当前位置:文档之家› 《步步高》2014高考物理一轮复习讲义第十二章_第1课时_机械振动

《步步高》2014高考物理一轮复习讲义第十二章_第1课时_机械振动

《步步高》2014高考物理一轮复习讲义第十二章_第1课时_机械振动
《步步高》2014高考物理一轮复习讲义第十二章_第1课时_机械振动

第1课时 机械振动

考纲解读 1.知道简谐运动的概念,理解简谐运动的表达式和图象.2.知道什么是单摆,知道在摆角较小的情况下单摆的运动是简谐运动,熟记单摆的周期公式.3.理解受迫振动和共振的概念,掌握产生共振的条件.

2. [对单摆特点的理解]做简谐运动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球

经过平衡位置时速度减小为原来的1/2,则单摆振动的

( )

A .频率、振幅都不变

B .频率、振幅都改变

C .频率不变、振幅改变

D .频率改变、振幅不变

答案 C

解析 由单摆周期公式T =2π

l

g

知周期只与l 、g 有关,与m 和v 无关,周期不变,其频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=1

2×4m ·(v 2)2,可知h ′≠h ,振幅改变.

3. [对受迫振动与共振的理解]如图1所示,A 球振动后,通过水平

细绳迫使B 、C 振动,振动达到稳定时,下列说法中正确的是( ) A .只有A 、C 振动周期相等 B .C 的振幅比B 的振幅小 C .C 的振幅比B 的振幅大

图1

D .A 、B 、C 的振动周期相等 答案 CD

解析 A 振动后,水平细绳上驱动力的周期T A =2π

l A

g

,迫使B 、C 做受迫振动,受迫振动的频率等于施加的驱动力的频率,所以T A =T B =T C ,而T C 固=2π l C

g

=T A ,T B 固=2π

l B

g >T A

,故C 共振,B 不共振,C 的振幅比B 的振幅大,所以C 、D 正确.

4. [用图象法描述简谐运动]如图4所示为弹簧振子P 在0~4 s 内的振

动图象,从t =0开始

( )

A.再过1 s,该振子的位移是正的最大

B.再过1 s,该振子的速度方向沿正方向

C.再过1 s,该振子的加速度方向沿正方向

D.再过1 s,该振子的加速度最大

答案AD

解析振动图象描述质点在各个时刻偏离平衡位置的位移的情况.依题意,从t=0开始,再经过1 s,振动图象将延伸到正x最大处.这时振子的位移为正的最大,因为回复力与位移成正比且方向与位移方向相反,所以此时回复力最大且方向为负方向,故振动物体的加速度最大且方向为负方向.此时振动物体的速度为零,无方向可谈.所以正确的选项为A、D.

5.[用图象法描述简谐运动]图5是某质点做简谐运动的振动图

象.根据图象中的信息,回答下列问题.

(1)质点离开平衡位置的最大距离是多少?

(2)在1.5 s和2.5 s这两个时刻,质点的位置各在哪里?

(3)在1.5 s和2.5 s这两个时刻,质点向哪个方向运动?图5

答案(1)10 cm

(2)在1.5 s时,质点的位置在7 cm处.在2.5 s时,质点的位置在x=-7 cm处.

(3)这两个时刻,质点都向位移负方向运动.

方法提炼

1.简谐运动的图象表示物体的位移随时间变化的规律.

2.图景结合:解决此类问题时,应把图象信息与质点的实际运动情景结合起来.

考点一简谐运动的图象及运动规律

振动图象的信息:

(1)由图象可以看出振幅、周期.

(2)可以确定某时刻质点离开平衡位置的位移.

(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向.

①回复力和加速度的方向:因回复力总是指向平衡位置,故回复力和加速度在图象上总

是指向t轴.

②速度的方向:速度的方向可以通过下一时刻位移的变化来判定,下一时刻位移如增加,

振动质点的速度方向就是远离t 轴,下一时刻位移如减小,振动质点的速度方向就是指向t 轴.

