当前位置:文档之家› 随机信号分析大作业

随机信号分析大作业

随机信号分析大作业
随机信号分析大作业

随机信号分析实验报告

信息25班

2120502123

赵梦然

作业题三:

利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为

(0.8)(0)0

n n h n else =≥??? 的线性滤波器。

(1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函

数是否与理论相符。

(2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从

何种分布。

(3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。

画出此时的输出图形,并观察讨论输出信号服从何种分布。

作业要求

(1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。

(2) 实验报告中必须有对实验结果的分析讨论。

提示:

(1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的

直方图,并与标准高斯分布的概率密度函数做对比。

(2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函

数。

(3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅

里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。

(4) 作图使用plot 函数。

一、作业分析:

本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。

二、作业解答:

(1)matlab程序为:

x-1000:1:1000;

k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。

[f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。

subplot(1,2,1);

plot(x,k);

subplot(1,2,2);

plot(xi,f);

实验结果为:

ksdensity(x)函数可以通过采样近似的估计样本的概率密度,(1)中估计的概率密度如上图右边所示,易发现其基本符合高斯分布,与实验开始时设定的生成高斯白噪声是相符合的。

(2)matlab程序为:

x=-1000:1:1000;

k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。

a=mean(k);%求均值

b=var(k);%求方差

[m1,m2]=xcorr(k,'unbiased');%求自相关函数

subplot(4,1,1);

plot(x,a,'.');

title('均值');

subplot(4,1,2);

plot(x,b,'.');

title('方差');

subplot(4,1,3);

plot(m2,m1);

title('自相关函数');

subplot(4,1,4);

periodogram(k,ones(numel(k),1),2000,0.0005)%求功率谱密度

以上为求输入信号的均值、方差、自相关函数、功率谱密度。

结果分析:

从图上可以看出均值为0,方差为1,自相关函数在t=0处有一个冲击,功率谱密度基本在30dB处上下波动。根据数据,可以判断出输入信号服从均值为0,方差为1的高斯分布。

matlab程序:

x=-1000:1:1000;

k=1*randn(1,length(x));%高斯白噪声

x=-200:1:200;

h=0.*(x<0)+power(0.8,x).*(x>=0);%滤波器的时域形式

y=conv(k,h);%输出信号,两个信号进行卷积

a=mean(y);%求均值

b=var(y);%求方差

[m1,m2]=xcorr(y,'unbiased');%求自相关函数

subplot(4,1,1);

plot(x,a,'.');

title('均值');

subplot(4,1,2);

plot(x,b,'.');

title('方差');

subplot(4,1,3);

plot(m2,m1);

title('自相关函数');

subplot(4,1,4);

periodogram(y,ones(numel(y),1),2000,0.0005)%求功率谱密度

以上为求输出信号的均值、方差、自相关函数、功率谱密度。

实验结果:

结果分析:

从图上可以看出均值为0,方差为2.5,自相关函数在t=0处有一个冲击,功率谱密度基本在30dB处上下波动。根据这些数据,可以判断出输入信号服从均值为0,方差为2.5的高斯分布。由此可以得到结论:若线性系统输入为高斯过程,则输出服从高斯分布。

(3)matlab程序:

x=-1000:1:1000;

k=rand(1,length(x))-rand(1,length(x));%产生在[-1,+1]区间均匀分布的白噪声序列

x=-200:1:200;

h=0.*(x<0)+power(0.8,x).*(x>=0);%滤波器的时域形式

y=conv(k,h);%输出信号,两个信号进行卷积

[f,xi]=ksdensity(y);%利用ksdensity函数估计样本的概率密度。

x=-1200:1:1200;

subplot(1,2,1);

plot(x,y);

subplot(1,2,2);

plot(xi,f);

实验结果为:

结果分析:

左侧为在[-1,1]区间均匀分布的白噪声通过线性滤波器后,输出的波形。为了分析这个信号服从什么分布,依旧借助ksdensity(y)函数,通过采样近似的估计样本的概率密度,估计的概率密度为右侧图形,从图形形状上来看大致应该服从高斯分布。

三、实验总结

通过实验,理解了高斯白噪声的产生以及对系统的影响,深入了解了高斯白噪声的均值、方差、自相关函数以及功率谱密度等参数。同时也熟悉了与高斯白噪声相关的matlab相应语句,为日后的学习打下了基础。

