当前位置:文档之家› 7 高维波动方程求解法2

7 高维波动方程求解法2

7 高维波动方程求解法2
7 高维波动方程求解法2

利用换元法解方程组

2 例如:x 2 3x x 2 3x 2 3x 2 2x 3x 2 2x 4x 2 5x 观察发现 2 3x 2 3x 2x 4x 2 5x 1,故可设 x 2 3x 2 3x 2 2x v ,原方程变为u 2 uv v 2 ,方程由繁变简,可得解? 第 6 讲利用换元法解方程 、方法技巧 (一) 换元法 解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的 . (二) 运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程 解分式方程、无理方程、 整式(高次)方程的基本思想是将分式方程化为整式方程、 无理方程化为有理方程、整式(高次)方程逐步降次 (三) 换元的方法是以所讨论方程的特有性质为依据的, 不同的方程就有不同的换元方 法,因此, 这种方法灵活性大,技巧性强?恰当地换元,可将复杂方程化简,以 便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 82,使方程变得易解,这是均值换元法 例如: 5 — 6 0,可使用局部换元法, x 1 ②x 2 0,变形后也可使用局部换元法,设 2x 2 ~2 x x 2 1 19 —,看着很繁冗,变形整理成 6 x 2 x 2 2 x 2 x 19 一 —时,就可使用局部换兀法 6 82 , 可设 口 x 2,方程变成 ⑤6x 4 5x 3 38x 2 5x 符合与中间项等距离的项的系数相等, 如6x 4 与6 , 5x 3与5x 系数相等,可构造 x 1换元,是倒数换元法. x ⑥x 3 2、.3x 2 3x .3 1 0 ,不易求解,若反过来看,把设 x 看作已知数, 把.3设为设t ,则方程就变成x t 2 2x 2 1 t 数字换元法不常用,但不失为一种巧妙的解题方法 有时根 据方程各部分特点可设双元,达到化繁为简, 求解的目的

(整理)二维波动方程第一类吸收边界条件c++实现代码.

精品文档 #include "stdafx.h" #include #include #include #include using namespace std; const double pi=4*atan(1.0); double freq=45; double sb=7.45; double t1=2*pi/(sb*4); double source(double t) { //double t2=0.0; if(t<=t1) return (sin(sb*4*t-pi/2)+1)/10; else{ double tep=0.0; return tep;} //return ((1-2*pi*pi*freq*freq*t*t)*exp(-pi*pi*freq*freq*t*t)+1);//Ricker子波} void update_Vn(double upt,double lowt,double upx1,double lowx1) { int i,j,m; const int Csize=300; double deg=0; double stepx1=abs(upx1-lowx1)/(Csize-1); //double te=sqrt(static_cast(3.0/8.0)); double stept=sqrt(static_cast(1.0/2.0))*stepx1/2.0;// int tn=static_cast(upt/stept); double r=stept/stepx1; double **u_current,**u_old,**u_past; u_current=new double *[Csize]; u_old=new double*[Csize]; u_past=new double*[Csize]; for(i=0;i

合并法换元法解元次方程组

合并法、换元法解二元一次方程组 (一)知识教学点 1.掌握用合并法、换元法解二元一次方程组的步骤. 2.熟练运用合并法、换元法解二元一次方程组. (二)能力训练点 1.培养学生的观察分析能力; 2.训练学生的运算技巧,养成检验的习惯. (三)德育渗透点 消元,化未知为已知的数学思想. (四)美育渗透点 通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美. 二、学法引导 1.教学方法:引导发现法、练习法,指导法. 2.学生学法:在前面已经学过二元一次方程组的解法,故在求解过程中始终应抓住消元的思想方法. 三、重点、难点、疑点及解决办法 (-)重点 使学生会用合并法、换元法解二元一次方程组. (二)难点 灵活运用合并法、换元法的技巧. (三)疑点 如何“消元”,把“二元”转化为“一元”.

