当前位置:文档之家› 铝型材阳极氧化表面斑点腐蚀缺陷的原因分析

铝型材阳极氧化表面斑点腐蚀缺陷的原因分析

铝型材阳极氧化表面斑点腐蚀缺陷的原因分析
铝型材阳极氧化表面斑点腐蚀缺陷的原因分析

6063铝型材阳极氧化表面斑点腐蚀缺陷的原因分析6063铝型材经阳极氧化后,具有具有良好的耐蚀性能和装饰性能,近年来,随着国民经济的发展及人们生活水平的提高,铝合金门窗、铝合金幕墙的使用越来越普及,然而不少的铝合金在使用一段时间以后,表面出现形态各异的腐蚀缺陷,其中斑点腐蚀较为常见,严重影响铝型材的使用性能及装饰效果。为了合理改善铝型材的表面质量,达到控制表面斑点腐蚀的目的,很有必要对斑点缺陷做深入细致的分析。本文以6063铝型材经阳极氧化后表面出现的斑点腐蚀为研究对象,分析斑点腐蚀的本质、成因及生成机理,探讨产生斑点腐蚀的关键因素。

1 斑点腐蚀的本质分析

由所使用的6063铝型材成分可知,为了确保Mg元素充分形成强化相Mg2Si,一般在配制合金成分时人为的使Si元素适量过剩。因为随着Si含量的增加,合金的晶粒变细,热处理效果较好。但另一方面,Si的过剩也有负面作用,使合金的塑性降低,耐蚀性变坏。研究表明:过剩Si不仅能形成游离态的Si相,还会与基体形成α相(Al12 Fe2Si)和β相(Al9Fe3Si2),这样在铝合金中存在游离态的Si相、α相(Al12 Fe2Si)、β相(Al9Fe3Si2)等阴极相粒子和阳极相Mg2Si粒子。α相和β相对合金的腐蚀性能影响很大,尤其是β相能显著降低合金的腐蚀性能。斑点处残留物的成分主要是游离Si相和AlFeSi相,同时发现氯元素在残留物处也发生了吸附,这说明Cl-参与了腐蚀过程。腐蚀区中锌元素含量较基体高得多,说明合金中的杂质元素锌也参与了腐蚀过程。

阳极氧化工序中,阳极相Mg2Si是合金的点蚀源。在阳极氧化碱洗时,Mg2Si粒子优先溶解而形成蚀坑,其中镁溶解在溶液中而硅在铝合金上残留下来,当蚀坑聚集在晶粒上就会使该晶粒颜色发暗。在硫酸中和工序中硅不易除去,故斑点腐蚀蚀坑底部硅含量较其他区域高。

2 斑点腐蚀的成因分析

影响斑点腐蚀的主要因素有预处理过程中的碱洗温度、碱洗时间以及合金成分中的Zn、Fe、Si元素含量与合金的挤压状态等。在诸多因素中,挤压状态起着关键性的作用,它关系到对腐蚀性能有较大影响的Zn、Fe、Si等元素的分布,以及金属键间化合物等粒子的析出位置。在较粗的挤压条纹区中,斑点腐蚀分布具有明显的方向性,因为这个区域挤压时阻力较大,应力多在此集中,该处金属的晶格发生严重畸变,成为局部高自由能区,在随后的再结晶过程中优先形核,为了降低界面能和处于稳定态,此处晶粒不仅异常长大,而且Mg2Si阳极相、游离Si、FeSiAl、FeAl3等阴极相优先析出,为后续的斑点腐蚀创造了条件。

由于上述原因,在析出游离Si、FeSiAl、FeAl3等金属问化合物的晶界附近出现硅铁元素的贫乏区,此区近乎为纯铝,电位为负是阳极,它与金属间化合物(是阴极)构成了微电池,在腐蚀介质的作用下,微电池中阴极相(如游离Si、FeSiAl、FeAl3)周围的Si、Fe贫乏区(是阳极相)优先溶解,而Mg2Si也发生溶解,结果阳极相周围Al的溶解形成了带有残留物的腐蚀坑,阳极相溶解则形成没有残留物的腐蚀坑。当腐蚀条件继续恶化(如温度上升、碱洗时间长等)的情况下,基体Al继续溶解,腐蚀坑向深的方向发展,于是表面形貌就表现为部分带有残留物的腐蚀坑和部分无残留物的腐蚀坑,由二者构成了前面所述的斑点腐蚀。

3 斑点腐蚀生成机理分析

6063是Al-Mg-Si系合金,Mg2Si是唯一的时效强化相。为提高合金强度,生产中常使Si元素含量过剩,由过剩Si便形成了游离Si、FeSiAl相粒子。这些粒子在挤压工艺不当及热处理不规范的情况下。可能导致与FeAl3 、Mg2Si粒子一起在晶界处偏聚(或偏析),这就构成了点蚀源.根据腐蚀学理论,阴极质点周围的阳极铝会优先腐蚀,生成的Al3+向阴极扩散,而溶液中的OH-向阳极扩散,最终在阴阳极的界面沉淀出白色絮状的Al(OH)3,干涸后在铝材的表面构成白色斑点。即所谓的斑点腐蚀。相应的化学方程式如下:Al→Al3++3e (阳极)

Al3++3OH-→Al(OH)3 ↓(阴极)

4 活性元素的影响

Zn元素的加速作用

固溶在铝合金中的锌以“溶解-再沉积”的方式加速晶粒腐蚀,合金表面上沉积的锌或铁以及高电位脱溶物FeSiAl和游离硅等阴极性粒子能起到有效的阴极作用,加快溶解氧的还原过程,促进腐蚀不断扩展、加深。

Zn元素碱洗时随Al的溶解而以Zn(OH)42-和Zn(OH)-3的形式溶于碱液中。又因为Zn 的电位(-0.76V)较Al的电位(-1.67V)正,当碱液中Zn离子的浓度增至一定数值时,Zn 就会选择性地沉积在腐蚀坑中的残留物上,所以会出现Zn元素偏高的异常现象。另一方面,由于Zn、Al二者的电位差较大,导致微电池中的腐蚀电流很大,阴极性粒子Fe、Si贫乏区(基本为纯铝)溶解较快,这种腐蚀最终表现为斑点腐蚀。

Cl-的活化作用

作为外部因素的Cl-对斑点腐蚀非常敏感,具有诱发、加重点蚀的作用。研究结果发现,脱脂酸中的Cl-会在钝化膜缺陷处吸附,并穿透钝化膜吸附于基体上。此处的铝元素由于被

活化而迅速溶解,于是钝化膜被破坏,形成电偶电池结构,在酸性介质的作用下,局部腐蚀电流较大,此时Cl-与溶解的A13+发生如下络合反应:Al3++Cl-+ H2O→AlOHCl++H+,使溶液的酸性进一步加强,腐蚀条件更加恶化。当Cl-浓度增高时,络合反应向右进行,钝化膜上的活性点会大大增加,在随后的碱洗过程中优先溶解,从而出现较为严重的斑点腐蚀。

pH值的促进作用

水洗水中的pH值小于2或者大于4时,很少发生斑点腐蚀。颜色发暗时的晶粒由灰色向黑色转变过程中,水洗槽中的pH值起到了一定的促进作用。

当水洗水中pH>4时,铝型材表面形成的钝化膜比较完整、致密,H+、Cl-的吸附、活化、破坏作用大大减弱,故型材很少甚至没有腐蚀发生;当pH<2时,铝型材表面处于活性溶解状态,无钝化膜形成,所以也不会出现斑点腐蚀。

