当前位置:文档之家› LN61C系列 高精度低功耗小封装电压检测器 LN61C 系列 ■ 产品

LN61C系列 高精度低功耗小封装电压检测器 LN61C 系列 ■ 产品

LN61C系列 高精度低功耗小封装电压检测器 LN61C 系列 ■ 产品
LN61C系列 高精度低功耗小封装电压检测器 LN61C 系列 ■ 产品

MX6600T高精度,低功耗LDO

! CMOS Low Power Consumption ! APPLICATIONS ! Dropout Voltage 160V @ 100mA " Battery powered equipment 400mV @ 200mA " Reference voltage sources ! Output Current more than 250mA <5.0V type> " Cameras, Video cameras ! Highly Accurate + 2% " Portable AV systems ! Output Voltage Range 1.2V to 5.0V " Mobile phones ! Current Limiter Circuit Built-in " Communication tools ! Low ESR Ceramic Capacitor Compatible " Portable games ! GENERAL DESCRIPTION ! FEATURES The MX6600T series are precise, low power consumpt ion, Maximum Output Current 250mA (5.0V type) high voltage, positive voltage regulators manufactured using Dropout Voltage 160mV@100mA (5.0V type) CMOS and laser trimming technologies. The series provides Maximum Operating Voltage 6.0V large currents with a significantly small dropout voltage. Output Voltage Range 1.2V to 5.0V The MX6600T series consists of a current limiter circuit, (100mV increments) a driver transistor, a precision reference voltage and an error Highly Accurate + 2% correction circuit. Low Power Consumption 1.0 μA (TYP .) The series is compatible with low ESR ceramic capacitors. Operational Temperature Range - 40O C to 85O C The current limiter's foldback circuit also operates as a short Ultra Small Packages SOT-23 protect for the output current limiter and the output pin. SOT-89 Output voltage can be set internally by laser trimming technologies. It is selectable in 100mV increments within a range of 1.2V to 5.0V. Low ESR ceramic capacitor compatible SOT-23, SOT-89, TO-92 and USP-6B packages are available. ! TYPICAL APPLICATION CIRCUIT ! TYPICAL PERFORMANCE CHARACTERISTICS SOT-23 (TOP VIEW) 0.30.60.91.21.5 3 456 Input Voltage VIN (V) S u p p l y C u r r e n t I D D (μA ) TAIWAN

电压基准芯片的参数解析及应用技巧(精)

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

相位差测量中高精度相位差测量仪的重要性

相位差测量中高精度相位差测量仪的重要性 相位差,物理学概念。两个频率相同的交流电相位的差叫做相位差,或者叫做相差。这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。一台高精度相位差测量仪对相位差的测量尤为重要。 相位差与相位的关系 (1)当j12>0时,称第一个正弦量比第二个正弦量的相位越前(或超前)j12; (2)当j12<0时,称第一个正弦量比第二个正弦量的相位滞后(或落后)|j12|; (3)当j12=0时,称第一个正弦量与第二个正弦量同相,如图7-1(a)所示; (4)当j12=±π或±180°时,称第一个正弦量与第二个正弦量反相; (5)当j12=±π/2或±90°时,称第一个正弦量与第二个正弦量正交。相位差示例 1.已知u= 311sin(314t- 30°) V,I= 5sin(314t+ 60°) A,则u与i 的相位差为jui= (-30°) - (+ 60°) = - 90°,即u比i滞后90°,或i 比u超前90°。 相位差的取值范围和初相一样,小于等于π(180°).对于超出范围的,同样可以用加减2Nπ来解决. 2.研究交流电路的相位差.如果电路含有电感和电容,对于纯电容电路电压相位滞后于电流(电压滞后电流多少度也可以表述成电流超前电压多少度),纯电感电路电流相位滞后于电压,滞后的相位值都为π的一半,或者说90°.在计算电路电流有效值时,电容电流超前90,电感落后90,可用矢量正交分解加合. 加在晶体管放大器基极上的交流电压和从集电极输出的交流电压,这两者的相位差正好等于180°.这种情况叫做反相位,或者叫做反相. 正弦量正交(90°)和反相(180°)都是特殊的相位差. 目前,国内相位差测量仪生产厂家或研究单位明显存在着技术老化问题,其采用的器件、方法和技术与技术先进国家有较大的的差距。而最近发展的先进的