四、课时安排 一课时. 五、教具学具准备 电脑 投影仪. 六、教学过程 一导 运用导学案 自主学习 (一)解二元一次方程组的基本思路是消元,即通过运用代入法和加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解.而对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错.若能根据题目的特点,适时改进方法,不仅可以减少运算量,而且可以又快又准地解出方程组. (二)自主探究请同学们根据提示用合并法解二元一次方程组 (略) 设计意图:以学生的兴趣为主,由易至难,逐层递进,逐步完成各个任务。 (三)总结 二研 合作学习 研究探讨 (一)例题解析 (1) ???-=+=+② 10y 65x ① 1056y x

(2) ???=+-=-+-② 72009)-7(2010y 9)4(2x ① 3)20092010(3)92(2y x 设计意图:合作探究,探索比较,发现规律,使每位学生参与其中,成为课堂的主人,提高解题技巧 (二)练习题 (1)???=+=+② 79y 137x ① 61713y x (2)???=+=+② 74y 1911x ① 1061119y x (3)?????-=--+=-++.1106,3106y x y x y x y x (4)??? ????=--+=-++.86)32(55)1(3,36)32(5)1(2y x y x 设计意图:竞赛完成,激发学习热情,巩固强化 三验 课堂小测验(略) 设计意图:对学生完成情况及时了解,及时总结,对课堂教学及时反思,对下一步的教学进行适时,适当的调整。并对学生的解题情况进行总体的评价,要本着激励的原则,使学生有成就感。

一维波动方程的达郎贝尔公式

第四章 行波法 一 一维波动方程的达郎贝尔公式 1达郎贝尔公式 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无限长弦的自由振动问题 ?????? ?=??=>+∞<<∞-??=??==) (|),(|0, ,0 022 2 22x t u x u t x x u a t u t t φ? ① 作自变量的代换 ?? ?-=+=at x at x ηξ 利用复合函数的微分法有: η ξ??-??=??u a u a t u )2(22 2222 22η ηξξ??+???-??=??u u u a t u 同理有:2 2222222ηηξξ??+???+??=??u u u x u 将①化为:02=???η ξu 并将它两端对η进行积分得:

)(0ξξ f u =?? 其中)(0ξf 是ξ的任意函数,再将此式对ξ积分 )()()()(),(2120ηξηξξf f f d f t x u +=+=? = )()(21at x f at x f -++ ② 其中21f f 、是任意两次连线可微函数,式②即为方程①的含有两个任意函数的通解。 由初始条件可得: )()()(21x x f x f ?=+ )()()(2'' 1x x f x af φ=+ 通过积分可得: ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( 称此式为一维波动方程的达郎贝尔公式。 2解的物理意义 由于波动方程的通解是两部分)(1at x f +与)(2at x f -。 )(22at x f u -=表示了以速度a 向x 轴正方向传播的行波,称 为右行波。同理,)(11at x f u +=表示了以速度a 向x 轴负方向传播的行波,称为左行波。 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的 依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分

综合解一元二次方程—换元法

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母 来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元 的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 2 2 2 . (3)(x+x)+(x+x)=6 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2= ,直接开方即可;(3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x= = = , ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4 ,x2=﹣5 , 2 +x,将原方程转化为2 , (3)设t=x t+t=6 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. 2 2 ∴x+x=2或x+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2.

方程解的情况及换元法

知识点:方程解的情况及换元法 1.一元二次方程的根的情况是. A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 2.不解方程,判别方程3x2-5x+3=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 3.不解方程,判别方程3x2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 4.不解方程,判别方程4x2+4x-1=0的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 5.不解方程,判别方程5x2-7x+5=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 6.不解方程,判别方程5x2+7x=-5的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 7.不解方程,判别方程x2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 8. 不解方程,判断方程5y+1=2y的根的情况是 A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根 9. 用换元法解方程时, 令= y,于是原方程变为. A.y-5y+4=0 B.y-5y-4=0 C.y-4y-5=0 D.y+4y-5=0 10. 用换元法解方程时,令= y ,于是原方程变为. A.5y-4y+1=0 B.5y-4y-1=0 C.-5y-4y-1=0 D.-5y-4y-1=0 11. 用换元法解方程()2-5()+6=0时,设=y,则原方程化为关于y的方程是 . A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0