5 结论

6063铝型材斑点腐蚀是因铝合金中阳极相Mg2Si的偏析、粗化引起的,而合金中杂质元素Zn及溶液中Cl-和pH值加速了斑点腐蚀的发生与发展。应适当调整合金中的镁硅元素质量比,不宜使硅元素含量过高,并合理安排时效制度以防止Mg2Si粒子的偏聚,以免影响铝型材的腐蚀性能。控制合金中微量元素Zn以及处理过程中溶液的Cl-浓度和pH值,减轻活性元素的负面影响。

铝表面阳极氧化处理方法

铝表面阳极氧化处理方法 一、表面预处理 无论采用何种方法加工的铝材及制品,表面上都会不同程度地存在着污垢和缺陷,如灰尘、金属氧化物(天然的或高温下形成的氧化铝薄膜)、残留油污、沥青标志、人工搬运手印(主要成分是脂肪酸和含氮的化合物)、焊接熔剂以及腐蚀盐类、金属毛刺、轻微的划擦伤等。因此在氧化处理之前,用化学和物理的方法对制品表面进行必要的清洗,使其裸露纯净的金属基体,以利氧化着色顺利进行,从而获得与基体结合牢固、色泽和厚度都满足要求且具有最佳耐蚀、耐磨、耐侯等良好性能的人工膜。 (一)脱脂 铝及铝合金表面脱脂有有机溶剂脱脂、表面活性剂脱脂、碱性溶液脱脂、酸性溶液脱脂、电解脱脂、乳化脱脂。几种脱脂方法及主要工艺列于表-1。在这些方法中,以碱性溶液特别是热氢氧化钠溶液的脱脂最为有效。 表-1 脱脂及主要工艺 脱脂方法溶液组成用量g/L 温度/度时间min 后处理备注 有机溶剂汽油、四氯化碳、三氯乙烯等适量常温或蒸汽适当无浸蚀 表面活性剂肥皂、合成洗涤剂适量常温-80 适当. 水清洗无浸蚀 碱性溶液NaOH 50-200 40-80 0.5-3 水洗后用100-500g/L硝酸溶液中和及除挂灰脱脂兼腐蚀除去自然氧化,硝酸可用稀硫酸+铬酸代替 十二水磷酸钠NaOH硅酸钠40-608-1225-30 60-70 3-5 水清洗NaOH可用40-50g/L 碳酸钠代替,总碱度按NaOH计算为1.6%-2.5% 多聚磷酸钠碳酸钠磷酸钠一水硼酸钠葡萄糖酸液体润湿剂15.64.84.84.80.3ml0.1ml 60 12-15 水清洗使用前搅拌4个小时 十二水磷酸钠硅酸钠液体肥皂50-7025-353-5 75-85 3-5 水清洗 碳酸钠磷酸钠25-4025-40 75-85 适当水清洗 磷酸钠碳酸钠NaOH 20106 45-65 3-5 水清洗 强碱阻化除油剂40-60 70 5 水清洗除油不净可延长处理时间 酸性溶液硫酸50-300 60-80 1-3 水清洗 硝酸162-354 常温3-5 水清洗松化处理 磷酸硫酸表面活性剂3075 50-60 5-6 水清洗 磷酸(85%)丁醇异丙醇水100%40%30%20% 常温5-10 水清洗溶液组成以体积记 电解溶液阳极氧化用电解质常温适当交流电或阴极电流电解 NaOH 100-200 常温0.5-3 水清洗后中和铝制品为阴极,电流密度为4-8A/dm2 乳化溶液石蜡三乙醇胺油酸松油水8.0%0.25%0.5%2.25%89% 常温适当水清洗溶液组成以体积记

阳极氧化检验标准

阳极氧化检验标准 1、目的 规范检验操作,发现、控制不良品,防止批不良品输入下道工序。同时给检验工作提供引导及接收标准。 2、范围 适用于进料、外协制品回厂、成品的检验接收及顾客退货的挑选检验。 3、定义 本标准适用于变形铝及铝合金以保护和装饰为主要目的,在阳极氧化膜表面涂装有机聚合物膜得到的阳极氧化复合膜。 4、职责 质量部负责不合格的发现、记录和标识,组织处理不合格品。 采购部负责进料中不合格品与供应商的联络。 5 性能要求 外观 阳极氧化复合膜的外观应均匀、平整,不允许有色差、皱纹、裂纹、气泡、流痕、夹杂、发黏和漆膜脱落等缺陷,(喷绘类产品的外观检验可参照样件)。 表面粗糙度应达到设计要求的表面粗糙度值。 阳极氧化复合膜厚度 阳极氧化复合膜厚度由阳极氧化膜厚度和漆膜厚度两部分组成。阳极氧化膜厚度和漆膜厚度应符合表1的规定。

漆膜附着性 漆膜的干附着性、湿附着性和沸水附着性均应达到0级。 耐化学品性 耐盐酸性 耐盐酸试验后,用肉眼观察试样表面,应无起泡、变色及其它明显变化。 耐洗涤剂性 耐洗涤剂试验后,用肉眼观察试样表面,应无起泡、脱落及其它明显变化。 耐沸水性 耐沸水试验后,用肉眼观察试样表面,应无皱纹、裂纹、气泡、脱落及变色等现象。表1 注1:表中的膜厚指平均膜厚,最小局部膜厚应不小于80%的平均膜厚; 注2:A、B、C采用不同厚度的有光漆或哑光漆,S采用彩色漆。 6 取样 试样的选择与制备 阳极氧化复合膜的试样从制品的有效表面选取。当不能用制品进行试验时,必须使用能够代表 制品的试样。试样表面制备后,应放置24h后进行试验。 取样数量 产品取样应符合表2的规定。

铝型材阳极氧化表面斑点腐蚀缺陷的原因分析

6063铝型材阳极氧化表面斑点腐蚀缺陷的原因分析6063铝型材经阳极氧化后,具有具有良好的耐蚀性能和装饰性能,近年来,随着国民经济的发展及人们生活水平的提高,铝合金门窗、铝合金幕墙的使用越来越普及,然而不少的铝合金在使用一段时间以后,表面出现形态各异的腐蚀缺陷,其中斑点腐蚀较为常见,严重影响铝型材的使用性能及装饰效果。为了合理改善铝型材的表面质量,达到控制表面斑点腐蚀的目的,很有必要对斑点缺陷做深入细致的分析。本文以6063铝型材经阳极氧化后表面出现的斑点腐蚀为研究对象,分析斑点腐蚀的本质、成因及生成机理,探讨产生斑点腐蚀的关键因素。 1 斑点腐蚀的本质分析 由所使用的6063铝型材成分可知,为了确保Mg元素充分形成强化相Mg2Si,一般在配制合金成分时人为的使Si元素适量过剩。因为随着Si含量的增加,合金的晶粒变细,热处理效果较好。但另一方面,Si的过剩也有负面作用,使合金的塑性降低,耐蚀性变坏。研究表明:过剩Si不仅能形成游离态的Si相,还会与基体形成α相(Al12 Fe2Si)和β相(Al9Fe3Si2),这样在铝合金中存在游离态的Si相、α相(Al12 Fe2Si)、β相(Al9Fe3Si2)等阴极相粒子和阳极相Mg2Si粒子。α相和β相对合金的腐蚀性能影响很大,尤其是β相能显著降低合金的腐蚀性能。斑点处残留物的成分主要是游离Si相和AlFeSi相,同时发现氯元素在残留物处也发生了吸附,这说明Cl-参与了腐蚀过程。腐蚀区中锌元素含量较基体高得多,说明合金中的杂质元素锌也参与了腐蚀过程。 阳极氧化工序中,阳极相Mg2Si是合金的点蚀源。在阳极氧化碱洗时,Mg2Si粒子优先溶解而形成蚀坑,其中镁溶解在溶液中而硅在铝合金上残留下来,当蚀坑聚集在晶粒上就会使该晶粒颜色发暗。在硫酸中和工序中硅不易除去,故斑点腐蚀蚀坑底部硅含量较其他区域高。 2 斑点腐蚀的成因分析 影响斑点腐蚀的主要因素有预处理过程中的碱洗温度、碱洗时间以及合金成分中的Zn、Fe、Si元素含量与合金的挤压状态等。在诸多因素中,挤压状态起着关键性的作用,它关系到对腐蚀性能有较大影响的Zn、Fe、Si等元素的分布,以及金属键间化合物等粒子的析出位置。在较粗的挤压条纹区中,斑点腐蚀分布具有明显的方向性,因为这个区域挤压时阻力较大,应力多在此集中,该处金属的晶格发生严重畸变,成为局部高自由能区,在随后的再结晶过程中优先形核,为了降低界面能和处于稳定态,此处晶粒不仅异常长大,而且Mg2Si阳极相、游离Si、FeSiAl、FeAl3等阴极相优先析出,为后续的斑点腐蚀创造了条件。

