分散造浆,降低泥浆的失水,提高泥浆的粘度和切力,改善泥饼的质量。 4、加量 准确加量应根据膨润土质量通过实验确定,一般为膨润土重量的5%。 5、测试 1%水溶液PH值大于12为合格品。 二、氢氧化钠 1、物理性质 氢氧化钠又称烧碱、火碱或苛性钠。白色结晶,有液体、固体片状三种产品,纯度从50%至99%不等,密度2-2.2,易吸潮,有强烈的腐蚀性,暴露在空气中,会吸收CO2,变成Na2CO3。 2、作用 a、调节泥浆PH值。 b、促使膨润土分散造浆。 c、加快有机处理机溶解。 3、加量 根据产品纯度和需要决定加量,一般加量为泥浆的 0.1%—0.5%. 4、测试

一种压裂液管柱摩阻求取方法

一种压裂液管柱摩阻求取方法 张 军 【摘 要】摘 要 在油管压裂工程设计与分析过程中,由于考虑压裂液管柱摩阻,施工压力和施工排量的设计除考虑地层因素外,不得不考虑井筒管材和施工管柱所承受的最大压力,对依据储层条件科学合理地进行储层改造造成了很大的障碍。同时在压裂施工过程中,为确保压裂施工的成功率和减少井筒复杂,在计算施工压力和提升作业排量时,压裂液管柱摩阻必须纳入计算或估算范围内。但在实际情况中,由于成本、施工时间的影响,并不能将每种压裂液摩阻进行现场实测,同时运用摩阻经验计算公式对特定的压裂液计算的管柱摩阻误差较大,因此需要在实验室对每种压裂液进行实验,测试其在实验室条件下的管柱摩阻,然后将其得到的结果转化成现场条件下的摩阻。利用小管径实验将得到的管柱摩阻结果按现场比例放大能很好的指导现场压裂施工,对施工人员实时判断施工真实压力大小提供了参考。同时利用该方法能减小摩阻经验公式计算的误差,对提高压裂工程设计质量和压后分析起到很好的帮助作用。 【期刊名称】矿山工程 【年(卷),期】2018(006)003 【总页数】8 【关键词】关键词 压裂液摩阻,降阻比,小管径实验,放大方法 文章引用: 张军. 一种压裂液管柱摩阻求取方法[J]. 矿山工程, 2018, 6(3): 175-182. Received: Jul. 4th, 2018; accepted: Jul. 19th, 2018; published: Jul. 26th, 2018 Copyright ? 2018 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/0c11024493.html,/licenses/by/4.0/ 1.引言 近年来,随着油气勘探开发技术的进步,油气勘探开发不断向深井和超深井领域发展,而深井和超深井改造过程中最令工程设计者困惑的是压裂液管柱摩阻。压裂液管柱摩阻是压裂施工过程中的一项重要参数[1] [2] [3] [4]。压裂液摩阻对施工水马力、压裂过程井底和井口压力、施工管材承压能力等的影响是设计者不得不考虑的因素[5]。通常压裂液管柱摩阻计算采用理论公式计算,但该方法对压裂液性质尤其是胶体黏度把握不够准确,导致摩阻计算数据与实测数值差距较大,影响后续数据分析[6]。而实测每种压裂液管柱摩阻耗时长,成本高。

砾石充填防砂井砾石尺寸设计实例

1 砾石充填防砂井砾石尺寸设计实例 砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。油气井防砂领域使用的标准砾石尺寸如表1所示。 目前国内外的主要砾石尺寸设计方法为三类: (1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型; (2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型; (3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。 上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。 我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。 表1 油气井防砂领域使用的标准砾石尺寸 第一类设计方法的设计结果如表2所示。 使用DePriester方法进行砾石尺寸设计结果如图2所示。设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。 使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。曲线A、B分别为Cg= Cmin和为Cg= Cmin和时得到砾石尺寸分布曲线;曲线C为Cg取平均值1.35时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.160~0.300mm,匹配表1中的标准砾石尺寸为0.21~0.25mm。