第七章 一维波动方程的解题方法及习题答案

第二篇 数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I .质点力学:牛顿第二定律F mr =r r && 连续体力学222 2() (,)(,)0(()0; v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ ?????-?=??????? ?? +??=????-?+??=+=????? r r r r r r r r &弹性定律弦弹性体力学杆 振动:波动方程);膜 流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程 ;;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+??=-?=????????????????????r r r r r r r r r &&r r r r r r r r r r r &&r r r r 已已d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电报方程。 III. 热力学统计物理 220;0.T k T t D t ρρ?? -?=??????-?=??? 热传导方程:扩 散方程:特别: 稳态(0t ρ?=?):20ρ?= (Laplace equation). IV. 量子力学的薛定谔方程: 22 .2u i u Vu t m ?=-?+?h h 2. 分类

利用换元法解方程(组)教学内容

第6讲 利用换元法解方程 一、方法技巧 (一)换元法解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的. (二)运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程. 解分式方程、无理方程、整式(高次)方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、整式(高次)方程逐步降次. (三)换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方 法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 例如:① 256011x x x x ????++= ? ?++? ??? ,可使用局部换元法,设1x y x =+ ②22110x x x x +++=,变形后也可使用局部换元法,设1x t x += ③222212219116 x x x x x x x +++++=+++,看着很繁冗,变形整理成222211191116 x x x x x x +++++=+++时,就可使用局部换元法. ④()()443182x x +++=,可设()()3122x x y x +++==+,方程变成 ()()441182y y ++-=,使方程变得易解,这是均值换元法. ⑤4326538560x x x x +-++=,符合与中间项等距离的项的系数相等, 如46x 与6,35x 与5x 系数相等,可构造1x x + 换元,是倒数换元法. ⑥32310x x +++=,不易求解,若反过来看,把设x 看作已 t ,则方程就变成()() 2232110x t x t x ?+++-=, 数字换元法不常用,但不失为一种巧妙的解题方法. 有时根据方程各部分特点可设双元,达到化繁为简,求解的目的. 例如:

综合解一元二次方程—换元法

综合解一元二次方程— 换元法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 (3)(x2+x)2+(x2+x)=6. 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法 (1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可; (3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x===, ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4,x2=﹣5, (3)设t=x2+x,将原方程转化为t2+t=6, 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. ∴x2+x=2或x2+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2. 例2.解方程:(1)(x+3)(x﹣1)=5

知识点 用去分母法或换元法求分式方程的解

一、选择题 1. (2011?江苏宿迁,5,3)方程1 1112+=-+x x x 的解是( ) A 、﹣1 B 、2 C 、1 D 、0 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘(x+1),得 2x ﹣x ﹣1=1, 解得x=2. 检验:把x=2代入(x+1)=3≠0. ∴原方程的解为:x=2. 故选B . 点评:本题考查了解分式方程:注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解. (2)解分式方程一定注意要验根. 2. (2011山西,9,2分)分式方程1223 x x =+的解为( ) A .1x =- B . 1x = C . 2x = D . 3x = 考点:分式方程 专题:分式方程 分析:解分式方程的一般步骤:先化分式方程为整式方程, 解这个整式方程, 验根, 点明原分式方程的根. 解答:B 点评:掌握解分式方程的一般步骤即可,解分式方程切记要验根. 3. (2011四川凉山,10,4分)方程24321 x x x x x ++=++的解为( ) A .124,1x x == B .12x x = = C .4x = D .124,1x x ==- 考点:解分式方程. 专题:计算题. 分析:把等号左边的第一项分母分解因式后,观察发现原分式方程的最简公分母为x (x +1),方程两边乘 以最简公分母,将分式方程转化为整式方程求解. 解答:解:原方程可化为:1 32)1(4+=+++x x x x x , 方程两边都乘以x (x +1)得: x +4+2x (x +1)=3x 2,即x 2-3x -4=0, 即(x -4)(x +1)=0, 解得:x =4或x =-1, 检验:把x =4代入x (x +1)=4×5=20≠0;把x =-1代入x (x +1)=-1×0=0, ∴原分式方程的解为x =4. 故选C . 点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解; (2)解分式方程一定注意要验根.学生要认识到分式方程验根的原因是在方程两边乘以最简公分母转化为整式方程后,整式方程与分式方程不一定是同解方程.