(品质)(技术套表)、铝的阳极氧化是一种常用的金属表面处理技术它能使铝的

(技术套表)、铝的阳极氧化是一种常用的金属表面处理技术它能使铝的

江苏省江浦高级中学二轮专题训练:原电池、电解原理及其应用测试题1.2007年诺贝尔化学奖授予德国科学家格哈德·埃特尔。埃特尔在表面化学方面的贡献有助于人们理解“铁为什么会生锈”、“燃料电池和汽车中处理尾气的催化剂如何工作”、“南极上空的臭氧层如何被破坏”。下列有关说法正确的是:A.温室效应的加剧是导致南极上层臭氧空洞的主要原因 B.汽车尾气处理是在高温高压催化剂下进行的C.氢氧燃料电池的正 极反应可表示为H2=2H++2e-D.钢铁在空气中的腐蚀主要是电化腐蚀 2.下图为直流电源,为浸透饱和氯化钠溶液和酚酞试液的滤纸,为电 镀槽。按下图接通电路后发现上的c点显红色。为实现铁上镀锌,接 通后,使c、d两点短路。下列叙述正确的是 A.a为直流电源的负极B.接通前,c极有H2放出 C.f电极为锌板D.e极发生氧化反应 3.铅蓄电池用途极广,电解液为30%H2SO4溶液,电池的总反应式可表示为: Pb(s)+PbO2(s)+2H2SO4(aq)2PbSO4(s)+2H2O(l) 下列有关叙述正确的是 A.放电时电解液的密度不断增大B.放电时电子从Pb通过导线转移到PbO2 C.充电时Pb极与外电源的负极相连D.充电时PbO2电极发生还原反应,Pb电极上发生氧化反应4.用惰性电极电解1L足量KCl的溶液,若通过nmol电子的电量,则溶液的pH与n的关系是(设电解前后溶液的体积不变):A.pH=lgnB.pH=-lgnC.pH=14+lgnD.pH=lgn-14 5.用电解质溶液为氢氧化钾水溶液的氢氧燃料电池电解饱和硫酸钠溶液一段时间,假设电解时温度不变且用惰性电极,下列说法不正确的是:A.当电池负极消耗mg气体时,电解池阴极有mg气体生成B.电解池的阳极反应式为:4OH--4e-=2H2O+O2↑ C.反应后,电池中c(KOH)不变;电解池中溶液pH变大 D.电解后,c(Na2SO4)不变,且溶液中有晶体析出 6.目前科学家已经开发出便携式固体氧化物燃料电池,它以烷烃气体为燃料,每填充一次燃料,可连续

6063铝合金型材表面腐蚀的分析

6063铝合金型材表面腐蚀的分析 6063铝合金型材表面处理过程中,有时会发现在型材表面有不同程度的、无规则排列的点状暗灰色腐蚀点,这种腐蚀点与锌元素引起的腐蚀点其形状完全不一样,而且,在生产过程中是间断出现的。有些人认为其原因为操作者没有执行正确的表面处理工艺;槽液存在一些有害杂质离子;材质不好、夹杂太多。对此,我们分析如下。 1腐蚀点产生的原因分析 我们根据多年的生产经验和对铝合金型材生产中各工艺参数的考察,以及对操作者执行工艺情况的跟踪调查,认为产生该类型暗灰色腐蚀点的主要原因有下述几个方面: (1)有时因为某些原因在熔铸过程中镁、硅的添加比例不各适,使ω(Mg)/ω(Si)在1.0~1.3范围内,比最佳比值1.73小很多(一般控制在1.3~1.5范围内)。这样,虽然镁、硅成分含量在规定(ω(Mg)=0.45%~0.9%,ω(Si)=0.2%~0.6%)范围内。但有部分富余硅存在,这部分富余硅除有少量硅以游离态存在外,在铝合金中同时会形成三元化合物。当ω(Si)<ω(Fe)时,形成较多的α(A l12Fe3Si)相,它是一种脆性化合物、当ω(Si)>ω(Fe)时,则形成较多的β(Al9Fe2Si12)相,这是一种更脆的针状化合物,它的有害作用比α相更大,往往使合金容易沿它断裂。这些在合金中形成的不溶性的杂质相或游离态杂质相往往聚集在晶界上,同时削弱晶界的强度和韧性,成为耐蚀性最差的薄弱环节,腐蚀首先从该处产生。 (2)在熔炼过程中,虽然镁、硅的添加比例在标准规定的范围内,但有时由于搅拌不均匀和不充分,造成熔体中的硅分布不均匀,局部存在着富集区和贫乏区。因为硅在铝中的溶解度很小,共晶温度577℃时为1.65%,而室温时仅为0.05%,铸棒后也就产生了成分不均匀的现象,它直接反映到铝型材产品上,铝基体中存在少量游离态硅时,不仅降低合金的抗蚀性能,而且粗化合金的晶粒。 (3)挤压时各工艺参数的控制,如棒坯预热温度过高,金属挤出流速、挤压时风冷强度、时效温度与保温时间等控制不当都易产生硅偏析和游离,使镁和硅没有完全成为Mg2Si相,而有部分游离硅存在。 2表面处理过程中的腐蚀现象 富余和游离硅多的6003铝合金型材在表面处理时出现下列现象:当把型材放入酸性槽(硫酸15%~20%)时,能明显地观察到在型材表面有很多小气泡,随着时间延长和槽液温度升高,反应速度越来越快,这表明原电池电化学腐蚀已经产生[5]。此时把型材从槽液中提出来观察,就会在型材表面上发现很多个与正常表面颜色不一样的点。继续进行以后的处理,如碱腐蚀、酸性中和出光及硫酸阳极氧化时,这种暗灰色腐蚀点就会暴露得更加明显和直观。 锌元素造成的腐蚀和硅元素引起的腐蚀在外观形态上有一些区别。锌造成的腐蚀点象雪花,沿晶界向外扩散,是有一定深度的坑[6,7]。而硅元素引起的腐蚀点象夹杂暗灰色点,沿晶界面没有向外扩散,也感觉不到深度.并且随着处理时间延长,数量越来越多,直到完全反应后才终止。这种暗灰色点通过延长腐蚀时间或退膜处理可基本上消除或减轻。