滚动摩阻

第三节 滚动摩阻 古人发明了车轮,用滚动代替滑动,以明显地节省体力。在工程实践中,人们常利用滚动来减少摩擦,例如搬运沉重的包装箱,在其下面安放一些滚子(见图4—6),汽车、自行车采用轮胎,火车采用钢轮。同样在图4—7中,滚珠轴承(见图b )比滑动轴承(见图a )摩擦所消耗的能量少。 a) b) 图4—6 搬运包装箱 图4—7 滑动轴承与滚珠轴 承 将一重量为G 的车轮放在地面上,如图4—8所示,在车轮中心C 加一微小的水平力 图4—8 在地面上的车轮 F T ,此时在车轮与地面接触处A 就会产生摩擦阻力F ,以阻止车轮的滑动。主动力F T 与滑动摩擦力F 组成一个力偶,其值为FR ,它将驱动车轮转动,实际上,如果F T 比较小,转动并不会发生,这说明还存在一阻止转动的力偶,这就是滚动摩阻力偶。 为了解释滚动摩阻力偶的产生,需要引入柔性约束模型。作为一种简化,仍将轮子视为刚体,而将路轨视为具有接触变形的柔性约束,如图4—9a 所示。当车轮受到较小的水平力F T 作用后,车轮与路轨在接触面上约束反力将非均匀地分布(见图4—9b ),我们将分布力系合成为F N 和F 二个力,或进一步合成为一个力F R ,如图4—9c 所示,这时F N 偏离AC 一微小距离1δ。当主动力F T 不断增大时,F N 偏离AC 的距离1δ也随之增加,滚动摩阻力偶矩F N 1δ平衡产生滚动趋势的力偶(F T ,F )。当主动力F T 增加到某个值时,轮子处于将滚未滚的临界平衡状态,1δ达到最大值δ,滚动摩阻力偶矩达到最大值,称为最大滚动摩阻

力偶矩,用M max 表示。若力F T 再增加,轮子就会滚动。若将力F N 、F 平移到A 点,如图4—9d 所示,F N 的平移产生附加力偶矩F N 1δ,即滚动摩阻力偶矩M f 。 图4—9 滚动摩阻 在滚动过程中,滚动摩阻力偶矩近似等于M max 。 综上所述,滚动摩阻是由于轮与支承面接触变形而形成的摩阻力偶矩M f ,其大小介于零与最大值M max 之间,即 max 0M M f ≤≤ (4—6) 其中最大滚动摩阻力偶矩M max 与滚子半径无关,与支承面的正压力F N 成正比,即 N F M δ=max (4—7) 上式称为滚动摩阻定律,其中比例常数δ称为滚动摩阻系数,简称滚阻系数,单位为mm 。 滚动摩阻系数与轮子和支承面的材料硬度和湿度有关,与滚子半径无关。以骑自行车为例,减小滚阻系数δ的方法是轮胎充气足、路面坚硬。对于同样重量的车厢,采用钢制车轮与铁轨接触方式,其滚阻系数δ就小于橡胶轮胎与马路接触时的滚阻系数。滚阻系数δ由实验测定,表4—2列出了一些材料的滚动摩阻系数的值。 表4—2 滚动摩阻δ