电压比较器工作原理及应用实例

电压比较器工作原理及应用实例 时间:2011-11-24来源:作者:方佩敏 来源:https://www.doczj.com/doc/0a14588201.html, 本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout 的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout 输出低电平。根据输出电平的高低便可知道哪个电压大。 如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。 图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图

1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。 如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为: Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则 Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

电压跟随器的作用

电压跟随器的作用 电压跟随器是用一个三极管构成的共集电路,它的电压增益是一,所以叫做电压跟随器。那么电压跟随有什么作用呢?共集电路是输入高阻抗,输出低阻抗,这就使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。你可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路,当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。所以,电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时也称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点,在电路中起阻抗匹配的作用。举一个应用的例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压跟随器 电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。 电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,

一般来说,输入阻抗要达到几兆欧姆是很容易做到的。输出阻抗低,通常可以到几欧姆,甚至更低。 在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。 电压跟随器的另外一个作用就是隔离,在HI-FI-(高保真),电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。 在这里,电压跟随器的作用正好达到应用,把电路置于前级和功放之间,可以切断呀扬声器的反电动势对前级的干扰作用,使音质的清晰度得到大幅度提高。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,

高精度相位测量仪的介绍及测量

高精度相位测量仪的介绍及测量 相位介绍 相位是与电路结构有关的参数。 相位是反映交流电任何时刻的状态的物理量。交流电的大小和方向是随时间变化的。比如正弦交流电流,它的公式是i=Isin2πft。i是交流电流的瞬时值,I是交流电流的最大值,f是交流电的频率,t是时间。随着时间的推移,交流电流可以从零变到最大值,从最大值变到零,又从零变到负的最大值,从负的最大值变到零。 相位(phase)是对于一个波,特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。是描述讯号波形变化的度量,通常以度(角度)作为单位,也称作相角。当讯号波形以周期的方式变化,波形循环一周即为360° 。常应用在科学领域,如数学、物理学等 相位调整 相位调整是指在有些超低音音箱上加装的一个控制机构。用于对超低音音箱所重放出的声音稍许加以延迟,从而让超低音音箱的输出能够和前置主音箱同相位,即具有相同的时间关系。 相位噪声 相位噪声是频率域的概念,是对信号时序变化的另一种测量方式,其结果在频率域内显示。 如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。 相位差 两个频率相同的交流电相位的差叫做相位差,或者叫做相差。这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。

常见电压比较器分析比较

常见电压比较器分析比较 电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。 一、零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 图1 过零比较器 (a)反相输入;(b)同相输入 通常用阈值电压和传输特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。 估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)电路,U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。 二、任意电平比较器(俘零比较器)

将零电平比较器中的接地端改接为一个参考电压UR(设为直流电压),由于UR的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。 图2 任意电平比较器及传输特性 (a)任意电平比较器;(b)传输特性 图3 电平检测比较器信传输特性 (a)电平检测比较器;(b)传输特性 电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两个电平之间反复地跳变,可能使输出状态产生误动作。为了提高电压比较器的抗干扰能力,下面介绍有两个不同阈值的滞回电压比较器。 三、滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两