例1 如图6所示为一弹簧振子的振动图象,试完成以下问题:

(1)写出该振子简谐运动的表达式.

(2)在第2 s 末到第3 s 末这段时间内,弹簧振子的加速度、速度、 动能和弹性势能各是怎样变化的?

(3)该振子在前100 s 的总位移是多少?路程是多少?

图6

解析 (1)由振动图象可得: A =5 cm ,T =4 s ,φ=0 则ω=2πT =π

2

rad/s

故该振子简谐运动的表达式为x =5sin π

2

t (cm)

(2)由图可知,在t =2 s 时,振子恰好通过平衡位置,此时加速度为零,随着时间的延续,位移值不断增大,加速度的值也变大,速度值不断变小,动能不断减小,弹性势能逐渐增大.当t =3 s 时,加速度的值达到最大,速度等于零,动能等于零,弹性势能达到最大值.

(3)振子经过一个周期位移为零,路程为5×4 cm =20 cm ,前100 s 刚好经过了25个周期,所以前100 s 振子位移x =0,振子路程s =20×25 cm =500 cm =5 m. 答案 (1)x =5sin π

2

t (cm) (2)见解析 (3)0 5 m

突破训练1 弹簧振子做简谐运动的图象如图7所示,下列说法不正

确的是

( )

A .在第5秒末,振子的速度最大且沿+x 方向

B .在第5秒末,振子的位移最大且沿+x 方向

图7

C .在第5秒末,振子的加速度最大且沿-x 方向

D .在0到5秒内,振子通过的路程为10 cm 答案 A

考点二 单摆的回复力与周期 1. 受力特征:重力和细线的拉力

(1)回复力:摆球重力沿切线方向上的分力,F =-mg sin θ=-mg

l x =-kx ,负号表示回复

力F 与位移x 的方向相反.

(2)向心力:细线的拉力和重力沿细线方向的分力的合力充当向心力,F 向=F T -mg cos θ. 特别提醒 1.当摆球在最高点时,F 向=m v 2

R

=0,F T =mg cos θ.

2. 当摆球在最低点时,F 向=m v 2max R ,F 向最大,F T =mg +m v 2max

R

.

2.周期公式:T =2π

l g ,f =1

2π g

l

(1)只要测出单摆的摆长l 和周期T ,就可以根据g =4π2l

T 2,求出当地的重力加速度g .

(2)l 为等效摆长,表示从悬点到摆球重心的距离,要区分摆长和摆线长,悬点实质为摆球摆动所在圆弧的圆心. (3)g 为当地的重力加速度.

例2 如图8所示为一单摆及其振动图象,由图回答:

图8

(1)若摆球从E 指向G 为正方向,α为最大摆角,则图象中O 、A 、B 、C 点分别对应单摆中的__________点.一周期内加速度为正且减小,并与速度同方向的时间范围是________,势能增加且速度为正的时间范围是__________. (2)单摆摆球多次通过同一位置时,下述物理量变化的是

( )

A .位移

B .速度

C .加速度

D .动能

E .摆线张力

(3)求单摆的摆长(g =10 m/s 2,π2≈10).

解析 (1)振动图象中O 点位移为零,O 到A 的过程位移为正,且增大,A 处最大,历时1

4

周期,显然摆球是从平衡位置E 起振并向G 方向运动的,所以O 对应E ,A 对应G .A 到B 的过程分析方法相同,因而O 、A 、B 、C 对应E 、G 、E 、F 点.摆动中EF 间加速度为正,且靠近平衡位置过程中加速度逐渐减小,即从F 向E 的运动过程,在图象中为C 到D 的过程,时间范围是1.5 s ~2.0 s 间.摆球远离平衡位置势能增加,即从E 向两侧摆动,而速度为正,显然是从E 向G 的运动过程,在图象中为从O 到A ,时间范围是0~0.5 s .