换元法解方程

换元法解方程 西安市第八十五中学江树基 换元法是用新元代替方程中含有未知数的某个部分,达到化简的目的.换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径.常用方法有均值代换、多元代换、常数代换等. 解分式方程、无理方程、高次方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、高次方程逐步降次,实现这一基本思想的方法有多种,其中换元法是常用的一种重要方法,本文注重研究用换元法解方程的技能、技巧. 一、分式方程 分析:这个方程左边两个分式互为倒数关系,抓住这一特点,可设 ∴(y-1)2=0,解得y=1. 经检验,x 1,x 2 都是原方程的根. 分析:观察方程的分母,发现各分母均是关于x的二次三项式,仅常数项不同,抓住这一特点,可设y=x2+2x. 解:设y=x2+2x,则原方程可化为 即y2-y-12=0,解得y1=4,y2=-3.

x2+2x=-3,无实数解. 例3 解方程 分析:观察方程的分母,发现三个分母都是关于x的二次三项式,仅一次项不同,抓住这一特点,可设y=x2+2x+10. 解:设y=x2+2x+10,则原方程可化为 解得y =9x,y2=-5x. 1 由x2+2x+10=9x,解得x =5,x2=2. 1 由x2+2x+10=-5x,解得x =-5,x4=-2. 3 经检验知,它们都是原方程的解. 注:以上三个例子可看出,换元时必须对原方程进行仔细观察、分析,抓住方程的特点,恰当换元,化繁为简,达到解方程的目的. 二、无理方程 两边立方,并整理得 y3-2y2+3y=0,即y(y2-2y+3)=0, ∴y=0或y2-2y+3=0,无解. 经检验知x=-1是原方程的解. 可设两个未知数,利用韦达定理解. 原方程为m+n=1,又∵(m+n)3=m3+n3+3mn·(m+n)=4+3mn=1,∴mn=-1.

二维波动方程的有限差分法

告实验报学生 偏微分方程数值解实验课程名称 开课实验室数统学院 信计02班专业班院数统年级2013 学 学号姓学生名 学年第2016 2 学期开课时间2015 至

总成绩 教师签名 数学与统计学院制 开课学院、实验室:数统学院实验时间2016年6月20日:

kkjikkk1kk?1k?kkk u??2uuu?2u?2u?uu?u ,j?,iji,,ijj1ij?1,i,ij,jii?1,jj,?1i??(2)?????kk?1k21kkkk2)3(uu???u??u?ruuu?24r 222?hh整理得到: j,ij,i1?j,i1?j,ij1,?ij1,?ij,i