一种低功耗中高精度比较器的设计

收稿日期:2006 08 02; 定稿日期:2006 10 09 基金项目:国家自然科学基金资助项目(60475018);国家高技术研究发展计划资助项目(2003A A IZ1100) 一种0.2 mV 20 MHz 600 W 比较器 孙 彤,李冬梅 (清华大学微电子学研究所,北京 100084) 摘 要: 提出了一种低功耗中速高精度比较器。比较器采用3级前置放大器加锁存器的多级结构,应用失调校准技术,用于一个电压2.5V 、速度1MS/s 、精度12位的逐次逼近型A/D 转换器。该比较器采用UM C 0.18 m 混合模式3.3V CMOS 工艺设计制造。仿真结果表明,在2.5V 电 压下,速度可以达到20M H z,准确比较0.2m V 电压,并能有效校准20m V 输入失调,功耗仅为600 W,版图面积为620 m 190 m 。 关键词: 比较器;弱正反馈;失调校准;逐次逼近 中图分类号: T N431.1 文献标识码: A 文章编号:1004 3365(2007)02 0270 04 A 0.2 mV 20 MHz 600 W Comparator SUN To ng ,LI Dong mei (Dep t.of Electronic En gineer ing ,T sing hua Univ ersity ,Be ij ing 100084,P.R.China) Abstract: A low pow er,mo der ate speed and high r eso lutio n co mpar ator is presented,in w hich a multi stag e st ructur e co nsisting of thr ee pr e amplifier s and a latch is ado pt ed,and an offset cancellatio n technique is used.De sig ned and fabr icated in U M C s 0.18 m mix ed mo de 3.3V CM O S t echnolog y,the co mpar ator is used in a 2.5V,1M S/s,12 bit successive appr ox imatio n analog t o digital conv er ter.Simulatio n r esults show that it can distinguish 0.2mV at 20M H z under 2.5V supply vo ltag e,and can calibr ate 20mV input offset effectively ,w ith o nly 600 W po wer co nsumpt ion.T he com par ator occupies a chip ar ea of 620 m 190 m. Key words: Comparato r;Weak po sitiv e feedback;O ffset cancellatio n;Successive appr ox imatio n EEACC : 2570D 1 引 言 比较器是A/D 转换器中的核心单元,其精度、速度、失调、功耗等指标对整个A/D 转换器的性能 有重要影响。高速比较器速度较快,可以达到1.8GH z [1],一般采用锁存器(latch)结构,但是失调比较大,精度在8位以下,用于闪烁(Flash)、流水线(Pipeline)等高速A/D 转换器[2 4]。高精度比较器可以分辨较小的电压,但是速度相对比较慢,一般采用多级结构,而且通常采用失调校准技术[5, 6] ,可以 应用于较高精度的逐次逼近型A /D 转换器。 本文设计的比较器用于一个逐次逼近型A/D 转 换器,该A/D 转换器正确的电源电压为2.5V 、采样率1MS/s 、12位精度,计划使用UMC 0.18 m 混合模式(mixed mode)3.3V CMOS 工艺制造。为了满 足该A/D 转换器的性能指标,需要一种中速高精度的比较器。本文对该比较器进行了论述,第二部分详细分析了该比较器的结构,第三部分列出了仿真结果,第四部分给出了该比较器的版图。 2 比较器结构 对于电源电压为2.5V 、速度1M S/s 、精度12位的逐次逼近型A/D 转换器,要求比较器至少能够分辨1/2LSB,即0.3mV 电压,速度在12M H z 以 第37卷第2期2007年4月 微电子学Microelectronics V ol 37,!2A pr 2007

电压基准的特性及选用

电压基准的特性及选用 摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。 关键词齐纳基准带隙基准 XFET基准初始精度温度系数 一、电压基准及其应用领域 电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。电压稳压器除了向负载输出一个稳定电压外还要供给功率。电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。 电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。 二、电压基准的主要参数 1. 初始精度(Initial Accuracy) 初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为: 5.2~ 5.2 = 1 × ± = ± % .2 5.2 V 475 V525 .0 025 .2 在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。对于电压基准而言,初始精度是一个最为重要的性能指标之一。 2. 温度系数(Temperature Coefficient) 温度系数(简称TC)用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一)。例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。需注意的是,温度系数可能是正向的,即基准的输出电压随温度的升高而变大,也可能是负向的,即基准的输出电压随温度的升高而变小,具体可查看厂商数据手册中的温度曲线图表。 3. 热迟滞(Temperature Hysteresis) 当电压基准的温度从某一点开始经受变化,然后再次返回该温度点,前后二次在同一温度点测得的电压值之差即为热迟滞。该参数虽不如温度系数重要,但对于温度同期性变化超过25℃的情况仍是需引起重视的一个误差源。 4. 长期漂移(Long-term Drift) 在数日、数月或更长持续的工作期间,电压基准输出电压的慢变化称为长期漂移或稳定性,通常用ppm/1000h表示。当我们选用一个电压基准,要求它在持续数日、数周、数月基至数年的工作条件下保持输出电压精度,那么长期漂移便是一个必须考虑的性能参数。 5. 噪声(Noise)

高精度电压互感器说明书

高精度电压互感器说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电 危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。 使用适当的保险丝。只可使用符合规定类型和额定值的保险丝。 避免接触裸露电路和带电金属。有电时,请勿触摸裸露的接点