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

压裂施工中摩阻计算

*川西地区压裂施工过程中管柱摩阻计算摘要:以降阻比法为基础,分别对有机硼交联(HPG) 压裂液的前置液、携砂液的沿程管柱摩阻计算方法进行分析,结合川西地区部分井压裂施工现场的施工数据,对管柱摩阻计算公式进行修正改进后,提高了压裂施工设计和数值模拟中摩阻参数计算的准确性;同时用计算机程序实现了施工过程管柱沿程摩阻的计算,可用于模拟压裂施工全过程的摩阻计算。对四川川西地区以油管方式注入井的水力压裂施工设计及现场施工过程中井底压力的分析具有重要意义。 关键词:压裂施工;降阻比;管柱摩阻;公式;计算前言 压裂施工管柱沿程摩阻值的准确性直接影响到压裂工艺的设计过程,是确定井底压力的必要数据,也是压裂施工成功与否的主要因素。在实际压裂设计中,大多数采用经验估计法对管柱的摩阻损失进行计算,往往不能准确地预测实际摩阻,尤其不能模拟压裂施工整个过程的实际摩阻值。管柱的摩阻计算单纯的从流变学和水力学的角度去计算,目前还不能被实际应用。文章以降阻比法为基础,分别就HPG压裂液、相应的携砂液沿程管柱摩阻计算方法进行分析对比,并结合川西地区大部分压裂井的现场施工数据,对压裂液的沿程摩阻有关计算公式进行改进,实现压裂施工全过程摩阻计算的计算机程序化。实例计算表明,改进后的摩阻计算公式以及压裂施工过程摩阻计算结果与现场实际数据有较高的符合率,可以用于川西地区压裂施工过程摩阻的模拟计算。 1 压裂液摩阻的计算 Lord和MC Gowen等人[1,2]利用其他人的实验资料提出了计算溶胶及混砂液摩阻的方法。采用延迟交联技术,使交联HPG与HPG溶胶在井筒中的摩阻相差不大,因此,Lord等人仍用溶胶的数据提出了一个降阻比(δ)的概念: (1) 式中:(△Pf)0为清水的摩阻损失,MPa;(△Pf)P为压裂液的摩阻损失,MPa。 清水的摩阻损失可以用经典水力学雷诺数与摩阻系数关系进行计算,或者同样采用Lord等人提出的回归公式: (2) 式中:D为压裂油管柱的内径,mm;Q为施工过程泵注排量,m3/min;H为油管长度,m。在实验数据处理中认为,降阻比δ是压裂液平均流速υ、稠化剂浓度CHPG、支撑剂浓度CP的函数,通常表示为δ=f(υ、CHPG、CP)。通过对1 049个实验数据的线性回归,结合实际矿场条件,提出了实用于HPG压裂液降阻比的计算经验关系式: (3) 式中:CP为支撑剂的浓度,kg/m3;CHPG为稠化剂HPG的浓度,kg/m3。 从本质上讲,降阻比就是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源及交联特性的影响[3]。因此,由上述公式计算所得到的压裂液摩阻与现场实测数据还有很大的误差,必须利用获得的实际压裂液的摩阻损失值进行现场校正,以便更为真实地反映压裂液的摩阻值。 1.1 前置液摩阻计算 令式(3)中的CP = 0(即未加支撑剂的情况),可以求出前置液阶段的降阻比δ,结合(1)、(2)式可以计算出前置液的摩阻值。为了获得与实际更接近的结果,在不改变降阻比影响因素的前提下,以川西地区部分压裂井前置液阶段施工过程的实际摩阻值为基础,结合降阻比公式,对式(3)的系数进行反复修正计算,最终得到适合于川西地区压裂液体系的降阻比计算式:

美国Altus公司提出水平井完井管柱摩阻分布的新机理

593罗人文等:马深1井超深井钻井液技术 (2)调整流变性改善携砂效果时,最好采用等密度段塞的方式。 (3)起钻时扶正器在入大套管前,应降低起钻速度,观测好指重表注意防卡。 4 结论 Conclusions (1)针对四开设计的高密度KCl聚胺磺化钻井液体系、五开的抗高温聚磺钻井液体系均在现场成功应用,抗温、抗污染效果较好,两种体系的封堵能力强,高温高压滤失量能控制在8~12 mL,满足了封堵防塌的要求。解决了超深井井壁稳定问题,四开井径扩大率为3.1%,五开井径扩大率为5.1%。 (2)研究结果解决了大小井眼携砂问题,保证了五开螺杆+PDC钻头双驱钻井技术的顺利应用,大幅度缩短了施工周期。 参考文献: References: [1] 谭茂波,何世明,邓传光,米光勇,高德伟,王强.龙岗西地区首口非常规超深井钻井技术[J].石油钻采工艺, 2015,37(2):19-23. TAN Maobo, HE Shiming, DENG Chuanguang, MI Guangyong, GAO Dewei, WANG Qiang. Drilling technology for the first unconventional ultra-deep well in West Longgang Region[J]. Oil Drilling & Production Technology, 2015, 37(2): 19-23. [2] 王中华. 超高温钻井液体系研究(Ⅰ)——抗高温钻井液处理剂设计思路[J].石油钻探技术,2009,37(3):1-7. WANG Zhonghua. Studies on ultra-high-temperature drilling fluid system (Ⅰ) : Design ultra-high-temperature drilling fluid additives[J]. Petroleum Drilling Techniques, 2009, 37(3): 1-7. [3] 刘克飞.超高温水基钻井液技术研究与应用[D] .北京:中国石油大学(北京),2009. LIU Kefei. Study and application on ultra-high temperature water base drilling fluid technique[D]. Beijing: China University of Petroleum ( Beijing ), 2009. [4] 周光正,王伟忠,穆剑雷,曹孜英,尹丽,张刚,杨鹏梅.钻井液受碳酸根/碳酸氢根污染的探讨[J].钻井液与 完井液,2010,27(6):42-45. ZHOU Guangzheng, WANG Weizhong, MU Jianlei, CAO Ziying, YIN Li, ZHANG Gang, YANG Pengmei. Research on carbonate/bicarbonate contamination of drlling fluid [J]. Drilling Fluid & Completion Fluid, 2010, 27(6): 42- 45. [5] 邹大鹏.大庆油田致密油水平井强抑制防塌水基钻井液技术[J].石油钻采工艺,2015,37(3):37-39. ZOU Dapeng. High inhibition and anti-sloughing water- based drilling fluid technology for horizontal wells in tight oil reservoirs in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(3): 37-39. [6] 王平全,余冰洋,王波,时海涛,李红梅.常用磺化酚醛树脂性能评价及分析[J] .钻井液与完井液,2015,32 (2):29-33. WANG Pingquan, YU Bingyang, WANG Bo, SHI Haitao, LI Hongmei. Valuation and analysis of commonly used sulfonated phenolic resins[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 29-33. [7] 梁奇敏,侯本权,方丽超.多约束条件下的钻井液排量优选研究[J].石油机械,2013,41(8),13-16. LIANG Qimin, HOU Benquan, FANG Lichao. Research on the optimization of drilling fluid displacement in multi- constraint conditions[J]. China Petroleum Machinery, 2013, 41(8): 13-16. (修改稿收到日期 2016-08-29) 〔编辑 薛改珍〕 美国Altus公司提出水平井完井管柱摩阻分布的新机理 水平井完井设计中需要准确预测井眼内管柱的受力,以确定管柱部件的强度等级,保证施工安全。但以前的水平井完井管柱摩阻多按照水平井钻井摩阻计算,不仅计算精度低,而且计算结果与应力分布与实际情况不符。美国Altus公司提出水平井完井管柱的摩阻产生新机理。该公司认为,完井管柱下入井底,受到水平井的大斜度井眼影响,积聚了大量摩阻载荷。而通过最初的完井作业工艺,如坐封封隔器或部分井段的水泥固井,又将这些摩阻载荷分段隔离在各管柱之间,在后续的完井作业中,通过管柱的运动或振动,又使管柱的载荷进行重新分布。公司依据新机理设计了计算程序,并获得良好的应用效果。 (郭永峰编译 E-mail:guoyf2@https://www.doczj.com/doc/0c11024493.html,) 万方数据

预应力摩阻损失测试试验方案

预应力摩阻损失测试试验方案 石家庄铁道学院 岩土与结构实验中心 二〇〇八年九月二十一日

目录 1.概述 (1) 2. 检测依据 (1) 3. 检测使用的仪器及设备 (1) 4.孔道摩阻损失的测试 (2) 4.1 测试方法 (2) 4.2 试验前的准备工作 (3) 4.3 试验测试步骤 (3) 4.4 数据处理方法 (4) 4.5 注意事项 (6) 5.锚口及喇叭口摩阻损失测试 (6) 5.1 测试方法 (6) 5.2 测试步骤 (7) 附件1. 测试记录表格 (9) 附件2. 资质证书 (10)