相关参考

1、《随机信号分析》常建平李海林科学出版社

2、《详解MATLAB数字信号处理》张德峰电子工业出版社

3、《MATLAB仿真在信号处理中的应用》徐明远刘增力西安电子科技大学出版社

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

信号分析与处理答案第二版完整版

信号分析与处理答案第 二版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第二章习题参考解答 求下列系统的阶跃响应和冲激响应。 (1) 解当激励为时,响应为,即: 由于方程简单,可利用迭代法求解: ,, …, 由此可归纳出的表达式: 利用阶跃响应和冲激响应的关系,可以求得阶跃响应: (2) 解 (a)求冲激响应 ,当时,。 特征方程,解得特征根为。所以: …(2.1.2.1) 通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1): …(2.1.2.2) 可验证满足式(2.1.2.2),所以: (b)求阶跃响应 通解为 特解形式为,,代入原方程有,即 完全解为 通过原方程迭代之,,由此可得 解得,。所以阶跃响应为: (3)

解 (4) 解 当t>0时,原方程变为:。 …(2.1.3.1) …(2.1.3.2) 将(2.1.3.1)、式代入原方程,比较两边的系数得: 阶跃响应: 求下列离散序列的卷积和。 (1) 解用表 格法求 解 (2) 解用表 格法求 解 (3) 和 如题图2.2.3所示 解用表 格法求 解

(4) 解 (5) 解 (6) 解参见右图。 当时: 当时: 当时: 当时: 当时: (7) , 解参见右图: 当时: 当时: 当时: 当时: 当时: (8) ,解参见右图

当时: 当时: 当时: 当时: (9) , 解 (10) , 解 或写作:

求下列连续信号的卷积。 (1) , 解参见右图: 当时: 当时: 当时: 当时: 当时: 当时: (2) 和如图2.3.2所示 解当时: 当时: 当时: 当时: 当时: (3) , 解 (4) , 解 (5) , 解参见右图。当时:当时: 当时:

西电随机信号大课后复习

随机信号大作业 班级:02xxxx 姓名:xx

学号:02xxxxx 第一章 1.23上机题:设有随机初相信号X(t)=5cos(t+φ),其中相位φ是在区间(0,2π)上均匀分布的随机变量。试用Matlab编程产生其三个样本函数。 解:程序: clc clear m=unifrnd(0,2*pi,1,10); for k=1:3 t=1:0.1:10; X=5*cos(t+m(k)); plot(t,X); hold on

end title('其三个样本函数'); xlabel('t');ylabel('X(t)'); grid on ;axis tight ; 由 Matlab 产生的三个样本函数如下图所示: 第二章 2.22 上机题:利用Matlab 程序设计一正弦型信号加高斯白噪声的复合信号。 (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 1 2 3 4 5 6 7 8 9 10 -4-3-2-101 23 4其三个样本函数 t X (t )

解:取数据如下: 正弦信号的频率为:fc=10HZ,抽样频率为:fs=100HZ; 信号:x=sin(2*pi*fc*t); 高斯白噪声产生复合信号y: y=awgn(x,10); 复合信号y通过理想滤波器电路后得到信号y3 ,通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)); y3的幅度分布特性可以通过傅里叶变换得到Y3(jw)=fft(y3),y3的功率谱密度:G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))。 程序: clear all; fs=100; fc=10; n=201; t=0:1/fs:2; x=sin(2*pi*fc*t); y=awgn(x,10); m=50; i=-0.49:1/fs:0.49; for j=1:m R(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j); Ry(49+j)=R(j);

信号与系统大作业

中北大学 信号与系统综合性报告 学院:仪器与电子学院 专业:电子科学与技术 学号姓名:王鹏 学号姓名:张艺超 学号姓名:郭靖锋 学号姓名:蔡宪庆 学号姓名: 指导教师: 张晓明 2019年5 月13 日

