当前位置:文档之家› 《随机过程概论》第4章 随机信号的频域分析 作业

《随机过程概论》第4章 随机信号的频域分析 作业

《随机过程概论》第4章 随机信号的频域分析  作业

第4章 随机信号的频域分析 作业

4-1、已知平稳信号()X t 的功率谱密度为()2

42

32

X P ωωωω=++,求此信号的均方值和方差。

4-2、已知平稳信号()X t 的自相关函数为()4cos cos3X

R e

τ

τπτπτ-=+,求其

功率谱密度()X P ω。

4-3、如下图所示:该线性系统的输入()X t 为平稳随机信号,且()X t 的功率谱密度为()X P ω,系统的输出为()Y t ,试求输出信号()Y t 的功率谱密度()Y P ω及其自相关函数()Y R τ。

()

X t

4-4、已知随机信号()()()00cos sin W

t X t t Y t t ωω=+,式中随机信号

()(),X t Y t 联合平稳,0ω为常数。

①讨论()(),X t Y t 的均值和自相关函数在什么条件下才能使随机信号()

W t 宽平稳。

②利用①的结论,用功率谱密度()()(),,X Y XY P P P ωωω表示()W t 的功率

谱密度()W

P ω。

③若()(),X t Y t 互不相关,求()W t 的功率谱密度()W P ω。

西电随机信号大课后复习

随机信号大作业 班级:02xxxx 姓名:xx

学号:02xxxxx 第一章 1.23上机题:设有随机初相信号X(t)=5cos(t+φ),其中相位φ是在区间(0,2π)上均匀分布的随机变量。试用Matlab编程产生其三个样本函数。 解:程序: clc clear m=unifrnd(0,2*pi,1,10); for k=1:3 t=1:0.1:10; X=5*cos(t+m(k)); plot(t,X); hold on

end title('其三个样本函数'); xlabel('t');ylabel('X(t)'); grid on ;axis tight ; 由 Matlab 产生的三个样本函数如下图所示: 第二章 2.22 上机题:利用Matlab 程序设计一正弦型信号加高斯白噪声的复合信号。 (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 1 2 3 4 5 6 7 8 9 10 -4-3-2-101 23 4其三个样本函数 t X (t )

解:取数据如下: 正弦信号的频率为:fc=10HZ,抽样频率为:fs=100HZ; 信号:x=sin(2*pi*fc*t); 高斯白噪声产生复合信号y: y=awgn(x,10); 复合信号y通过理想滤波器电路后得到信号y3 ,通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)); y3的幅度分布特性可以通过傅里叶变换得到Y3(jw)=fft(y3),y3的功率谱密度:G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))。 程序: clear all; fs=100; fc=10; n=201; t=0:1/fs:2; x=sin(2*pi*fc*t); y=awgn(x,10); m=50; i=-0.49:1/fs:0.49; for j=1:m R(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j); Ry(49+j)=R(j);

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

工程教育专业认证标准

工程教育专业认证标准(讨论稿) (2011年11月) 1.总则 (1)本标准适用于普通高等学校工程教育本科专业认证。 (2)本标准提供工程教育本科培养层次的基本质量要求。 (3)本标准由通用标准和专业补充标准组成。

2.通用标准 2.1 专业目标 2.1.1 专业设置 专业设置适应国家和地区、行业经济建设的需要,适应科技进步和社会发展的需要,符合学校自身条件和发展规划,有明确的服务面向和人才需求。申请认证或重新认证的专业必须具有: 1.明确充分的专业设置依据和论证,有相应学科作依托,专业口径、布局符合学校的定位。 2.明确的、可衡量、公开的人才培养目标。根据经济建设和社会发展的需要、自身条件和发展潜力,确定在一定时期内培养人才的层次、类型和人才的主要服务面向。 3.至少已有3届毕业生。 2.1.2 毕业生能力 专业必须证明所培养的毕业生达到如下知识、能力与素质的基本要求: 1.具有较好的人文社会科学素养、较强的社会责任感和良好的工程职业道德; 2.具有从事工程工作所需的相关数学、自然科学知识以及一定的经济管理知识; 3.掌握扎实的工程基础知识和本专业的基本理论知识,了解本专业的前沿发展现状和趋势; 4.具有综合运用所学科学理论和技术手段分析并解决工程问题的基本能力; 5.掌握文献检索、资料查询及运用现代信息技术获取相关信息的基本方法; 6.具有创新意识和对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力; 7.了解与本专业相关的职业和行业的生产、设计、研究与开发的法律、法规,熟悉环境保护和可持续发展等方面的方针、政策和法津、法规,能正确认识工程对于客观世界和社会的影响; 8.具有一定的组织管理能力、较强的表达能力和人际交往能力以及在团队