1.概述 预应力摩阻测试包括锚口摩阻、管道摩阻、喇叭口摩阻三部分。预应力摩阻损失是后张预应力混凝土梁的预应力损失的主要部分之一,对它的准确估计将关系到有效预应力是否能满足梁使用要求,影响着梁体的预拱变形,在某些情况下将影响着桥梁的整体外观等。过高的估计会使得预应力张拉过度,导致梁端混凝土局部破坏或梁体预拉区开裂,且梁体延性会降低;过低的估计则不能施加足够的预应力,进而影响桥梁的承载能力、变形和抗裂度等。 预应力管道摩阻损失与管道材料性质、力筋束种类以及张拉工艺等有关,相差较大,最大可达45%。工程中对预应力管道摩阻损失采用摩阻系数μ和管道偏差系数k来表征,虽然设计规范给出了一些建议的取值范围,但基于对实际工程质量保证和施工控制的需要,以及在不同工程中其管道摩阻系数差别较大的事实,在预应力张拉前,需要对同一工地同一施工条件下的管道摩阻系数进行实际测定,从而为张拉时张拉力、伸长量以及预拱度等的控制提供依据。 摩阻测试的主要目的一是可以检验设计所取计算参数是否正确,防止计算预应力损失偏小,给结构带来安全隐患;二是为施工提供可靠依据,以便更准确地确定张拉控制应力和力筋伸长量;三是可检验管道及张拉工艺的施工质量;四是通过大量现场测试,在统计的基础上,为规范的修改提供科学依据。 受中铁×××制梁厂的委托,石家庄铁道学院岩土与结构实验中心拟于2008年×月×日开始对××××进行预应力摩阻测试。 2. 检测依据 (1)《铁路桥涵钢筋混凝土及预应力混凝土结构设计规范》(TB10002.3—2005)(2)《铁路桥涵施工规范》(TB10203-2002) (3)拟测试梁的设计图纸 3. 检测使用的仪器及设备 (1)2台千斤顶、2台高压油泵,2块0.4级精密压力表。 (2)2台传感器,1台读数仪,2根配套连接线缆。 (3)对中专用工装。根据现场条件确定。 (4)工具锚2套,工作锚1套,配套限位板1块。 (5)0.5mm精度钢板尺2把,记录用夹板2个,钢笔2,计算器1,记录纸若干。

桩测摩阻计算

利用ABAQUS进行桩侧摩阻力仿真计算 [摘要] 桩侧摩阻力的大小直接确定了桩的实际承载力。因而如何确定桩的侧摩阻力对于桩基设计计算的意义重要。此处借用ABAQUS有限元软件对桩的侧摩阻力进行仿真计算。[关键词] 有限元软件桩侧摩阻力仿真计算 一、引言 桩基设计的核心问题,不外是沉降和承载力两个方面。在现行的规范中,桩侧摩阻力主要通过原位测试、当地经验值、规范给定值三种方式经过修订而得的。事实上,桩侧摩阻力的值是随着桩顶载荷、地层情况,以及深度等各种因素而变的,而且深度效应较为明显。 对于摩擦型单桩,其承载力主要由桩侧摩阻力承担。因此如何正确分析和计算桩侧摩阻力的分布及影响因素至关重要。传统的方法是通过原位贯入试验测得桩的侧摩阻力。通过现场原位试验虽然可以有效的得到设计需要的数据。但是现场原位试验既费工又费钱,而且试验技术有一定的困难。现代计算机技术的飞速发展,因此如何根据室内试验得到的有关资料,利用仿真分析的方法来确定桩侧摩阻力作用情况,进而确定桩侧摩阻力,是值得广泛关注和讨论的问题。 二、桩土计算模型 在考虑土的非线性、桩周土分层、桩土间非线性相互影响、桩端有存渣、桩端及桩侧注浆加固、桩长及桩直径变化等因素时,有限元法是现阶段最适用的方法,它能解决由于试桩困难及实测费用大的问题。为了方便阐述和演示,本次仿真计算采用了很大的简化。本次计算只考虑桩打入土层之后的摩阻力的变化,土层只取一层。桩取直径0.5米,长度为10米,并简化为弹性本构模型,土水平边界设置为10米,深度方向设置为30米,并简化为弹塑形本构模型。