????,差分格式为:kkkk(4),140?0,k?0,1,u?u?u?u N0,0,N0,N,0N 考虑初始条件y?sinsinuxx,y,0 ????????0????(5),10usin?sin0,1,xjsinjh?y,?sini,ih jjii,2??????,利用二阶差商近似:考虑初始条件0,1?,y,0,?0,yuxx t1?1u?u j,jii,?0,i,j?0,1,,10(6)?2设时刻的点为内点,则满足差分格式(2),代入上式得到:0k? ????002211?000(7)u?uu?u4?ur??u2?r?u j,iii,,jj?j?i1?1,j1i,?1,jjii,11?uu?代入(将(6)得到的结果7)中,整理得到:ji,ji,1????01202000)(8?u?1??u2rru?uu?u j,j?1i,1,jjii,j?1?i1,j,ii?2 8)得到三层显格式的差分格式为:(4)、(5)、(综上(2)、??????1kk2kkk2kk?1u?u???uu4?urr?2u?u i,ij?1,,ii,,jj?1i?1,jji?1,jji?i,j?1,2,,9,k?1,2,,139??kkkk?u?u?u?u,1 40?0,k?0,1,(9)N0,N,0NN0,0,? ????????0?????,i,jih?u?sinsinx0,1,sin,10jhy?sin jji,i? 1?????02102000,10?0,1,uu,?ui?1?2ru?,ruj?u? ?1j?1i,ijii?,j1,j,j?ii,j?1,?2? ??22?0.1?r?其中,局部截断误差为ho?。h 四.实验环境(所用软件、硬件等)及实验数据文件 Matlab %二维波动方程数值计算(关键:怎么运用i,j,k三个指标建立循环) clc; %可以将代码换成函数m文件 h=0.1;tau=0.1*h;%定义步长 r=tau/h;%网比 空间网格剖分[x,y,t]=meshgrid(0:h:1,0:h:1,0:tau:1.4);%.

换元法解方程

换元法 在因式分解中,把一个较复杂的数学式子的某一部分看成一个整体,用一个字母去代替这一部分,使原式变成含有新元的简单式子,在分解后再将新元换出,这种方法叫换元法. 1.10)3)(4(22+++-+x x x x 2.24)4)(3)(2)(1(-++++x x x x 3.20)5)(1)(3(2-+-+x x x 4.90)384)(23(22-++++x x x x 5.)(4)(22222y x xy y xy x +-++ 6.2)1()2)(2(-+-+-+xy y x xy y x 7.4482--a a 8.yz z y x 2222+-- 9. 644+x 10. 2214176y xy x -- 11. 581337622-++--y x y xy x 12.1433181892022-+--+y x y xy x 13. 2820152-+--y x xy x 14.12)2)(1(22-++++x x x x

15.1)1(2)(3---++y x xy y x 16. 222222)1(2)1)(16(5)16(2++++++++x x x x x x 17. 已知乘法公式 a 5+b 5=(a+b)(a 4-a 3b+a 2b 2-ab 3+b 4),a 5-b 5=(a-b)(a 4+a 3b+a 2b 2+ab 3+b 4),利用或不利用上述公式,分解因式:x 8+x 6+x 4+x 2+1. 五.待定系数法 1. 192256112--x x 2.744272234+---x x x x 3.156234+-+-x x x x 六.因式定理 余数定理 ).()()(a f a x x f 的余数等于 除以多项式- 因式定理 整除能被则即的值为零,多项式如果a x x f a f x f a x -==)(,0)( )(,).)(a x x f -含有因式(即

一元二次方程中的整体思想(换元法)

一元二次方程中的整体思想(换元法) 一、内容概述 所谓整体思想就是从问题整体性质出发,发现问题及整体结构的特性,从而导出局部结构和元素的特性,这是中学数学竞赛常用解题思想之一。最具体的代表就是换元法的运用。 二、例题解析 初中阶段,在各年级的数学代数学习中,时常会碰到换元法。何为换元法呢?解数学题时,把某个式子看成一个整体,用一个变量去替换从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,它可以变高次为低次,化无理为有理。 (一)换元法在解方程中的应用 我们知道,解分式方程时一般用“去分母”的方法,把分式方程化成整式方程来解;解无理方程一般用“两边乘方”的方法,将无理方程化成有理方程来解。然而我们会碰到这样的困难:利用这些常规的变形方法解题,往往会产生高次方程,解起来相当繁琐,甚至有时难于解得结果,这可怎么办呢?对于某些方程,我们可以用新的未知数来替换原有未知数的某些代数式,把原方程化成一个易解的方程。 1.利用倒数关系换元 例1 解分式方程:224343x x x x +=-- 分析:此分式方程若两边同时去分母的话,会产生高次方程,比较复杂难解。但是若稍加整理成2243403x x x x -+ +=-,则可利用式子之间的倒数关系换元,这样问题就简单了。 解:移项整理得 2243403x x x x -+ +=- 设23x x y -=,则原方程可化为440y y ++= 去分母得2440y y ++= 解得122y y ==- 当2y =-时,232x x -=- 解得11x = 22x = 经检验:11x = 22x =是原方程的根 所以,原方程的根为11x = 22x = 练习1 103 =