1 设计题目时频域语音信号的分析与处理 2 设计目标对语音信号进行时频域分析和处理的基本方法 3 设计要求 1)分别录制一段男生和女生语音文件及相应有明显高频或低频干扰的语音文件*.wav,并将文件导入Matlab中; 2)分别分析各段语音的频谱,绘制其频谱图,分析语音信号和干扰信号的频段; 3)设计相应的滤波器,剔除含干扰的语音段的干扰信号,并分析滤波信号的频谱; 4)生成滤波后的语音文件,分析听觉效果。 4 理论分析 声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的 通过查阅资料显示,实际人声频率范围 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 声音作为波的一种,频率和振幅就成了描述波的重要属性,频率的大小与我们通常所说的音高对应,而振幅影响声音的大小。声音可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅立叶变换(Fourier Transform)。傅里叶变换之后可以得到男女声的频谱,从而分析男女声的特点,观察男女声频率集中的区域,在声音中加入高频噪声,分析高频噪声频率的分布,从而设计巴特沃斯滤波器进行滤波。 5 实验内容及步骤 5.1 获取音频文件 5.1.1 通过手机录音可直接获取wav音频文件,对于噪声的添加,我们选择单独录制高频 件,读取音频数据,在时域领域上相加,便获取到含有高频噪声的音频 5.2 音频的时域处理 5.2.1 wav属于无损音乐格式的一种,其文件包含采样频率,左右声道数据,在处理时, 由于我们使用的是matlab2012a,且录制时只有一个声道,可使用函数wavread()读取到一个一维数组,使用plot函数即可获取其音频时域图像 5.3 音频的频域处理 5.3.1 对于音频数组,我们采用fft函数进行傅里叶变换,获取到的是对称的复数数组,数组的前一半即为其频域,同样使用plot将其画出。 5.3.2 观察频域图,分析男女声特点。 5.4 噪声的去除 5.4.1 分析高频噪声频谱,找到合适的截止频率,设计巴特沃斯滤波器对高频噪声进行过滤。 5.4.2 将去除噪声的数组转换成音频文件

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

信号分析与处理习题

2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32621=< =Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652=>=Ωh ,所以y 2(t )失真。 3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω )表示下列序列的傅里叶变换: (1) )1()1()(1n x n x n x --+-= (2) )]()([2 1 )(2n x n x n x -+= * 分析:利用序列翻褶后的时移性质和线性性质来求解,即 )()(ωj e X n x ?,)()(ωj e X n x -?- )()(ωωj m j e X e n m x --?- 解:(1)由于)()]([ω j e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则 )()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=-- 故ωωωωω cos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ω j e X n x DTFT * * =- 故)](Re[2 ) ()()]([2ωωωj j j e X e X e X n x DTFT =+= * 3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):

工程教育专业认证标准

工程教育专业认证标准(讨论稿) (2011年11月) 1.总则 (1)本标准适用于普通高等学校工程教育本科专业认证。 (2)本标准提供工程教育本科培养层次的基本质量要求。 (3)本标准由通用标准和专业补充标准组成。

2.通用标准 2.1 专业目标 2.1.1 专业设置 专业设置适应国家和地区、行业经济建设的需要,适应科技进步和社会发展的需要,符合学校自身条件和发展规划,有明确的服务面向和人才需求。申请认证或重新认证的专业必须具有: 1.明确充分的专业设置依据和论证,有相应学科作依托,专业口径、布局符合学校的定位。 2.明确的、可衡量、公开的人才培养目标。根据经济建设和社会发展的需要、自身条件和发展潜力,确定在一定时期内培养人才的层次、类型和人才的主要服务面向。 3.至少已有3届毕业生。 2.1.2 毕业生能力 专业必须证明所培养的毕业生达到如下知识、能力与素质的基本要求: 1.具有较好的人文社会科学素养、较强的社会责任感和良好的工程职业道德; 2.具有从事工程工作所需的相关数学、自然科学知识以及一定的经济管理知识; 3.掌握扎实的工程基础知识和本专业的基本理论知识,了解本专业的前沿发展现状和趋势; 4.具有综合运用所学科学理论和技术手段分析并解决工程问题的基本能力; 5.掌握文献检索、资料查询及运用现代信息技术获取相关信息的基本方法; 6.具有创新意识和对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力; 7.了解与本专业相关的职业和行业的生产、设计、研究与开发的法律、法规,熟悉环境保护和可持续发展等方面的方针、政策和法津、法规,能正确认识工程对于客观世界和社会的影响; 8.具有一定的组织管理能力、较强的表达能力和人际交往能力以及在团队