和部位。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。 目录 一、主要特点----------------------------5 二、技术指标----------------------------5 三、接线图------------------------------6 一.主要特点 10kV,0.05级电压互感器是高电压等级,高准确度的电压互感器,可实现校验10kV, 0.1级以下的电压互感器, 100V 时可带0.25VA的二次负荷,可完全满足电压互感器的检定要求。二.技术指标 1.额定电压比:10 kV /100V、10kV/3/100/3V、10kV/3/100/3V 2.额定二次容量:0.25VA、0.08VA、0.02VA CosФ=1.0 3.准确度级别: 0.05级。即在额定负荷的情况下,当电压

高精度相位式激光测距的实现

高精度相位式激光测距的实现 施金钗,黄元庆 摘要:本文介绍了相位式激光测距基本原理,提出了一种提高测相精度的测距方法,并详细论述了差频测相和数字测相方法,最后对今后的发展前景进行了展望。 关键字:激光测距;相位式;差频测相;数字测相 Realization of Phase Laser Range Finding Shi Jinchai, Huang Yuanqing Abstract: The paper introduces the base theory of the phase laser range finder, and it introduce a method of range finding to improve the high precision. The technique of frequency difference and digital measurement of phase finding method are also proposed in detail. Eventually the prospect of their further study is suggested. Keywords: laser range finding, phase-shift, frequency difference of phase finding, digital measurement technique of phase finding 1 绪论 随着科学技术的不断发展,人类在民用和军事领域,对距离量的测量要求非常广泛。激光测距是集光学、激光、光电子及集成电子等多种技术为一体的综合性技术,与其它测距技术相比,激光具有角分辨力高、抗干扰能力强,可以避免微波贴近地面的多路径效应和地物干扰问题,并且具有天线尺寸小、质量轻、结构小巧、和安装调整方便等优点,激光测距仪是目前高精度测距最理想的仪器之一。由于以上各方面的原因,使得激光测距在测量领域得到了青睐,并被迅速推广应用,在国民经济和国防建设中具有非常重要的意义[1]。 激光测距技术是最早用于军事上的激光技术。世界上第一台激光测距机于1961年诞生在美国休斯飞机公司 [2],称为柯利达I 型,1962年第一台军用激光测距机便成功地进行了示范表演,之后该公司相继研制成几种实验型军用激光测距机在部队进行试验和鉴定,结果证明激光测距机可作为一种新的测距仪代替原装备的光学测距机。1971年美国陆军首先装备了AN/GVS-3型红宝石激光测距机。供炮兵前方观察员或观察所使用。此后,各种型号的侦察用激光测距机相继装备各国的军队1963-1967年美国休斯公司相继研制成几种实验型军用激光测距机,1969年军用激光测距机首先装备军队[3]。 中国科学院上海光机所研制出便携式激光测距机,对漫反射水泥墙的测距达100m ,采用300MHz 计数方式,测距精度0.5m ,重复频率1KHz 。中国计量学院信息工程系光电子所与国外合作开发了低价、便携式半导体激光测距机,作用测距1KM ,精度处<±1m ,采用4M 晶振,运用了线性时间放大技术。常州莱赛公司研制了作用距离200m ,测距精度0.5m 的半导体激光测距机[4]。 2 相位测距基本原理 相位式测距是通过测量连续的幅度调制信号在待测距离上往返传播所产生的相位延迟,间接地测定信号传播时间,从而得到被测距离的。这种方法测量精度高,通常在毫米量级。测距原理图如下图1。相位法测距就是间接的测定调制光波经过时间D t 后所产生的相位变化D ?,以代替测定时间D t ,从而求得光波所经过的路程D 。各参数间的关系为[5]: f D D D π?ω?22c 2c t 2c D ×=×=×= (1) 式中 c 为光波在空气中传播的速度;D ?为调制光信号经过被测距离D 而产生的相位移;ω为调制信号的 角频率,f 为调制信号频率。