铝合金挤压型材几种常见缺陷解析

挤压铝型材表面颗粒状毛刺的形成原因与对策 在铝型材的挤压生产中,型材表面不同程度的存在一些小颗粒吸附在型材表面上,这种的缺陷,仅有轻微手感,不仔细观察或手摸较难发现。但它严重影响氧化、电泳涂漆及喷涂型材的表面美观,降低了生产效率和成品率,更是高档装饰型材的致命缺陷。因此,对其形成机理进行分析,同时在挤压生产实践中不断地观察分析,总结其成因,及时采取措施,是减少或杜绝这种缺陷的出现的有效手段。 一、颗粒吸附成因分析 1、挤压型材表面出现的颗粒状毛刺分为四种: 1)空气尘埃吸附,燃煤铝棒加热炉产生的灰尘、铝屑、油污及水份凝结成颗粒附着在热的型材表面。 2)铝棒中的杂质,如:精炼不充分遗留的金属夹杂物和非金属夹杂物。 3)时效炉内的灰尘附着。 4)铝棒中的缺陷及成分中的β相AlFeSi在高温下析出,使金属塑性降低,抗拉强度降低,产生颗粒状毛刺。 “吸附颗粒”的形成 2、原因 1)铝棒质量的影响 由于高温铸造,铸造速度快,冷却强度大,造成合金中的β相AlFeSi不能及时转变为球状α相AlFeSi,由于β相AlFeSi在合金中呈现针状组织,硬度高、塑性差,抗拉强度很低,在高温挤压时不仅会诱发挤压裂纹,而且会产生颗粒状毛刺,这种毛刺不易清理,手感强烈,颗粒附近常伴随有蝌蚪状拖尾,在金相显微镜下观察,呈现灰褐色,成分中富含铁元素。 铝棒中的杂质影响,铝棒在熔铸过程中,精炼不充分,泥土、精炼剂、覆盖剂以及粉末涂料和氧化膜夹杂等混入棒中,这些物质在挤压过程中,使金属的塑性和抗拉强度显著降低,极易产生颗粒状毛刺。 棒的组织缺陷常见的有疏松、晶粒粗大、偏析、光亮晶粒等,所有这些铸棒缺陷有一个共同点,就是与铸棒基体焊合不好,造成了基体流动的不连续性,在挤压过程中,夹渣极易从基体中分离出来,通过模具的工作带时,粘附在入口端,形成粘铝,并不断被流动的金属拉出,极易产生颗粒状毛刺。 2)模具的影响 在挤压生产中,模具是在高温高压的状态下工作的,受压力和温度的影响,模具产生弹性变形。模具工作带由开始平行于挤压方向,受到压力后,工作带变形成为喇叭状,只有工作带的刃口部分接触型材形成的粘铝,类似于车刀的刀屑瘤。在粘铝的形成过程中,不断有颗粒被型材带出,粘附在型材表面上,造成了"吸附颗粒"。随着粘铝的不断增大,模具产生瞬间回弹,就会形成咬痕缺陷。若粘铝堆积较多,不能被型材拉出,模具瞬间回弹时粘铝不脱落,就会形成型材的表面粗糙、亮条、型材撕裂、堵模等问题。模具的粘铝现象见图1。我们现在使用的挤压模具基本是平面模,在铸棒不剥皮的情况下,铸棒表面及内在的杂质堆积在模具内金属流动的死区,随着挤压铸棒的推进及挤压根数的增多,死区的杂质也在不断的变化,有一部分被正常流动的金属带出,堆积在工作带变形后的空间内。 有的被型材拉脱,形成了颗粒状毛刺。因此,模具是造成颗粒状毛刺的关键因素。

6063挤压型材条纹缺陷产生原因分析及解决措施

6063挤压型材条纹缺陷产生原因分析及解决措施 周春荣张宏辉 (广东豪美铝业有限公司,广东,清远511540) 摘要:根据多年现场的生产经验总结,主要分析了装饰用、表面质量要求高的6063热挤压铝型材表面条纹产生的原因,并提出了解决措施。 关键词:6063铝合金;挤压;条纹 随着人们生活质量的不断提高,建筑行业的不断发展,以及出口比例的不断增加,铝合金型材的用量也越来越大。与此同时,人们对铝型材的装饰性能的要求也越来越严格。给铝加工行业提出了新的挑战,同时也刺激了中 国铝加工行业的进步和发展。下面就我们在现场的多年生产经验,单就6063铝型材的表面和氧化后条纹这一缺陷进行分析和探讨。 1.条纹的分类 按照表面处理要求,可以分为表面处理前条纹和表面处理后条纹。按条纹产生的机理分,可分为组织条纹、变形条纹、加工条纹。组织条纹主要是由铸棒质量和化学成分引起的;变形条纹也就是工作带条纹,主要由模具设计和加工缺陷引起的;加工条纹为挤压过程中产生的,与铸棒的加热温度、挤压速度等工艺密切相关。 2.产生的原因及解决措施 2.1 铸棒质量铸棒质量是产生组织条纹的主要原因,我们可以从铸锭的化学成分和铸锭质量两个方面来分析和探讨。 2.1.1 化学成分的合理控制 6063合金是Al-Mg-Si系合金的典型代表,具有良好的可挤压性能。其化学成分范围见表一: 表表一为GB/T3190-1996的化学成分,从表中我们可以看出,6063化学元素的含量范 围比较大。但在实际生产中,需要根据不同的 用途来合理配置各种元素的范围。6063合金 中Si、Mg、Fe的合理配置对型材表面质量和 力学性能有很大的关系。Mg、Si的总量和比 例至关重要,根据多年的现场经验,要得到理 想的力学性能和表面质量,按不同的用途, Mg、Si元素的总量可控制在0.85~1.0%比较 合适。确定Mg、Si的总量后,我们需从Mg/Si 的比值和过剩硅及Fe元素含量来分析确定 Mg、Si、Fe的合理分配。我们知道Mg、Si 在6063成分中主要形成Mg2Si强化相,其比 例A=Mg的原子×2/Si的原子量=24.81× 2/28.09=1.73,当A>1.73时,即Mg元素过

阳极氧化不良原因分析

作者创智涂装来源本站浏览1110 发布时间2011/10/10本表示出了在阳极氧化和封孔中容易出现的缺陷的特征、成因和防治措施

铝材阳极氧化封孔,不挂灰时间短. ? 信息名称:铝材阳极氧化封孔,不挂灰时间短. 所在地:山东省威海市 发布时间:2011-07-08 加入收藏夹 联系人:郭小姐 威海云清化工开发院 联系人:郭小姐女士 电话:86-

手机: 传真:86- 邮件: 地址:山东省威海市文化中路89-2号 查看全部产品进入展厅 一、产品用途: 本品为浅绿色粉末,适用于建筑铝型材和其他铝制品的封孔处理,本品封孔温度范围宽,它能够改善表面装饰的无色金属络合物, 在其它物质的支持下,依靠镍和氟化物离子的协同效应,发挥作用。 二、性能特点: 1、同热水封孔的工艺相比, 冷封孔能缩短处理时间和节约加热所需的能源, 从能源成本和阳极氧化物生产线能力的角度来考虑这种优点就相当重要。 2、这种产品的结合能防止干净阳极氧化铝部件发绿的退色现象。不产生白霜,其耐蚀性和耐磨性及硬度均高于沸水封孔处理. 三、槽液组成及工艺条件: 本品浓度 3.5-5.0克/升 去离子水余量 PH值5-5.6 温度25-35℃ 时间8-15分钟(一分钟能封一个微米厚的氧化膜) Ni+ 0.9-1.2克/升 F- 0.3-0.85克/升 消耗量:0.8-1.5千克/吨材(约400m2) * 封孔后第一道用冷水洗,然后在进行温水洗.温水槽温度:60℃;时间:5分钟 四、注意事项 1、槽材料: 衬有塑料的钢或不锈钢。特别须知要点:建议对溶液作过滤处理, (不可用筒式过滤器)。为了保证溶液能长期使用, 避免溶液被全部排放, 每立方米中物料通过量达到1000m2,就应排放50 L/m3的槽液.