随机信号处理

随机信号处理 大作业 学院:电子工程学院 、

马尔可夫过程概述 摘要:叙述了随机过程中的某一种--马尔可夫过程的基本定义 ,特点,以及它的应用领域;通过对离散时间马尔可夫链进行仿真分析,掌握马尔可夫的特点。 1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。 出于扩大极限定理应用范围的目的,马尔科夫在20世纪初开始考虑相依随机变量序列的规律,并从中选出了最重要的一类加以研究。1906年他在《大数定律关于相依变量的扩展》一文中,第一次提到这种如同锁链般环环相扣的随机变量序列,其中某个变量各以多大

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.doczj.com/doc/1814020821.html, for more information,please refer to https://www.doczj.com/doc/1814020821.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

《信号分析与处理》复习总结

信号是带有信息(如语音、音乐、图象、数据等)的随时间(和空间)变化的物理或物理现象,其图象称为信号的波形。信号是消息的表现形式,消息则是信号的具体内容。 分类:根据不同分类原则,信号可分为:连续时间信号与离散时间信号;确定信号与随机信号;周期信号和非周期信号;功率信号与能量信号等等 反因果信号:若当t ≥0时,f (t )=0;当t <0时,f (t )≠0. 系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 ???????=???≠=∞=?∞ ∞ -1)()0( 0)0( )(dt t t t t δδ()()t t δδ-= ()t δ为偶对称函数 1()d 2j t t e ωδωπ ∞-∞= ?——()t δ的逆傅立叶变 换 ()()d ()() t x t t t t x t t t δε-∞ -=-?) ()()()(000t t t x t t t x -=-δδ)(| |1 )(t a at δδ= )(t δ'是奇对称函数 ) ()(, 0)(t d d t δττδττδ='='? ? ∞ -∞ ∞ -离散时间单位: 0()(), ()()(1) m n n m n n n εδδεε+∞ ==-=--∑稳定 性 ∑? +∞-∞ =∞ +∞ -∞ <∞-=-? -z z z z n Z ε

西电随机信号分析大作业

随机信号分析大作业 学院:电子工程学院 班级:021151 学号:02115037 姓名:隋伟哲

第一题:设有随机信号X(t)=5cos(t+a),其中相位a是在区间(0,2π)上均匀分布的随机变量,使用Matlab编程产生其三个样本函数。 解: 源程序如下: clc;clear; C=2*pi*rand(1,3);%在[0,2π]产生均匀分布的相位角 t=1:.1:80; y1=5*cos(t+C(1)); %将产生的随机相位角逐一代入随机过程中 y2=5*cos(t+C(2)); %将产生的随机相位角逐一代入随机过程中 y3=5*cos(t+C(3)); %将产生的随机相位角逐一代入随机过程中 plot(t,y1,'r-'); hold on; plot(t,y2,'g--'); hold on; plot(t,y3,'k-'); xlabel('t');ylabel('X(t)'); grid on;axis([0 30 -8 8]); title('随机相位的三条样本曲线'); 产生的三条样本曲线:

第二题:利用Matlab程序设计一正弦型信号加高斯白噪声的复合信号。(1)分析复合信号的功率谱密度、幅度分布特性; (2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性; (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 解:设定正选信号的频率为10HZ,抽样频率为100HZ x=sin(2*pi*fc*t)

(1)正弦函数加上高斯白噪声: y=awgn(x,10) y 的幅度分布特性可以通过傅里叶变换得到: Y(jw)=fft(y) y 的功率谱密度: G(w)=Y(jw).*conj(Y(jw)/length(Y(jw))) 随机序列自相关函数的无偏估计公式为: 1 01()()()N m xx n R m x n x n m N m --==+-∑ 01m N ≤≤- (2)复合信号 y 通过RC 积分电路后得到信号y2 通过卷积计算可以得到y2 即:y2= conv2(y,b*pi^-b*t) y2的幅度分布特性可以通过傅里叶变换得到: Y2(jw)=fft(y2) y2的功率谱密度: G2(w)=Y2(jw).*conj(Y2(jw)/length(Y2(jw))) (3)复合信号 y 通过理想滤波器电路后得到信号y3 通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)) y3的幅度分布特性可以通过傅里叶变换得到: Y3(jw)=fft(y3) y3的功率谱密度: G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))