电压比较器原理及使用

实验十电压比较器的安装与测试 一.实验目的 1.了解电压比较器的工作原理。 2.安装和测试四种典型的比较器电路:过零比较器、电平检测器、滞回比较器和窗口比较器。 二.预习要求 1.预习过零比较器、电平检测器、滞回比较器和窗口比较器的工作原理。 2.预习使用示波器测量信号波形和电压传输特性的方法。 三.实验原理 电压比较器的基本功能是能对两个输入电压的大小进行比较,判断出其中那一个比较大。比较的结果用输出电压的高和低来表示。电压比较器可以采用专用的集成比较器,也可以采用运算放大器组成。由集成运算放大器组成的比较器,其输出电平在最大输出电压的正极限值和负极限值之间摆动,当要和数字电路相连接时,必须增添附加电路,对它的输出电压采取箝位措施,使它的高低输出电平,满足数字电路逻辑电平的要求。 下面讨论几种常见的比较器电路。 基本过零比较器(零电平比较器) 过零比较器主要用来将输入信号与零电位进行比较,+15V 以决定输出电压的极性。电路如图1所示:u i 2 7 放大器接成开环形式,信号u i从反向端输入,同μA7416u o 相端接地。当输入信号u i< 0时,输出电压u o为正极限34 值U OM;由于理想运放的电压增益A u→∞,故当输-15V 入信号由小到大,达到u i = 0 时,即u -= u + 的时刻, 输出电压u o 由正极限值U OM 翻转到负极限值-U OM。图 1 反向输入过零比较器 当u i >0时输出u o为负极限值-U OM。因此,输出翻转的临界条件是u + = u - = 0。 即:+U OM u i< 0 u o = (1) -U OM u i >0 其传输特性如图2(a)所示。所以通过该电路输出的电压值,就可以鉴别输入信号电压u i是大于零还是小于零,即可用做信号电压过零的检测器。

电源反馈端加电压跟随器的作用

电源反馈端加电压跟随器的作用 电压跟随器输入阻抗很大,输出阻抗很小,这样可以把采样电阻从反馈环路参数中分离出去. < Q3>今天听同学的答辩,发现自己最基本的跟随器、同相放大、反向放大都要分不清了,总结一下。 一、反相比例运算电路 反相比例运算电路如图所示。输入电压通 过电阻R作用于集成运放的反相输入端,故输 出电压与反相;电阻跨接在集成运 放的输出端和反相输入端,引入了电压并联负 反馈;同相输入端通过电阻接地,为补 偿电阻,以保证集成运放输入级差分放大电路 的对称性,其值为=0时反相输入端总等效 。 电阻,即=R//R f 根据理想运放在线性区“虚短路”和“虚断路” 的特点有: =0(p、n电压虚短) ip=in=0 (p、n电流虚短) 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称之为“虚地”。节点N的电流方程为 由于N点虚地(=0),整理得出 与成比例关系,比例系数为,负号表示与反相。 该电路的闭环电路放大倍数为:/= 若,则1,即,这时电路为倒相器。 二、同相比例运算电路 将反相比例运算电路中的输入端和接地端互 换,就得到同相比例运算电路,如图所示。电 路引入电压串联负反馈,故运放工作在线性区。 根据“虚短”和“虚断”的概念,集成运 放的净输入电压为零。即 说明集成运放有共模输入电压。净输入电流为 零(即),因而,即 表明与同相且大于。 同相比例运算电路具有高输入电阻、低输出电阻的优点,但有共模输入,所以为了提高运算精度,应当选用高共模抑制比的集成运放。 三、电压跟随器 如图所示,若将输出电压的全部反馈到反相输入端,就构成电压跟随器。电路引入了电压串联负反馈,其反馈系数为1。由于,故输出电压与输入电压的关系为Uo=Ui 理想运放的开环差模增益为无穷大,因而电压跟随器具有比射极输出器(共