波动方程的物理背景

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波和水波。波动方程抽象自声学,电磁学,和流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t 的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c 依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c 应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u 的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中: 和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamémoduli),是描述各向同性固体弹性性质的参数; 表示密度; 是源函数(即外界施加的激振力); 表示位移; 注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。其他形式的波动方程还能在量子力学和广义相对论理论中用到。 标量形式的一维波动方程 [编辑]波动方程的推导 一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:

用换元法解各种复杂方程

用换元法解各种复杂方程 用换元思想探索双二次方程、无理方程、分式方程这三类方程的解法。 [内容综述] “换元法”是一种重要的数学方法,它可以把较复杂的问题转化为较简单的问题去解决。在解高次方程、分式方程、无理方程的过程中都可以应用换元方法,其要点是把方程中的一些表达形式相同的部分看成一个整体并设新的字母表示,从而达到化简方程并把原方程化归为已经会解的一元一次或一元二次方程的目的。 [问题精讲] 1.在中学课程中,只要求学生会解一些特殊的高次方程,最常见的就是“双二次方程”,即只含有未知数的四次项、二次项和常数项的方程。对于这类方程,可以经过对二次项的换元转化为一元二次方程。例1,解方程(x 2+1)2=x 2+3 分析:思路1:以x 2+1为一个整体进行换元,因此要对方程右边进行变形使其含有x 2+1。 思路2:把方程展开成标准的双二次方程,再对x 2 进行换元。 解法一:原方程可化为(x 2+1)2-(x 2+1)-2=0,设x 2+1=y 得y 2-y-2=0, 解得 y 1=2,y 2=-1,x 2+1=-1无实根, 由x 2+1=2解得x 1=1,x 2=-1。 解法二:由原方程得x 4+x 2-2=0,设x 2=y (解题熟练时,这一换元过程也可以不写出) 得y 2+y-2=0,解得y 1=1,y 2=-2,x 2=-2无实根, 由x 2=1解得x 1=1,x 2=-1。 注意:换元的关键是善于发现或构造方程中表达形式相同的部分作为换元的对象。在解方程的过程中换元的方法常常不是唯一的,解高次方程时,只要能达到降次目的的换元方法都可以应用。例如在牛刀小试题1中,可以设4x 2+2=y ,则原方程化为y 2+y-12=0;也可以设4x 2+1=y ,则原方程化为y 2+3y-10=0(选C ),(还可以设4x 2=y 等等,学生可以自己练习)。但是无论采用哪一种换元方法,所得方程的解都是相同的。 2.解无理方程时,常把原方程中的一个含有未知数的根式作为整体进行换元,达到化去根号转化为可解方程的目的。这时经过变形,原方程的某个整式部分常可表示为新元的平方。 例2,解方程051356222=-----x x x x 分析:为使原方程中出现形式相同的部分,可以将其变形为 03135)13(222=------x x x x 。 解:设y x x =--132,则原方程可以化为2y 2-5y-3=0 解得(不符合算术根的定义,舍去。) 由3132=--x x 得x 1=5,x 2=-2,经检验是原方程的根。

分式方程增根与换元法解分式方程(含详细解析)