测试信号分析与处理作业实验一二

王锋 实验一:利用FFT 作快速相关估计 一、实验目的 a.掌握信号处理的一般方法,了解相关估计在信号分析与处理中的作用。 b.熟悉FFT算法程序;熟练掌握用FFT作快速相关估计的算法。 c.了解快速相关估计的谱分布的情况。 二、实验内容 a.读入实验数据[1]。 b.编写一利用FFT作相关估计的程序[2]。 c.将计算结果表示成图形的形式,给出相关谱的分布情况图。 注[1]:实验数据文件名为“Qjt.dat”。 实验数据来源:三峡前期工程 “覃家沱大桥” 实测桥梁振动数据。 实验数据采样频率:50Hz。 可从数据文件中任意截取几段数据进行分析,数据长度N 自定。 注[2]:采用Matlab 编程。 三、算法讨论及分析 算法为有偏估计,利用FFT计算相关函数 Step 1: 对原序列补N个零,得新序列x2N(n) Step2: 作FFT[x2N(n)]得到X2N(k) Step 3: 取X2N(k)的共轭,得 Step 4: 作 Step 5: 调整与的错位。 四、实验结果分析 1. 该信号可以近似为平稳信号么? 可以近似为平稳信号,随机过程的统计特性不随样本的采样时刻而发生变化。取N=8192,分别取间隔m=500,m=700,m=1000,所得到的均值均为0.5366,方差为47369,与时间无关。

图1-1 自相关函数图 (上图表示的R0,下图为调整后的R0) 2. 该信号是否具有周期性,信噪比如何? >> load Qjt.dat; %加载数据 N=32768; %数据长度 i=1:1:N; %提取数据 plot(i,Qjt(i)); 抛去几个极值点,从图1-2可以看出,数据具有一定的周期性,杂音比较少,说明信噪比较高。 图1-2 数据图

随机信号分析大作业

随机信号分析实验报告 信息25班 2120502123 赵梦然

作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函 数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从 何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。 画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的 直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函 数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅 里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

一、作业分析: 本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。 二、作业解答: (1)matlab程序为: x-1000:1:1000; k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。 [f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。 subplot(1,2,1); plot(x,k); subplot(1,2,2); plot(xi,f); 实验结果为:

测试信号分析与处理作业实验五

王锋 实验五:多种功率谱估计的比较 一、实验目的 a.了解功率谱估计在信号分析中的作用; b.掌握随机信号分析的基础理论,掌握参数模型描述形式下的随机信 号的功率谱的计算方法; c.掌握在计算机上产生随机信号的方法; d.了解不同的功率谱估计方法的优缺点。 二、实验准备 有三个信号源,分别代表三种随机信号(序列)。 信号源1: 123()2cos(2)2cos(2)2cos(2)()x n f n f n f n z n πππ=+++ 其中,1230.08,=0.38,0.40f f f == z(n)是一个一阶 AR 过程,满足方程: ()(1)(1)()z n a z n e n =--+ (1)0.823321a =- e(n)是一高斯分布的实白噪声序列,方差20.1σ= 信号源2和信号源3: 都是4阶的AR 过程,它们分别是一个宽带和一个窄带过程,满足方程: ()(1)(1)(2)(2)(3)(3)(4)(4)()x n a x n a x n a x n a x n e n =--------+ e(n)是一高斯分布的实白噪声序列,方差2σ,参数如下: 三、实验内容 a. 描绘出这三个实验信号的真实功率谱波形。 b. 在计算机上分别产生这个三个信号,令所得到的数据长度 N= 256 。 注意:产生信号的时候注意避开起始瞬态点。例如,可以产生长度为512 的信号序列,然后取后面256 个点作为实验数据。 c. 分别用如下的谱估计方法,对三个信号序列进行谱估计。 1、经典谱估计 周期图法 自相关法 平均周期图法(Bartlett 法)

Welch法(可选每段64 点,重叠32 点,用Hamming 窗)2、现代谱估计 Yule - Walker方程(自相关法) 最小二乘法 注:阶次p可在3-20之间,由自己给定。 四、实验结果分析 生成的信号源