铝材型号及特性

铝合金典型用途1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具1145 包装及绝热铝箔,热交换器1199 电解电容器箔,光学反光沉积膜1350 电线、导电绞线、汇流排、变压器带材2011 螺钉及要求有良好切削性能的机械加工产品2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件2017 是第一个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件2036 汽车车身钣金件2048 航空航天器结构件与兵器结构零件2124 航空航天器结构件2218 飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300℃。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力2319 焊拉2219合金的焊条和填充焊料2618 模锻件与自由锻件。活塞和航空发动机零件2A01 工作温度小于等于100℃的结构铆钉2A02 工作温度200~300℃的涡轮喷气发动机的轴向压气机叶片2A06 工作温度150~250℃的飞机结构及工作温度125~250℃的航空器结构铆钉2A10 强度比2A01合金的高,用于制造工作温度小于等于100℃的航空器结构铆钉2A11 飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。航空器的中等强度的螺栓与铆钉2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件2A14 形状复杂的自由锻件与模锻件2A16 工作温度250~300℃的航天航空器零件,在室温及高温下工作的焊接容器与气密座舱2A17 工作温度225~250℃的航空器零件2A50 形状复杂的中等强度零件2A60 航空器发动机压气机轮、导风轮、风扇、叶轮等2A70 飞机蒙皮,航空器发动机活塞、导风轮、轮盘等2A80 航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件2A90 航空发动机活塞3003 用于加工需要有良好的成形性能、高的抗蚀性可焊性好的零件部件,或既要求有这些性能又需要有比1XXX系合金强度高的工作,如厨具、食物和化工产品处理与贮存装置,运输液体产品的槽、罐,以薄板加工的各种压力容器与管道3004 全铝易拉罐罐身,要求有比3003合金更高强度的零部件,化工产品生产与贮存装置,薄板加工件,建筑加工件,建筑工具,各种灯具零部件3105 房间隔断、档板、活动房板、檐槽和落水管,薄板成形加工件,瓶盖、瓶塞等3A21 飞机油箱、油路导管、铆钉线材等;建筑材料与食品等工业装备等5005 与3003合金相似,具有中等强度与良好的抗蚀性。用作导体、炊具、仪表板、壳与建筑装饰件。阳极氧化膜比3003合金上的氧化膜更加明亮,并与6063合金的色调协调一致5050 薄板可作为致冷机与冰箱的内衬板,汽车气管、油管与农业灌溉管;也可加工厚板、管材、棒材、异形材和线材等5052 此合金有良好的成形加工性能、抗蚀性、可烛性、疲劳强度与中等的静态强度,用于制造飞机油箱、油管,以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品等5056 镁合金与电缆护套铆钉、拉链、钉子等;包铝的线材广泛用于加工农业捕虫器罩,以及需要有高抗蚀性的其他场合5083 用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,诸如舰艇、汽车和飞机板焊接件;需严格防火的压力容器、致冷装置、电视塔、钻探设备、交通运输设备、导弹元件、装甲等5086 用

6063铝合金型材氧化缺陷原因分析及解决

6063铝合金型材氧化缺陷原因分析及解决 1问题的提出 在实际生产中,加工率大(ε>95%),壁厚较薄(δ≤1.5mm)的T5状态的6063铝合金挤压型材在经硫酸阳极氧化处理后,其表面会呈现有规律(而有时无规律)分布的白色斑点(或无光斑痕);严重时呈现深色斑痕——“白斑”。“白斑”的分布规律及特征是:它是在平行于挤压方向的平面上大致等间距的、呈线状或扁四边形状或不规则星点(片)状的、相对于基体表面有微小深度而呈凹槽形的一种表面缺陷。白斑通常分布于型材的一个或几个表面,有时会分布在型材的所有表面(对薄壁空心型材,则是分布于某一平面或曲面的内外两侧)。 2原因分析 在现场见到,“白斑”形成于“碱蚀”工序,在经随后的稀硝酸(或硫酸)“中和”之后,并未消失;经硫酸阳极氧化处理后,又更加清晰地呈现出来。 笔者专门截取了两段“白斑”点面积较大(F=30~40mm2)的碱蚀洗(槽液中,ω(Zn2+)≥5×106)型材试样。然后,采用DV-5型原子发射火花直读光谱仪分别对上述两段试样的“白斑”区的成分做了定量分析,其结果如下(表中数据均为质量分数): 由表1的分析结果可见:“白斑”处Si、Mg、Zn元素的含量明显增加:而表2的结果表明:“白斑”处Si、Zn元素的含量明显增加,而Mg元素的含量却有所下降。从金属材料腐蚀的观点看来,Mg2Si这种表面缺陷实质上是6063铝合金材料发生“剥落腐蚀”的结果。剥落腐蚀是一种浅表面的选择腐蚀,腐蚀是沿着金属表面发展的,其产物的体积往往比发生腐蚀的金属大得多,因而膨胀。一般而言,当铝与呈阴极性的异种金属相邻接时,“剥落腐蚀”程度上升。在电子显微镜下观察发现:“剥落腐蚀”通常沿不溶组成物(如Si,Mg2Si等),或沿晶界进行。 2.1铸锭质量的影响 6063铝合金的主要相组成是:α(Al)固溶体、游离Si(阳极相)和F eAl3(阳极相);当铁含量大于时,有β(F e Si Al)(阳极相);而当铁含量小于时,有α(F e Si Al)(阴极相);其他可能的杂质相是:MgZn2、CuAl2等。 生产中,由于非平衡结晶过程而获得的6063铝合金铸锭往往存在宏观偏析或晶内偏析现象。因此,铸锭中的Si、Mg、Zn、Cu等元素分布不均匀。而一些铝型材加工企业缘于经济方面的因素,一般很少对小规格(如φ100mm以下)的铸锭进行均匀化退火处理,以消除偏析现象[2],从而为“白斑”的产生创造了条件。 2.2挤压—热处理工艺的影响 为提高生产效率,在生产操作中,常采用低温高速挤压,由于挤压速度引起的“热效应”使制品在模具出口处的淬火温度大大提高,而在固定出料台上与表面温度为80~110℃(或略低)的石墨板(或轮)接触时,型材表面就会因受到“急冷换热”作用而使该部分的合金元素Mg、Si的浓度比正常部位的偏高一些。在随后的人工时效过程中,该部位就会析出粗大的β′(Mg2Si)相;未经均匀化退火处理且加热温度偏低的6063铝合金铸锭由于挤压时所引起