分式方程增根与换元法解分式方程 1.若关于x的方程只有一个实数根,则符合条件的所有实数a的值的总和为() A.﹣6 B.﹣30 C.﹣32 D.﹣38 2.关于x的分式方程+=3的解为正实数,则实数m的取值范围是()A.m<﹣6且m≠2 B.m>6且m≠2 C.m<6且m≠﹣2 D.m<6且m≠2 3.若数a使关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=2有整数解,则所有满足条件的整数a的值之和是() A.﹣3 B.﹣2 C.2 D.3 4.若分式方程=a无解,则a的值为() A.0 B.﹣1 C.0或﹣1 D.1或﹣1 5.若关于x的分式方程的解为正数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4 6.若关于x的方程=1﹣无解,则k的值为() A.3 B.1 C.0 D.﹣1 7.关于x的分式方程有增根,则m的值为() A.0 B.﹣5 C.﹣2 D.﹣7 8.解方程会产生增根,则m等于() A.﹣10 B.﹣10或﹣3 C.﹣3 D.﹣10或﹣4 9.关于x的方程有增根,那么a=() A.﹣2 B.0 C.1 D.3

10.用换元法解方程组时,如设=u,=v,则将原方程组可 化为关于u和v的整式方程组() A.B.C.D. 11.用换元法解分式方程﹣=5时,设=y,原方程变形为() A.2y2﹣5y﹣3=0 B.6y2+10y﹣1=0 C.3y2+5y﹣2=0 D.y2﹣10y﹣6=0 12.已知﹣x2=2+x,则代数式2x2+2x的值是() A.2 B.﹣6 C.2或﹣6 D.﹣2或6 13.已知x为实数,且,那么x2+9x的值为() A.1 B.﹣3或1 C.3 D.﹣1或3 14.已知x为实数,且﹣(x2+x)=2,则x2+x的值为() A.0 B.1 C.2 D.x2 15.解方程﹣=2时,如果设=y,则原方程可化为关于y的整式方程是() A.3y2+2y+1=0 B.3y2+2y﹣1=0 C.3y2+y+2=0 D.3y2+y﹣2=0 16.若1﹣+=9,则的值是() A.4 B.﹣2 C.4或﹣2 D.±3 17.用换元法解方程时,设x+=y,则原方程可化为()A.y2﹣2y﹣3=0 B.y2﹣2y﹣1=0 C.y2﹣y﹣1=0 D.y2﹣2y+3=0 18.若关于x的方程有增根,则m的值是 三.解答题(共11小题) 19.若解关于x的分式方程+=会产生增根,求m的值.

第七章一维波动方程的解题方法与习题答案

第七章一维波动方程的傅里叶解小结及习题答案 第二篇数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I.质点力学:牛顿第二定律Fmr 连续体力学 弦 2 u(r,t) 弹性体力学杆振动:22波动方程); au(r,t)0( 2 t (弹性定律) 膜 流体力学:质量守恒律:(v)0; t 热力学物态方 程: v1 (v)vpf0(Eulereq.). t II.麦克斯韦方程 DddD;EdlBdsEB; Bd0B0;Hdl(jD)dsHjD. Eu,BA,u,A 满足波动方程。 Lorenz力公式力学方程;Maxwelleqs.+电导定律电报方程。III.热力学统计物理 热传导方程: 扩散方程:T t t 2 kT 2 D 0; 0. 特别:稳态(0 t ) : 20(Laplaceequation). IV.量子力学的薛定谔方程: 2 u 2.iuVu t2m 2.分类 物理过程方程数学分类

振动与波波动方程2 u 1 2 u 22 at 双曲线 输运方程能量:热传导 质量:扩散u t 20 ku 抛物线 1

稳态方程Laplaceequation 2u0椭圆型 二、数理方程的导出 推导泛定方程的原则性步骤: (1)定变量:找出表征物理过程的物理量作为未知数(特征量),并确定影响未知函数的自变量。 (2)立假设:抓主要因素,舍弃次要因素,将问题“理想化” ---“无理取闹”(物理趣乐)。 (3)取局部:从对象中找出微小的局部(微元),相对于此局部一切高阶无穷小均可忽略---线性化。 (4)找作用:根据已知物理规律或定律,找出局部和邻近部分的作用关系。 (5)列方程:根据物理规律在局部上的表现,联系局部作用列出微分方程。 Chapter7一维波动方程的傅里叶解 第一节一维波动方程-弦振动方程的建立 1.弦横振动方程的建立 (一根张紧的柔软弦的微小振动问题) (1)定变量:取弦的平衡位置为x轴。表征振动的物理量为各点的横向位移u(x,t),从而速度为u t,加速度为u tt. (2)立假设:①弦振动是微小的,1,因此,sintan,cos1,又 u x tan u;②弦是柔软的,即在它的横截面内不产生应,1 x 力,则在拉紧的情况下弦上相互间的拉力即张力T(x,t)始终是沿弦的切向 2