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

吕卫阳—信号分析与处理第二次作业—北京科技大学

周期序列的频谱分析: 已知周期序列在一个周期N=4内的取值为x(n)=[0 1 2 3]采用MATLAB计算该周期序列的频谱(DTFS)。 程序: %周期序列的时域波形 x=[0 1 2 3];n=0:3; N=length(x);figure(1); stem(n,x,'*'); axis([0 4 -4 4]);grid; xlabel('n'); ylabel('x(n)'); title('周期序列时域波形'); for k=0:1:3 dk(k+1)=(x(1)*exp(-j*k*2*pi/N*0)+x(2)*exp(-j*k*2*pi/N*1)+x(3)*exp (-j*k*2*pi/N*2)... +x(4)*exp(-j*k*2*pi/N*3))/N; realdk(k+1)=real(dk(k+1)); imagdk(k+1)=imag(dk(k+1)); magnitude(k+1)=abs(dk(k+1)); phase(k+1)=angle(dk(k+1)); end %周期序列的频谱:实部和虚部 k=0:1:3; figure(2); subplot(2,1,1); stem(k,realdk(k+1),'*'); axis([0 4 -4 4]); xlabel('k'); ylabel('Real Part of d(k)');grid; subplot(2,1,2); stem(k,imagdk(k+1),'*'); axis([0 4 -4 4]); xlabel('k'); ylabel('Imaginary Part of d(k)');grid; %周期序列的频谱:幅值和相位 figure(3); subplot(2,1,1); stem(k,magnitude(k+1),'*'); axis([0 4 -4 4]);

信号分析与处理试题

河南科技学院2006-2007学年第二学期期终考试 信号分析与处理试题 适用班级: 注意事项:1 在试卷的标封处填写院(系)、专业、班级、姓名和准考证号。 2 考试时间共100分。 一、单项选择题(本大题共10小题,每题2分,共20分) 1.下列单元属于动态系统的是( ) A. 电容器 B.电阻器 C.数乘器 D.加法器 2.单位阶跃函数()u t 和单位冲激函数()t δ的关系是( ) A.()/()d t dt u t δ= B.()/()du t dt t δ= C.()()u t t δ= D.()2()u t t δ= 3.()()f t t dt δ∞-∞=?( ) A.()f t B.()t δ C.(0)f D.(0)δ 4.单位冲激函数()t δ的()F j ω=( ) A .0 B.-1 C.1 D.2 5.设()f t 的频谱为()F j ω,则利用傅里叶变换的频移性质,0()j t f t e ω的频谱为( ) A.0()F j ω B.()F j ω C.0[()]F j ωω+ D.0[()]F j ωω- 6.设1()f t 的频谱为1()F j ω,2()f t 的频谱为2()F j ω,利用傅里叶变换卷积定理,12()()f t f t *的频谱为( ) A.1()F j ω B.2()F j ω C.11()()F j F j ωω* D.11()()F j F j ωω 7.序列()n m δ-的Z 变换为( ) A.m z B.m z - C.m D.m - 8.单边指数序列()n a u n ,当( )时序列收敛 A.1a < B.1a ≤ C.1a > D.1a ≥ 9.取样函数()/Sa t sint t =,则(0)Sa =( ) A.0 B.1 C.2 D.3 10.设实函数()f t 的频谱()()()F j R jX ωωω=+,下列叙述正确的是( )

随机信号分析大作业

随机信号分析大作业

一、实验目的 基于随机过程的莱斯表达式产生窄带随机过程。 二、实验内容及实验原理 1,基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 2,实验过程框图如下: 3,理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为:

1 ()()cos 2Y Y R G d τωωτωπ ∞ = ? /2 200 1cos 2N A d ωωτωπ ?= ? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密度图形。 三、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器 y_at=at.*cos(w.*n); %产生随机过程a (t ) y_bt=at.*sin(w.*n); %产生随机过程b (t ) yt=y_at-y_bt; %产生一个p 个点的高斯窄带随机过程 subplot(211) plot(yt) title('高斯窄带随机过程y(t)') subplot(212) pdf_ft=ksdensity(yt) ; plot(pdf_ft) title('y(t)的概率密度图') disp('均值如下') E_Xt=mean(y_at) E_at=mean(y_at) E_bt=mean(y_bt) E_ft=mean(yt) %-----------------------自相关函数代码如下--------------------------% figure(2) R_Xt=xcorr(Xt); %高斯白噪声X(t)的自相关函数 R_at=xcorr(at); %限带白噪声的自相关函数 R_y_at=xcorr(y_at); %随机过程a(t).coswt 的自相关函数 R_y_bt=xcorr(y_bt); %随机过程b(t).coswt 的自相关函数 R_ft=xcorr(yt);

相关主题
文本预览
相关文档 最新文档