铝合金阳极氧化缺陷明细表

目录 1.铝及铝合金氧化表面处理制品的表面缺陷 (4) Q001手印腐蚀 (5) Q002擦划伤 (6) Q003 粘连 (7) Q004砂粗 (8) Q005砂轻 (9) Q006脱脂不良 (10) Q007氧化气泡 (11) Q008脱膜不净 (12) Q009雪花状腐蚀 (13) Q010氧化白点 (14) Q011电伤 (15) Q012夹渣 (16) Q013氧化膜剥落 (17) Q014黑点 (18) Q015爆膜 (19) Q016封孔起彩 (20) Q017针孔腐蚀 (21) Q018色差 (22) Q019酸碱水腐蚀 (23) Q020封孔起灰 (24) Q021无漆膜 (25) Q022麻点 (26) Q023电泳气泡 (27) Q024氧化膜粉化 (28) Q025 复合膜发黄 (29) Q026凝胶粘附 (30) Q027漆留痕 (31)

Q028水斑 (32) Q029着色气泡 (33) 2.氧化表面处理制品的外观性能缺陷 (35) Q029封孔不合格 (36) Q030氧化膜厚度不达标 (37) Q031漆膜铅笔硬度不达标 (38) Q032漆膜耐腐蚀性不合格 (39) 3.氧化表面处理制品的尺寸精度 (40) Q033扎线痕超标 (41) Q034返工壁厚薄 (42)

前言 1.在铝及铝合金的氧化生产过程中,产生的各种缺陷,主要可分为三类,即氧 化表面处理制品的表面缺陷、氧化表面处理制品的形位尺寸缺陷、氧化表面处理制品的外观性能缺陷。 2.氧化表面处理制品的表面缺陷,在生产现场产生最多,废品率也最高。最主 要的有手印腐蚀、擦划伤、粘连、砂粗、砂轻、脱脂不良、氧化气泡、脱膜不净、雪花状腐蚀、氧化白点、电伤、夹渣、氧化膜剥落、麻点、爆膜、封孔起彩、针孔腐蚀、色差、酸碱水腐蚀、封孔起灰、无漆膜、麻点、电泳气泡、氧化膜粉化等。 3.氧化表面处理制品的尺寸缺陷,在生产中所占废品率不多,主要有返工壁厚 薄、扎线痕超标等。 4.氧化表面处理制品的外观性能缺陷主要有封孔不合格、氧化膜厚度不达标、 漆膜铅笔硬度不达标、漆膜耐腐蚀性不达标等 5.下面以列表的方式对各种缺陷的名称(英文对照按美国AA标准和数据技术 语篇)、起因、定义、特征及对策进行较为全面的说明,供广大技术人员、生产人员、质检人员作为工作和学习参考。

6063铝材常见缺陷

6063 铝合金常见缺陷 6063 铝合金型材以其良好的塑性、适中的热处理强度、良好的焊接性能以及阳极氧化处理后表面华丽的色泽等诸多优点而被广泛应用。但在生产过程中经常会出现一些缺陷而致使产品质量低下,成品率降低,生产成本增加,效益下降,最终导致企业的市场竞争能力下降。因此,从根源上着手解决6063 铝合金挤压型材的缺陷问题是企业提高自身竞争力的一个重要方面。笔者根据多年的铝型材生产实践,在此对6063 铝合金挤压型材常见缺陷及其解决办法作一总结,和众多同行交流,以期相互促进。1 划、擦、碰伤划伤、擦伤、碰伤是当型材从模孔流出以及在随后工序中与工具、设备等相接触时导致的表面损伤。1.1 主要原因① 铸锭表面附着有杂物或铸锭成分偏析。铸锭表面存在大量偏析浮出物而铸锭又未进行均匀化处理或均匀化处理效果不好时,铸锭内存在一定数量的坚硬的金属颗粒,在挤压过程中金属流经工作带时,这些偏析浮出物或坚硬的金属颗粒附着在工作带表面或对工作带造成损伤,最终对型材表面造成划伤;②模具型腔或工作带上有杂物,模具工作带硬度较低,使工 作带表面在挤压时受伤而划伤型材;③出料轨道或摆床上有裸露的金属或石墨条内有较硬的夹杂物,当其与型材接触时对型材表面造成划伤;④在叉料杆将型材从出料轨道上送到摆床上时,由于速度过快造成型材碰伤;⑤在摆床上人为拖动型材造成擦伤;⑥在运输过程中型材之 间相互摩擦或挤压造成损伤。1.2 解决办法①加强对铸锭质量 的控制;②提高修模质量,模具定期氮化并严格执行氮化工艺;③

用软质毛毡将型材与辅具隔离,尽量减少型材与辅具的接触损伤; 生产中要轻拿轻放,尽量避免随意拖动或翻动型材;⑤在料框中合理摆放型材,尽量避免相互摩擦。2 机械性能不合格2.1 主要原 因①挤压时温度过低,挤压速度太慢,型材在挤压机的出口温度达不到固溶温度,起不到固溶强化作用;②型材出口处风机少,风量不够,导致冷却速度慢,不能使型材在最短的时间内降到200 C以下,使粗大的Mg2Si 过早析出,从而使固溶相减少,影响了型材热处理后的机械性能;③铸锭成分不合格,铸锭中的Mg、Si含量达不到标准要求;④铸锭未均匀化处理,使铸锭组织中析出的Mg2Si 相无法在挤压的较短时间内重新固溶,造成固溶不充分而影响了产品性能;⑤时效工艺不当、热风 循环不畅或热电偶安装位置不正确,导致时效不充分或过时效。2.2解决办法①合理控制挤压温度和挤压速度,使型材在挤压机的出口温度保持在最低固溶温度以上;②强化风冷条件,有条件的工厂可安装 雾化冷却装置,以期达到6063 合金冷却梯度的最低要求;③加强铸锭的质量管理;④对铸锭进行均匀化处理;⑤合理确定时效工艺,正确安装热电偶,正确摆放型材以保证热风循环通畅。 3 几何尺寸超差3. 1主要原因①由于模具设计不合理或制造有误、挤压工艺 不当、模具与挤压筒不对中、不合理润滑等,导致金属流动中各点流速相差过大,从而产生内应力致使型材变形;②由于牵引力过大或拉伸矫 直量过大导致型材尺寸超差。3. 2 解决办法①合理设计模具, 保证模具精度;②正确执行挤压工艺,合理设定挤压温度和挤压速度;③保证设备的对中性;④采用适中的牵引力,严格控制型材的拉伸矫

铝型材表面处理工艺类别

铝型材表面处理工艺类别、解析 铝型材表面处理主要分为:氟碳喷涂、粉沫喷涂、阳极氧化(阴极氧化)、电泳、电镀等。这些表面处理方法间有相同也有不同,相同点就是都是在型材表面增加了保护膜;不同在于氟碳喷涂、粉沫喷涂是靠静电加膜于型材表面,所以也称静电喷涂;阳极氧化、电泳是通过直流电的正负极以及形成膜的分子、原子以及离子的正负相吸移动附着于金属表面而形成的保护膜;电镀和阳极氧化、电泳工艺术有雷同处,所不同的是:被电镀的可以不是金属,电镀液由含有镀覆金属(锌、铬、镍等)的化合物、导电的盐类、缓冲剂、pH调节剂和添加剂等的水溶液组成。1,电镀可以对五金和塑胶进行处理,。2,电泳和阳极只能对导电物体进行处理。3,电镀和电泳均为对被处理物体表面增材料,换句话说,就是厚度增加,4,而阳极则为对物体进行去材料处理,也就是阳极后厚度会减小。 下面就型材表面处理做具体分析 一、氟碳喷涂和粉末喷涂(静电喷涂) (一)粉沫喷涂:粉沫喷涂的原料为:聚氨脂、聚氨树脂、环氧树脂、羟基聚脂树脂以及环氧/聚酯树脂,可配制多种颜色。粉沫喷涂的特点:喷涂设备有手工的,有自动吊挂式、施工简单、涂层厚度为30微米以上,抗冲击,耐磨擦,防腐蚀,耐候性等均好,涂料价格