AD系列高精度低功耗放大器

为了延长电池寿命,放大器必须提供非常低的待机功耗工作方式、低电压工作和满电源摆幅(R-R)输出能力。便携式应用设计工程师,尤其是医用设备市场中的设计工程师,都在承受着低成本和延长电池寿命同时不牺牲精度的持续压力。美国模拟器件公司(ADI)公司的最新放大器为业界提供高精度、低功耗、小尺寸和低价格的最完美的结合。 ADI日前发布一系列低成本放大器,它们在低电压和最低功耗条件下工作,但是不牺牲需要精密信号调理的便携式应用所要求的精度。ADI此次推出的产品包括: 自稳零放大器:AD8538在当今市场的自稳零放大器中具有业界最佳的精度功耗比,所以适合用于要求低失调电压以及低失调电压时间漂移和温度漂移的信号路径。 精密运算放大器:AD8613系列运算放大器提供业界低噪声、低功耗、低电压和低价格的最完美结合。 “降低成本并且延长电池寿命――而不牺牲精度――是便携式医用应用设计工程师所面临的最大难题。”ADI公司精密信号处理部产品线总监Steve Sockolov先生说。这些新的放大器扩展了我们的产品种类,并且满足了对提供适合便携式医用设备精度的低电压放大器不断增长的需求。最新自稳零放大器适合高端便携式医用设备设计,并且低噪声运算放大器系列产品为从双节电池到多节电池供电设备的模拟前端提供了一个低成本解决方案。 AD8538仅需要150μA的电源电流,所以其低温漂是同类器件的1/3――相当于需要1mA 以上电源电流的产品所能达到的温漂性能水平。AD8538的低功耗和高精度性能使其很适合于很多市场,例如医用设备、压力传感器和温度传感器以及汽车电子设备。 AD8538的失调漂移仅为0.01μV/°C,在低电源电流条件下提供业界最低的失调漂移。与延缓新产品面世时间并且需要比较复杂和费用高的硬件和软件――分立的系统级自动校准方法相比,AD8538为设计工程师节省了大量的成本和时间。这款器件卓越的精度――最大1 2μV的失调和仅为1μVp-p的低频噪声――能够完成高精度和稳定的系统设计,没有使用需要外部自动校准解决方案带来的成本、尺寸和复杂性问题。 AD8613,AD8617和AD8619分别是具有R-R输入和输出特性的单运算放大器、双运算放大器和四运算放大器。与同类器件相比,它们提供降低了50%的噪声和降低了30%的功耗并且提高了两倍的精度。AD861x系列完全保证电源电压降低到1.8V正常工作,使其适合电池供电设备,例如温度监测器和二氧化碳检测器,这里电源管理和可靠性是至关重要的。 AD8613系列器件仅需38μA的电源电流最大值和1.8V~5V的工作电压。这些器件在消费类医用设备和低成本工业应用中达到高精密度水平,具有仅为2mV最大值的低失调电压、1pA最大值的超低输入偏置电流,以及22nV/√Hz的低噪声。AD8613系列很适合要求在整个信号通路中放大并维持低噪声的便携式应用。其R-R输出特性使其适合在低功耗12位和16位应用中驱动模数转换器(ADC)和缓冲数模转换器(DAC)。

电子式互感器技术讲座0911-1001

电子式互感器技术讲座 珠海华伟公司产品介绍 2009年11月

?公司介绍?工作原理?产品特点?产品介绍?应用业绩 交流内容

公司介绍?珠海华伟电气科技股份有限公司是按照股 份公司治理结构和管理体系建立的高新技 术创新企业。以智能电网为主要行业定 位,围绕发电、供电、用电等各类用户, 集科研、制造、营销于一体,运用先进的 电力电子和自动控制技术,解决数字化变 电站一体化的需求,通过技术创新和新技 术新产品的推广应用取得企业的发展。?总部设在风景优雅的珠海市高新区南方软件园,公司拥有专业化、高素质的员工团 队和雄厚的研发实力,以及覆盖全国的营 销和技术服务网络,建立了战略决策、科 研开发、质量控制、业务信息、财务内控、人力资源等多方面的管理体系。

公司介绍 ?下属的全资子公司--西安华伟光电技术有限公司成立于2002年,位于西安国家级高新技术产业开发区,注册资本1000万元,现有员工136人,中、高级研发人员38人,生产设施、高压试验设备(如600kV高压试验室等)齐全,是国内专业生产研发新型电子式互感器的重点企业,是珠海华伟电气科技股份有限公司重要研发与生产基地之一。是国内唯一在电子式电流、电压互感器两大类产品核心新技术上双获发明专利的厂家。?西安华伟光电技术有限公司独创的“自励源”取能装置,是有源电子式互感器的核心技术,为电子式互感器进入实用化奠定了技术基础,于 2005年注册并获得国家发明专利(发明专利:CN1909327),应用此技术的“光隔离电子式电流互感器”项目已列入2006年“国家级重点新产品” 计划和科技部2006年度科技创新基金资助项目,2007年被列为陕西省重大科技项目计划。