图1:计算模型 三、计算过程 在几何模型上,采用大尺寸来模拟半无限空间体系,土体的边界半径去10米(桩半径的40倍),土体深度方向上去30米(桩长度的3倍)。 在ABAQUS的Part模块中根据工程条件通过轴对称的方式建立图1的计算几何模型,并将模型分别建成2个part,一个桩的part,一个土的part。在桩的part中只保留桩的部分,在土的part中只保留土的部分。在桩和土接触问题上,要求在土和桩相接触的地方分别建立接触面。 在 ABAQUS的Property模块中,分别建立相应的混凝土材料和土体材料,并赋值给相应 的部件。

预应力摩阻损失测试试验方案

预应力摩阻损失测试 试验方案 山东铁正工程试验检测中心有限公司 二〇一0年十一月八日

目录 1.概述 (1) 2. 检测依据 (1) 3. 检测使用的仪器及设备 (1) 4.孔道摩阻损失的测试 (1) 4.1 测试方法 (1) 4.2 试验前的准备工作 (3) 4.3 试验测试步骤 (3) 4.4 数据处理方法 (4) 4.5 注意事项 (6) 5.锚口及喇叭口摩阻损失测试 (6) 5.1 测试方法 (6) 5.2 测试步骤 (7) 附件1. 测试记录表格 ............................................. 错误!未定义书签。

1.概述 预应力摩阻测试包括锚口摩阻、管道摩阻、喇叭口摩阻三部分。预应力摩阻损失是后张预应力混凝土梁的预应力损失的主要部分之一,对它的准确估计将关系到有效预应力是否能满足梁使用要求,影响着梁体的预拱变形,在某些情况下将影响着桥梁的整体外观等。过高的估计会使得预应力张拉过度,导致梁端混凝土局部破坏或梁体预拉区开裂,且梁体延性会降低;过低的估计则不能施加足够的预应力,进而影响桥梁的承载能力、变形和抗裂度等。 预应力管道摩阻损失与管道材料性质、力筋束种类以及张拉工艺等有关,相差较大,最大可达45%。工程中对预应力管道摩阻损失采用摩阻系数μ和管道偏差系数k来表征,虽然设计规范给出了一些建议的取值范围,但基于对实际工程质量保证和施工控制的需要,以及在不同工程中其管道摩阻系数差别较大的事实,在预应力张拉前,需要对同一工地同一施工条件下的管道摩阻系数进行实际测定,从而为张拉时张拉力、伸长量以及预拱度等的控制提供依据。 摩阻测试的主要目的一是可以检验设计所取计算参数是否正确,防止计算预应力损失偏小,给结构带来安全隐患;二是为施工提供可靠依据,以便更准确地确定张拉控制应力和力筋伸长量;三是可检验管道及张拉工艺的施工质量;四是通过大量现场测试,在统计的基础上,为规范的修改提供科学依据。 2. 检测依据 (1)《公路桥涵钢筋混凝土及预应力混凝土结构设计规范》(TB10002.3—2005)(2)《公路桥涵施工规范》(TB10203-2002) (3)拟测试梁的设计图纸 3. 检测使用的仪器及设备 (1)2台千斤顶、2台高压油泵,2块0.4级精密压力表。 (2)2台传感器,1台读数仪,2根配套连接线缆。 (3)对中专用工装。根据现场条件确定。 (4)工具锚2套,工作锚1套,配套限位板1块。 (5)0.5mm精度钢板尺2把,记录用夹板2个,钢笔2,计算器1,记录纸若干。 4.孔道摩阻损失的测试 4.1 测试方法

相关主题
文本预览
相关文档 最新文档