比氟碳便宜。粉沫喷涂最大弱点是怕太阳紫外线照射,长期照射会造成自然退色,铝板向阳面和非向阳面几年后色差明显,一般为2-5年就产生明显色差。现在市场上出现名子叫彩色铝型材,用于铝门窗,就是用普通铝型材粉沫喷涂而成。使铝门窗颜色品种增加,同时也增强抗腐蚀能力。 粉沫喷涂的原料为:聚氨脂、聚氨树脂、环氧树脂、羟基聚脂树脂以及环氧/聚酯树脂,可配制多种颜色。粉沫喷涂的特点:喷涂设备有手工的,有自动吊挂式、施工简单、涂层厚度为30微米以上,抗冲击,耐磨擦,防腐蚀,耐候性等均好,涂料价格比氟碳便宜。粉沫喷涂最大弱点是怕太阳紫外线照射,长期照射会造成自然退色,铝板向阳面和非向阳面几年后色差明显,一般为2-5年就产生明显色差。现在市场上出现名子叫彩色铝型材,用于铝门窗,就是用普通铝型材粉沫喷涂而成。使铝门窗颜色品种增加,同时也增强抗腐蚀能力。 (二)另一种静电喷涂为液态喷涂,又称氟碳喷涂,属于高档次喷涂价格较高,在国外早已应用。在国内近二年来才大面积用于铝板幕墙,由于其优异的特点,越来越受到建筑业及用户的重视和青睐。氟碳喷涂具有优异的抗退色性、抗起霜性、抗大气污染(酸雨等)的腐蚀性,抗紫外线能力强,抗裂性强以及能够承受恶劣天气环境。是一般涂料所不及的。 1,氟碳喷涂的设备及工艺 氟碳涂料本身性能决定,喷涂设备必须保证有出色的雾化效果,

6063铝合金型材“闪烁花纹”的成因及对策

6063铝合金型材“闪烁花纹”的成因及对策在6063 铝合金建筑装饰型材的生产中,常会见到一些空心、半空心的,甚至是一些断面曲率较大的实心的挤压材,经过硫酸阳极氧化生产工艺处理后,其表面局部会出现一种沿纵向连续分布的,具有一定宽度的显示为粗糙不平(似梨皮状)的,清晰可见的闪烁晶粒状的表面缺陷—“闪烁花纹”或(称“光亮花样”。)其分布规律是:① 沿挤压方向,尾部比头部更明显可见,严重时,首尾都很明显;② 沿垂直于挤压轴线的方向,“花纹”一般只出现在局部,尤其出现在型材曲率较大的部位,或是空心、半空心型材的焊缝区域,或是在型材的形成过程中6063 铝合金承受摩擦阻力最大的部位。 2 成因分析 2.1 氧化前处理工艺的影响 某些挤压材经硫酸脱脂并水洗后,表面无异常变化,而当其在wZn2+ >4X406的碱蚀液中经正常的浸蚀并随后立即有效水洗后,就会看到闪烁花 纹”的存在。笔者对挤压材的挤压组织进行分析,结果表明:“闪烁花纹”对应的组织是晶粒度比正常部位的大得多的粗大等轴晶的再结晶组织——粗晶环,且晶粒越粗大,“闪烁花纹”越明显;这种现象也随着浸蚀的进行而越来越明显。 文献[1]指出:闪烁花纹”的形成除了与合金成分(尤其是Zn)、挤压材(RCS 状态)的组织状态有关外,还与碱蚀液中[Zn2+ ]有关。实验证明:在合金中,当wZn》0.033%且型材表面存在粗晶环的前提下,只要碱蚀液中wZn2+》4X40 6,就会产生闪烁花纹”产生闪烁花纹”的根本原因是碱蚀液中Zn污染引起的选择性晶间腐蚀[2]。晶间腐蚀的机理是电化学的,是晶界内的局部原电池作用的结果。沿晶粒边缘沉淀析出的第二相Mg2Si与贫乏的固溶体之间由于腐蚀电位的不同,在碱蚀电解质溶液中,形成了原电池a—Al —Mg2Si。 在实际生产中,一般都要求Si的含量过剩,则其晶间腐蚀敏感性增大,因为位于晶界及其附近区域的游离硅具有很强的阳极性[3]。研究结果表明:“闪烁晶粒”的晶界及其附近区域中的含Zn量相对偏高,即Zn参与了腐蚀过程。文献[4]推测:Zn是以溶解—再沉积”的方式促进晶界腐蚀的。碱洗时,固熔于a—Al中的Zn随a—Al的溶解而溶解;当槽液中wZn2+》4X406时,发生反应:

6063铝合金挤压型材常见缺陷及其解决办法

6063铝合金挤压型材常见缺陷及其解决办法 6063铝合金型材以其良好的塑性、适中的热处理强度、良好的焊接性能以及阳极氧化处理后表面华丽的色泽等诸多优点而被广泛应用。但在生产过程中经常会出现一些缺陷而致使产品质量低下,成品率降低,生产成本增加,效益下降,最终导致企业的市场竞争能力下降。因此,从根源上着手解决6063铝合金挤压型材的缺陷问题是企业提高自身竞争力的一个重要方面。 1 划、擦、碰伤 划伤、擦伤、碰伤是当型材从模孔流出以及在随后工序中与工具、设备等相接触时导致的表面损伤。 1.1 主要原因 ①铸锭表面附着有杂物或铸锭成分偏析。铸锭表面存在大量偏析浮出物而铸锭又未进行均匀化处理或均匀化处理效果不好时,铸锭内存在一定数量的坚硬的金属颗粒,在挤压过程中金属流经工作带时,这些偏析浮出物或坚硬的金属颗粒附着在工作带表面或对工作带造成损伤,最终对型材表面造成划伤; ②模具型腔或工作带上有杂物,模具工作带硬度较低,使工作带表面在挤压时受伤而划伤型材; ③出料轨道或摆床上有裸露的金属或石墨条内有较硬的夹杂物,当其与型材接触时对型材表面造成划伤; ④在叉料杆将型材从出料轨道上送到摆床上时,由于速度过快造成型材碰伤; ⑤在摆床上人为拖动型材造成擦伤; ⑥在运输过程中型材之间相互摩擦或挤压造成损伤。 1.2 解决办法 ①加强对铸锭质量的控制; ②提高修模质量,模具定期氮化并严格执行氮化工艺; ③用软质毛毡将型材与辅具隔离,尽量减少型材与辅具的接触损伤; ④生产中要轻拿轻放,尽量避免随意拖动或翻动型材; ⑤在料框中合理摆放型材,尽量避免相互摩擦。 2机械性能不合格 2.1 主要原因 ①挤压时温度过低,挤压速度太慢,型材在挤压机的出口温度达不到固溶温度,起不到固溶强化作用; ②型材出口处风机少,风量不够,导致冷却速度慢,不能使型材在最短的时间内降到200℃以下,使粗大的Mg2Si过早析出,从而使固溶相减少,影响了型材热处理后的机械性能; ③铸锭成分不合格,铸锭中的Mg、Si含量达不到标准要求; ④铸锭未均匀化处理,使铸锭组织中析出的Mg2Si相无法在挤压的较短时间内重新固溶,造成固溶不充分而影响了产品性能; ⑤时效工艺不当、热风循环不畅或热电偶安装位置不正确,导致时效不充分或过时效。 2.2 解决办法 ①合理控制挤压温度和挤压速度,使型材在挤压机的出口温度保持在最低固溶温度以上; ②强化风冷条件,有条件的工厂可安装雾化冷却装置,以期达到6063合金冷却梯度的最低要求; ③加强铸锭的质量管理; ④对铸锭进行均匀化处理; ⑤合理确定时效工艺,正确安装热电偶,正确摆放型材以保证热风循环通畅。 3几何尺寸超差 3.1 主要原因 ①由于模具设计不合理或制造有误、挤压工艺不当、模具与挤压筒不对中、不合理润滑等,导致金属流动中各点流速相差过大,从而产生内应力致使型材变形;