数字信号处理实验-采样的时频域分析

实 验 报 告 学生姓名: 学 号: 指导教师: 一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理: 1、采样的概念:采样是将连续信号变化为离散信号的过程。 1. A 、理想采样:即将被采样信号与周期脉冲信号相乘 B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。 根据傅里叶变换性质 00 0()() ()() ??()()()()()()(()) FT FT a a T n n FT a a T a T a a n n x t X j T j x t x t T x nT t nT X j X j n ωδωδδδω=+∞=+∞=-∞ =-∞ ←?→Ω←?→Ω==-←?→Ω=Ω-Ω∑ ∑式中T 代表采样间隔,01 T Ω= 由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。 ) (t T δ^ T ^)t

C 、低通采样和Nyquist 采样定理 设()()a a x t X j ?Ω且()0,2a M M X j f πΩ=Ω>Ω=当, 即为带限信号。则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的 ^ ()()()a a s s n x t x nT t nT δ∞ =-∞ = -∑信号无失真地恢复()a x t 。称2M f 为奈奎斯特频率, 1 2 N M T f = 为奈奎斯特间隔。 注意: 实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。 2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。 低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下: ) () a G j Ω0 m -ΩΩ m Ω0 T T

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

西电随机信号分析大作业

随机信号分析大作业 学院:电子工程学院 班级:021151 学号:02115037 姓名:隋伟哲

第一题:设有随机信号X(t)=5cos(t+a),其中相位a是在区间(0,2π)上均匀分布的随机变量,使用Matlab编程产生其三个样本函数。 解: 源程序如下: clc;clear; C=2*pi*rand(1,3);%在[0,2π]产生均匀分布的相位角 t=1:.1:80; y1=5*cos(t+C(1)); %将产生的随机相位角逐一代入随机过程中 y2=5*cos(t+C(2)); %将产生的随机相位角逐一代入随机过程中 y3=5*cos(t+C(3)); %将产生的随机相位角逐一代入随机过程中 plot(t,y1,'r-'); hold on; plot(t,y2,'g--'); hold on; plot(t,y3,'k-'); xlabel('t');ylabel('X(t)'); grid on;axis([0 30 -8 8]); title('随机相位的三条样本曲线'); 产生的三条样本曲线:

第二题:利用Matlab程序设计一正弦型信号加高斯白噪声的复合信号。(1)分析复合信号的功率谱密度、幅度分布特性; (2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性; (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 解:设定正选信号的频率为10HZ,抽样频率为100HZ x=sin(2*pi*fc*t)

(1)正弦函数加上高斯白噪声: y=awgn(x,10) y 的幅度分布特性可以通过傅里叶变换得到: Y(jw)=fft(y) y 的功率谱密度: G(w)=Y(jw).*conj(Y(jw)/length(Y(jw))) 随机序列自相关函数的无偏估计公式为: 1 01()()()N m xx n R m x n x n m N m --==+-∑ 01m N ≤≤- (2)复合信号 y 通过RC 积分电路后得到信号y2 通过卷积计算可以得到y2 即:y2= conv2(y,b*pi^-b*t) y2的幅度分布特性可以通过傅里叶变换得到: Y2(jw)=fft(y2) y2的功率谱密度: G2(w)=Y2(jw).*conj(Y2(jw)/length(Y2(jw))) (3)复合信号 y 通过理想滤波器电路后得到信号y3 通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)) y3的幅度分布特性可以通过傅里叶变换得到: Y3(jw)=fft(y3) y3的功率谱密度: G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))

信号时域与频域分析

信号时域与频域分析 实验报告 姓名:杨 班级:机械 学号: 213

实验数据中,电机转速为1200r/min,采样频率为1280Hz。Hz3为X位移振幅数据,Hz4为Y位移振幅数据,Hz5为速度振幅数据。 Matlab中信号特征对应函数编程 ma = max(Hz) %最大值 mi = min(Hz) %最小值 me = mean(Hz) %平均值 pk = ma-mi %峰-峰值 va = var(Hz); %方差 st = std(Hz); %标准差 ku = kurtosis(Hz); %峭度 rm = rms(Hz); %均方根 一、X轴位移测量分析 plot(Fs3,Hz3)时域图: ma =52.0261 mi =56.7010 me =1.8200 pk =108.7271 va =1.3870e+03 st =37.2431 ku =1.5462 rm =37.2693 频域图: fs=1280; x=Hz3; N=length(Hz3); df=fs/N; f=0:df:N*df-df; y=fft(x); y=abs(y)*2/N; figure(1); plot(f,y); xlabel('频率/Hz') ylabel('幅值') 频谱幅值取得最大值51.9847um,频率为20Hz,与电机转速对应频率一致,应为电机轴未动平衡所致;二倍频处有较大振幅,可能为轴承间隙过大所致。