利用换元法解一元高次方程

利用换元法解一元高次方 程 This manuscript was revised on November 28, 2020

利用换元法解一元高次方程 在初中数学竞赛中,常常会出现一些高次方程求解问题,解这类问题的核心思想是降次,而换元法是其最主要的方法,所谓换元法,是指把方程中某些代数式用新的变量代替,使方程的次数降低,从而化难为易,使问题得以解决,这里举例说明如下. 一、直接换元 例1 解方程: (x+1)(x+2)(x+3)(x+4)=24. 分析与解 ∵(x+1)(x+4)=x2+5x+4, (x+2)(x+3)=x2+5x+6, 设t=x2+5x+4, 则可将原方程转化为关于t的一元二次方程 t(t+2)=24. 即t2+2t-24=0,(t-4)(t+6)=0, ∴t=4.t=-6. 当t=4时,x2+5x=0, ∴x=0,或x=-5; 当t=-6时,x2+5x+10=0,此方程无解. 故原方程的解为x=0,或x=-5. 二、均值换元 即求出几个代数式的平均值,利用平均值进行代换. 例2 解方程: (4x+1)(3x+1)(2x+1)(x+1)=3x4. 分析与解根据上面的经验,这样的方程左边是不能完全展开的,只能部分展开. ∵(4x+1)(x+1)=4x2+5x+1, (3x+1)(2x+1)=6x2+5x+1, 两个代数式有相同的一次项和常数项,故设t=5x2+5x+1,则原方程可化为 (t-x2)(t+x2)= 3x4. ∴t2=4x4,t=2x2或t=-2x2, 代回即可求得原方程的根为: x=. 注当然本题也可以直接设t=4x2+5x+1或者t=6x2+5x+1.例3 解方程:(x+2)4+(x-4)4=272. 分析与解若将方程左边展开,将得到难解的高次方程.

用换元法解方程

1、用换元法解方程: 06)1 (5)1(2=+---x x x x 2.解不等式组,??? ??+≥+-<-4 5)1(33 1 221x x x x ,并把解集在数轴上表示出来. 3.(5分)已知方程0132 =--x x 的两根为1x 、2x ,求 2 1 12x x x x +的值. 4、已知x 1、x 2是关于x 的方程x 2-6x+k=0的两个实数根,且x 12x 22-x 1-x 2=115, (1)求k 的值; (2)求x 12+x 22+8的值. 5、已知关于x 的一元二次方程0)32(2 2 =+-+m x m x 的两个不相等的实数根α、β满足 11 1 =+ β α ,求m 的值。 6、(1)计算:2 2012(tan 601)3()232-?? -+-?+-+-π-- ??? 7.分式:221A x = -,11 11B x x =++-.()1x ≠±.下面三个结论:①A ,B 相等②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么? 8. 计算:0 3)2009(830tan 33π---??+- 9.(本题满分5分)比较(x+5)(x+7)与(x+6)2 的大小。 10.某校初三年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不及格”、“合格”、“优秀”三个等级,为了了解电脑培训的效果,用抽签方式得到其中64名学生的两次考试考分等级,所绘制的统计图如图所示,试结合图示信息回答下列问题: (1)这64名学生培训前考分的中位数所在的等级是 ; (2)估计该校整个初三年级中,培训后考分等级为“优秀”的学生有 名; (3)你认为上述估计合理吗?为什么? 答: ,理由: 。 11.(8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(11)和图(12)(部分)

相关主题
文本预览
相关文档 最新文档