阳极氧化不良原因分析

阳极氧化和封孔发现的缺陷及其特征、成因及对策 作者创智涂装来源本站浏览1110 发布时间2011/10/10本表示出了在阳极氧化和封孔中容易出现的缺陷的特征、成因和防治措施 缺陷特征产生原因对策 白斑(白点)表面有点状或水星状的白色花 样,而氧化膜并未剥落 合金中夹杂金属间化合物或其他异 物,使氧化膜产生不连续处 改善铸造和挤压,防止卷入异物; 铝棒进行均匀化处理等 表面有点状未着色部分,而氧化 膜未剥落 阳极氧化膜上附着碱雾末 加大碱洗槽的排气能力,改变车间 的气流方向等 白灰 阳极氧化发生的白灰见粉化(氧化灰)见粉化(氧化灰) 封孔发生的白灰见粉化(封孔灰)见粉化(封孔灰) 彩虹色(干涉色)阳极氧化膜出现彩虹色 阳极氧化失败;如大气曝露后出现 则表面有封孔灰 全面检查工艺和设备 粗晶表面(粗晶带)在挤压方向上呈粗晶条带或条 纹,碱洗和阳极氧化使该缺陷显 露 挤压时,铝不能以均匀的速度流经 模具;挤压比不够 改进模具设计;加大挤压比 点腐蚀阳极氧化膜上细微麻点,边缘处 更为明显 阳极氧化槽液氯化物含量高 检查水质(槽液中去除氯离子非常 困难) 粉化(封孔灰)沸水封孔后发生的白灰,用湿布 可以抹去;封孔灰不与染料作 用,可与氧化灰相鉴别 沸水封孔所用水的硬度高,如溶解 了较多盐类的自来水 更换封孔水;添加除灰剂;用20% (体积分数)的硝酸溶液洗灰,再 用水清洗 粉化(氧化灰)阳极氧化膜局部发生的白灰;湿 布可以擦去,干燥后又再次出现 阳极氧化局部过热 槽液温度高;空气搅拌不充分;局 部挂料太密 黑斑阳极氧化后在挤压方向上大致 等距离出现的黑、白或灰色斑 挤压冷却时析出的Mg2Si中间相, 使阳极氧化膜的结构紊乱 加大加压的冷却风量;减小挤压件 接触物的热导率 焊合线明显中空型材在碱洗和氧化后出现 发暗的线或带,偶尔在半中空挤 压型材上发生 挤压时,模具进口处金属的压力不 够 改进模具设计;加大挤压比 碱洗流痕碱液在铝表面流动发生的碱蚀 痕迹 碱液局部腐蚀铝工件 缩短碱洗槽转移到水洗的时间;降 低碱洗液的温度;降低碱洗槽液的 腐蚀性 亮度下降阳极氧化膜的亮度明显下降并 且感觉失光发暗 挤压出口温度过高或冷却太慢;氧 化温度低或电流密度大;碱洗不良 或除灰不够;氧化槽液重金属离子 高;封孔工艺不当;厚氧化膜引起 发光 针对各种可能的原因,对症采取措 施;硫酸质量须严格把关,如铁含 量不宜过高;核对氧化膜的厚度

铝合金挤压型材常见缺陷及其解决办法

建筑高强度6063铝合金型材以其良好的塑性和热处理后获得高强度、低重量建筑型材、良好的防锈蚀自防能力以及阳极氧化处理后可获得表面华丽多色泽等诸多优点而被广泛应用于建筑外装饰面材和结构承力构件。但在生产过程中经常会出现一些缺陷而导致使产品质量低下,成品率降低.生产成本增加,效益下降,最终导致企业的市场竞争能力下降, 造成工程不安全不可靠、社会不安全、不合谐的严重后果。 因此,从根源上着手解决6063(LD31)铝合金挤压型材质量的缺陷问题是企业提高自身竞争力的一个极其重要环节。作者根据多年耒在铝型材生产实践中对此6063(LD31)铝合金挤压型材生产过程中常见缺陷及其解决方法作一下小结和众多同行者交流,以期相互促进共同提高,确保产品质量以增强企业竞争力获得更大经济效益。 1、型材表面:划伤、擦伤、碰划 原因:1、铸锭表面附着杂物 2、铸锭成分偏析,表面存在大量偏析浮出物 3、一而铸锭又未进行均匀化处理或均匀化处理效果不好时铸锭内存在一定数量的坚硬的金属颗粒.在挤压过程中金属流经工作带时这些偏析浮出物或坚硬的金属颗粒附着在工作带表面或对工作带造成损伤,最终对型材表面造成划伤。 4、模具型腔或工作带上有杂物,模具工作带硬度较低,使工作带表面在挤压时受伤而划伤型材。 5、出料轨道或摆床上有裸露的金属或石墨条内有较硬的夹杂物.当其与型材接触时对型材表面造成划伤; 6、在叉料杆将型材从出料轨道上送到摆床上时,由于速度过快造成型材碰伤; 7、在摆床上人为拖动型材造成擦伤; 8、在运输过程中型材之间相互摩擦或挤压造成损伤。 解决方法:1、严格对铸锭化学成分质量的控制; 2、提高模具修理质量, 3、提高模具制造精度及模具定期氮化并严格执行氮化工艺参数; 4、用软质毛毡、塑胶条将型材与辅具隔离.尽量减少型材与辅具的接触损伤; 5、生产中要轻拿轻放,尽量避免随意拖动或翻动型材; 6、在料框中合理摆放型材,尽量避免相互摩擦。 2、力学性能不合格 原因:1、挤压时温度过低,挤压速度太慢,型材在挤压机的出口温度达不到固溶温度,起不到固溶强化作用; 2、型材出口处风机少.风量不够.导致冷却速度慢.不能使型材在最短的时间内降到200C°以下.使粗大的Mg2Si过早析出.从而使固溶相减少.影响了型材热处理后的机械性能; 3、铸锭成分不合格,铸锭中的Mg、si含量达不到标准要求; 4、铸锭未均匀化处理,使铸锭组织中析出的Mg2sj相无法在挤压的较短时间内重新固溶,造成固溶不充分而影响了产品性能; 5、时效工艺不当、热风循环不畅或热电偶安装位置不正确,导致时效不充分或过时效。 解决办法: 1、合理控制挤压温度和挤压速度,使型材在挤压机的出口温度保持在最低固溶温度以上; 2、强化风冷条件,有条件的工厂可安装雾化冷却装置,以期达到6063合金冷却梯度的最低要求: 3、加强铸锭的质量管理; 4、对铸锭进行均匀化处理; 5、合理确定时效工艺,正确安装热电偶。正确摆放型材以保证热风循环通畅。 3、形位及尺寸超差 原因:

相关主题
文本预览
相关文档 最新文档