二、Y轴位移测量分析 plot(Fs4,Hz4)时域图: ma =61.3987 mi =-74.6488 me =-1.1948 pk =136.0475 av =42.6109 va =2.2428e+03 st =47.3582 ku =1.5135 rm =47.3501 频域图: fs=1280; x=Hz4; N=length(Hz4); df=fs/N; f=0:df:N*df-df; y=fft(x); y=abs(y)*2/N; figure(1); plot(f,y); xlabel('频率/Hz') ylabel('幅值') 频谱幅值取得最大值66.6319um,频率为20Hz,与电机转速对应频率一致,应为电机轴未动平衡所致;二倍频处有较大振幅,可能为轴承间隙过大所致。

周期信号的时域及其频域分析

周期信号的时域及其频域分析 姓名:张敏靓学号:1007433014 一、实验目的 1.掌握Multisim软件的应用及用虚拟仪器对周期信号的频谱测量 2.掌握选频电平表的使用,对信号发生器输出信号(方波、矩形波、 三角波等)频谱的测量 二、实验原理 周期信号的傅里叶级数分析法,可以把周期信号表示为三角傅里叶级数或指数傅里叶级数,其中周期信号满足。 1. 周期信号表示为三角傅里叶级数 2. 周期信号表示为指数傅里叶级数 其中, 周期矩形信号的频谱

三、实验内容 1.在Multisim上实现周期信号的时域、频域测量及分析 (1)绘制测量电路 (2)周期信号时域、频域(幅度频谱)的仿真测量 虚拟信号发生器分别设置如下参数: 周期方波信号:周期T=100μs,脉冲宽度τ=50μs,脉冲幅度 V P=5V; 周期矩形信号:周期T=100μs,脉冲宽度τ=20μs,脉冲幅度 V P=5V; 周期三角波信号:周期T=200μs,脉冲幅度V P=5V; 采用虚拟示波器及虚拟频谱仪分别测量上述信号的时域、频域波形并保存测试波形及数据。

2.周期信号时域、频域(幅度频谱)的测量 信号发生器、示波器、选频电平表的连线如上图所示。信号发生器的输出信号分别为周期分别信号、周期矩形信号、周期三角波信号,参数设置同仿真测量。采用示波器及选频电平表对信号发生器的输出信号分别测量,并将测量数据记录下表中。

四、实验总结 1.在周期矩形信号的实验中,信号频率减小,频谱减小;信号占空 比减小,频谱减小;幅度值减小,频谱减小。 2.未安装Origin绘图软件,Excel绘图未能达到理想效果。

随机信号分析大作业

随机信号分析实验报告 信息25班 2120502123 赵梦然

作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函 数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从 何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。 画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的 直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函 数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅 里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

一、作业分析: 本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。 二、作业解答: (1)matlab程序为: x-1000:1:1000; k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。 [f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。 subplot(1,2,1); plot(x,k); subplot(1,2,2); plot(xi,f); 实验结果为:

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

连续时间信号的频域分析.

课程设计任务书 题目 专业、班级电信1班学号姓名 主要内容、基本要求、主要参考资料等: 基于钟表设计的常识,给出时、分、秒的设计思路,并利用硬件编程语言VHDL或者Verilog-HDL来实 现。要求具有基本功能如调整时间对表、闹铃、计时器等,给出完成控制电路所需要的设计模块;给出硬 件编程语言的实现,并进行仿真;给出下载电路的设计,设计为2种下载方法,其中一种必须为JTAG;同 时设计者报告不允许雷同。 参考资料: 1、潘松、黄继业《EDA技术及其应用》(第四版)科学出版社 2009 2、樊昌信《通信原理》电子出版社 完成期限: 指导教师签名: 课程负责人签名: 年月日