运放作为跟随器时负反馈上加电阻会起什么作用

运放作为跟随器时,负反馈上加电阻会起什么作用 作者:飞行的UPS 经验分享:信号源内阻较大时,添加阻值与信号源内阻相同的反馈电阻,可以减少输出失调电压,提高精度。 请问何种信号源或者输出是什么状况下跟随器需要使用电阻呢?使用多大阻值? 答:信号源内阻较大时,添加阻值与信号源内阻相同的反馈电阻,可以减少输出失调电压,提高精度。

R2的作用是为了防止输出意外接地,导致OP损坏,R3起限流作用,再加上嵌位二极管效果更好。 两种电压跟随器的理想闭环增益都等于一。 在电压跟随器中,共模抑制比的影响将加强。此外,同相端到信号源之间不接电阻对减小定态误差是有利的。 但是,当这个匹配电阻取零,则要求反馈电阻为零,在发生堵塞现象时,反馈回路中电流较大,不利于输入级的保护。所以,在使用中应注意。 加有反馈电阻的跟随器,在电路发生“堵塞”时,对电路有一定的限流保护作用,这是它的优点。但定态误差增大了些。 【注】何为“堵塞”? 电压跟随器本来就是同相运算放大器,同相运算放大器的共同特点之一是同相端和反相端加有共模电压。 一旦这个共模电压超过所允许的共模输入电压范围,假如,反相端信号过大,则会导致输入级晶体管饱和,反相端信号直接加到运放的第二级,使得该反相端的输入性质发生改变,成为同相输入,即负反馈变成了正反馈,输出信号通过反馈回路导致输入级晶体管进一步饱和。这样的结果,放大器当然不在正常工作状态了。既使撤销输入信号,也不会立即恢复到正常状态。这种现象,称作堵塞。 当发生堵塞现象时,若反馈回路电阻又不够大,反馈回路的电流有可能烧毁输入级的晶体管,甚至危害第二级。 为了避免发生堵塞现象,除了选用共模输入电压范围大的运放以外,常常在放大器的输入端加箝位电路,用以保证输入端共模电压不超出运放允许的范围。 当然,堵塞并不是同相运算放大器的专利。在小信号的反相运算放大器中,特别在积分运放之类具有电容元件的电路中,也有可能发生堵塞现象。处理方法与同相放大器类同。

电压基准的特性及选用解析

电压基准的特性及选用 摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。 关键词齐纳基准带隙基准 XFET基准初始精度温度系数 一、电压基准及其应用领域 电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。电压稳压器除了向负载输出一个稳定电压外还要供给功率。电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。 电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。 二、电压基准的主要参数 1. 初始精度(Initial Accuracy 初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为: 5.2~

5.2 = 1 × ± = ± % .2 5.2 V 475 V525 .0 025 .2 在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。对于电压基准而言,初始精度是一个最为重要的性能指标之一。 2. 温度系数(Temperature Coefficient

温度系数(简称TC用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一。例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。需注意的是,温度系数可能是正向的,即基准的输出电压随温度的升高而变大,也可能是负向的,即基准的输出电压随温度的升高而变小,具体可查看厂商数据手册中的温度曲线图表。 3. 热迟滞(Temperature Hysteresis 当电压基准的温度从某一点开始经受变化,然后再次返回该温度点,前后二次在同一温度点测得的电压值之差即为热迟滞。该参数虽不如温度系数重要,但对于温度同期性变化超过25℃的情况仍是需引起重视的一个误差源。 4. 长期漂移(Long-term Drift 在数日、数月或更长持续的工作期间,电压基准输出电压的慢变化称为长期漂移或稳定性,通常用ppm/1000h表示。当我们选用一个电压基准,要求它在持续数日、数周、数月基至数年的工作条件下保持输出电压精度,那么长期漂移便是一个必须考虑的性能参数。 5. 噪声(Noise 这里所说的噪声指电压基准输出端的电噪声,它又包括两种类型,一种是宽频带的热噪声,另一种是窄带(0.1~10Hz 噪声。宽带热噪声较小,且可利用简单的RC 网络滤除。窄带噪声是基准内部固有的且不可滤掉。在高精密设计中,噪声的因素是不可忽视的。 6. 导通建立时间(Turn-on Setting Time 系统加电后,基准输出电压达到稳定的建立时间,该参数对于采用电池供电的便携式系统来说是重要的,因为这类系统为了节省电能,常采用短时的或间隙方式供电。 7. 输入电压调整率(Line Regulation

相关主题
文本预览
相关文档 最新文档