目录 摘要…………………………………………………………………………………II

ABSTRACT……………………………………………………………………………III 绪论…………………………………………………………………………………III 1傅里叶变换原理概述 (1) 1.1 傅里叶变换及逆变换的MATLAB实现 (2) 2 用MATLAB实现典型非周期信号的频域分析 (3) 2.1 单边指数信号时域波形图、频域图 (3) 2.2 偶双边指数信号时域波形图、频域图 (4) 2.3 奇双边指数信号时域波形图、频域图 (4) 2.4 直流信号时域波形图、频域图 (5) 2.5 符号函数信号时域波形图、频域图 (5) 2.6 单位阶跃信号时域波形图、频域图 (6) 2.7 单位冲激信号时域波形图、频域图 (6) 2.8 门函数信号时域波形图、频域图 (7) 3 用MATLAB实现信号的幅度调制 (8) 3.1 实例1 (8) 3.2 实例2 (10) 4 实现傅里叶变换性质的波形仿真 (11) 4.1 尺度变换特性 (11) 4.2 时移特性 (14) 4.3 频移特性 (16) 4.4 时域卷积定理 (18) 4.5 对称性质 (20) 4.6 微分特性 (22) 心得体会 (25) 参考文献 (26) 附录 (27)

连续时间信号与系统的频域分析

第3章连续时间信号与系统的频域分析3.1 学习要求 1、掌握周期信号的频谱及其特点; 2、了解周期信号的响应问题; 3、掌握非周期信号的频域描述——傅立叶变换; 4、熟练掌握傅立叶变换的性质与应用; 5、掌握系统的频域特性及响应问题; 6、了解系统的无失真传输和理想滤波。 3.2 本章重点 1、频谱的概念及其特性; 2、傅里叶变换及其基本性质; 3、响应的频域分析方法; 4、系统频率响应的概念。 3.3 知识结构

3.4内容摘要 3.4.1信号的正交分解 两个矢量1V 和2V 正交的条件是这两个矢量的点乘为零,即: o 1212cos900?=?=V V V V 若有一个定义在区间()12,t t 的实函数集{}()(1,2,,)i g t i n =L ,在该集合中所有的函数满足 ?????=≠===??2 1 21,,2,1,0)()(,,2,1)(2t t j i t t i i n j j i dt t g t g n i k dt t g ΛΛ 则称这个函数集为区间()12,t t 上的正交函数集。式中i k 为常数,当1i k =时,称此函数集为归一化正交函数集。 若实函数集{}(),1,2,,i g t i n =L 是区间()12,t t 内的正交函数集,且除()i g t 之外 {}(),1,2,,i g t i n =L 中不存在()x t 满足下式 2 1 20()t t x t dt <<∞?且2 1 ()()0t i t x t g t dt =? 则称函数集{}(),1,2,,i g t i n =L 为完备正交函数集。 若在区间()12,t t 上找到了一个完备正交函数集{}(),1,2,,i g t i n =L ,那么,在此区间的信号()x t 可以精确地用它们的线性组合来表示 11221 ()()()()()n n i i i x t C g t C g t C g t C g t ∞ ==++++=∑L L 各分量的标量系数为 2 1 21 2 ()()d ()d t i t i t i t x t g t t C g t t = ?? 系数i C 只与()x t 和()i g t 有关,而且可以互相独立求取。 3.4.2周期信号的傅里叶级数 1、三角形式的傅里叶级数 0001 ()(cos sin )n n n x t a a n t b n t ωω∞ ===++∑

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

语音信号采集与时频域分析正文

第一章引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图1.1时频域分析设计图 图1.2加噪滤波分析流程图

第二章 语音信号时域分析 语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。 2.1窗口选择 由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。两种窗函数的时域波形如下图2.1所示: sample w (n ) sample w (n ) 图2.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 (2.1) 哈明窗的定义:一个N 点的哈明窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = (2.2) 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

连续信号的频域分析

第四章 连续信号的频域分析 将信号分解为若干不同频率的正弦信号或虚指数信号,实质上是将信号在频率域上进行分解,因此根据这种基本思想对信号和系统的分析称为频域分析。这种分解过程是通过傅里叶级数和傅里叶变换这一数学工具来实现的。 本章首先介绍连续信号的傅里叶级数和傅里叶变换,熟悉信号频谱的概念。 4.1 基本要求 1.基本要求 ? 了解傅里叶级数和傅里叶变换的定义及其物理含义; ? 掌握信号频谱和频谱密度的概念; ? 了解连续谱和离散谱的特点和区别; ? 掌握傅里叶变换的常用性质; ? 掌握周期信号傅里叶变换的求解方法。 2.重点和难点 ? 傅里叶变换的性质及其应用 4.2 知识要点 1.周期信号的傅里叶级数 (1)傅里叶级数展开式 三角形式:∑∑∞ =∞=+Ω+=Ω+Ω+=1010)cos(2)]sin()cos([2)(n n n n n n t n A A t n b t n a a t f ?(4-1) 指数形式: ∑∑∞ -∞ =+Ω∞ -∞ =Ω= =n t n n n t n n n F F t f )j(j e e )(? (4-2) 其中 ? +Ω= T t t n t t n t f T a 00 d cos )(2 ,n =0,1,2,? (4-3) ? +Ω= T t t n t t n t f T b 00 d sin )(2,n =1,2,? (4-4) 且

n n n n n n a b b a A a A arctg , ,2 200-=+==? (4-5) ?+Ω-= T t t t n n t t f T F 00 d e )(1j (4-6) (2)两种形式之间的转换关系 0)( e 2 1 j ≥=n A F n n n ? (4-7) 并且|F n |为偶函数,?n 为奇函数,即 ||||n n F F -=,||||n n -=?? (4-8) (3)傅里叶级数的物理含义 通过傅里叶级数可以将任意周期信号f (t )分解为若干个正弦信号(三角形式)或复简谐信号(指数形式)的叠加。每个正弦信号分量的频率为周期信号基波频率的n 倍(n ?0),即n ?,而幅度为A n 或者2|F n |,相位为?n ,将其称作第n 次谐波分量。特别地,将频率为0(即n =0)的分量称为直流分量,幅度为A 0/2或者F 0;频率等于基波频率?(即n =1)的分量称为基波分量。 2.周期信号的频谱 通过傅里叶级数可以将时域中的周期信号分解为直流分量、基波分量和各次谐波分量之和,傅里叶级数展开式中的A n 、?n 或傅里叶系数F n 分别代表了各分量的幅度和相位随谐波次数n (从而频率n ?)的变化关系,称为周期信号的频谱,其中A n 或|F n |称为幅度谱,?n 称为相位谱。 A n 或|F n |、?n 都是关于整型变量n 的实函数,分别以其为纵轴,以n (或者n ?)为横轴,得到的图形称为周期信号的幅度谱图和相位谱图,合称为周期信号的频谱图。 但是,在三角形式的傅里叶级数中,A n 和?n 的自变量n 只能取非负的整数,因此称为单边频谱,而在F n 中,n 可以为任意的整数,相应地将F n 称为双边频谱。对同一个周期信号,其单边和双边频谱可以通过式(4-7)进行相互转换。 所有周期信号的频谱都具有离散性,因此称为离散谱。 3.非周期信号的傅里叶变换及其频谱密度 非周期信号的傅里叶变换及傅里叶反变换的定义为 ?∞ ∞--=t t f F t d e )()j (j ωω (4-9) ?∞ ∞ -= ωωωd )e (j 2π1)(j t F t f (4-10) 其中正变换用于根据信号的时域表达式求其频谱表达式,反变换用于根据其频谱表达式求时域表达式。 通过傅里叶变换可以将信号分解为不同频率的复简谐信号的叠加,而信号的傅里叶变换F (j ?)反映了信号中各分量的幅度和相位随其频率? 的变化关系,称为信号的频谱密度,又称为频谱密度函数或频谱函数。 教材表4-1中列出了一些基本信号的傅里叶变换,在求解复杂信号的傅里叶变换和频谱密度时经常用到。 4.傅里叶变换的性质

随机信号分析大作业

随机信号分析大作业

一、实验目的 基于随机过程的莱斯表达式产生窄带随机过程。 二、实验内容及实验原理 1,基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 2,实验过程框图如下: 3,理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为:

1 ()()cos 2Y Y R G d τωωτωπ ∞ = ? /2 200 1cos 2N A d ωωτωπ ?= ? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密度图形。 三、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器 y_at=at.*cos(w.*n); %产生随机过程a (t ) y_bt=at.*sin(w.*n); %产生随机过程b (t ) yt=y_at-y_bt; %产生一个p 个点的高斯窄带随机过程 subplot(211) plot(yt) title('高斯窄带随机过程y(t)') subplot(212) pdf_ft=ksdensity(yt) ; plot(pdf_ft) title('y(t)的概率密度图') disp('均值如下') E_Xt=mean(y_at) E_at=mean(y_at) E_bt=mean(y_bt) E_ft=mean(yt) %-----------------------自相关函数代码如下--------------------------% figure(2) R_Xt=xcorr(Xt); %高斯白噪声X(t)的自相关函数 R_at=xcorr(at); %限带白噪声的自相关函数 R_y_at=xcorr(y_at); %随机过程a(t).coswt 的自相关函数 R_y_bt=xcorr(y_bt); %随机过程b(t).coswt 的自相关函数 R_ft=xcorr(yt);

相关主题
文本预览
相关文档 最新文档