(2)经过同一位置时,位移、回复力和加速度不变;由机械能守恒知,动能不变,速率也不变,摆线张力F T =mg cos α+m v 2

l 也不变;相邻两次过同一点,速度方向改变.

(3)由题图可知:T =2 s ,由T =2π

l g 得l =T 2g

2=1 m.

答案(1)E、G、E、F 1.5 s~2.0 s0~0.5 s(2)B

(3)1 m

突破训练2如图9所示,一单摆悬于O点,摆长为L,若在O点的竖直线上的O′点钉一个钉子,使OO′=L/2,将单摆拉至A处释放,小球将在A、B、C间来回振动,若振动中摆线与竖直方向夹角小于5°,则此摆的周期是()

A.2πL

g

图9

B.2πL 2g

C.2π( L

g+

L

2g)

D.π( L

g+

L

2g)

答案 D

解析根据T=2πL

g,该单摆有

1

2周期摆长为L,

1

2周期摆长为

1

2L,故T=π

L

g+

πL

2g,故D正确.

考点三受迫振动和共振

1.自由振动、受迫振动和共振的关系比较

2.对共振的理解

(1)共振曲线:如图10所示,横坐标为驱动力频率f

,纵坐标为振

幅A.它直观地反映了驱动力频率对某振动系统受迫振动振幅的影

响,由图可知,f与f0越接近,振幅A越大;当f=f0时,振幅A

最大.

(2)受迫振动中系统能量的转化:受迫振动系统机械能不守恒,系图10

统与外界时刻进行能量交换.

例3一砝码和一轻弹簧构成弹簧振子,图11所示的装置可用于研究

该弹簧振子的受迫振动.匀速转动把手时,曲杆给弹簧振子以驱动

力,使振子做受迫振动.把手匀速转动的周期就是驱动力的周期,

改变把手匀速转动的速度就可以改变驱动力的周期.若保持把手不

动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图12

甲所示.当把手以某一速度匀速转动,受迫振动达到稳定时,砝码

的振动图线如图乙所示.图11

若用T0表示弹簧振子的固有周期,T表示驱动力的周期,Y表示受迫振动达到稳定后砝码振动的振幅,则()

图12

A.由图线可知T0=4 s

B.由图线可知T0=8 s

C.当T在4 s附近时,Y显著增大;当T比4 s小得多或大得多时,Y很小

D.当T在8 s附近时,Y显著增大;当T比8 s小得多或大得多时,Y很小

解析由题图可知弹簧振子的固有周期T0=4 s,故A选项正确,B选项错误;根据受迫振动的特点;当驱动力的周期与系统的固有周期相同时发生共振,振幅最大;当驱动力的周期与系统的固有周期相差越多时,受迫振动物体振动稳定后的振幅越小,故C选项正确,D选项错误.

答案AC

突破训练3某振动系统的固有频率为f0,在周期性驱动力的作用下做受迫振动,驱动力的频率为f .若驱动力的振幅保持不变,下列说法正确的是() A.当f

B.当f>f0时,该振动系统的振幅随f减小而增大

C.该振动系统的振动稳定后,振动的频率等于f0

D.该振动系统的振动稳定后,振动的频率等于f

答案BD

解析物体在外界驱动力作用下的振动叫做受迫振动,物体做受迫振动时,振动稳定后的频率等于驱动力的频率,跟物体的固有频率没有关系,驱动力的频率接近物体的固有频率时,受迫振动的振幅增大,所以B、D正确.

52.单摆模型问题的特点和应用

单摆是一种理想化的物理模型,其周期公式T =2π

l

g

,其中l 为等效摆长:摆动圆弧的圆心到摆球重心的距离.如图13甲所示的双线摆的摆长l =r +L cos α.乙图中小球(可看做质点)在半径为R 的光滑圆槽中靠近A 点振动,其等效摆长为l =R .

图13

例4 如图14所示,ACB 为光滑弧形槽,弧形槽半径为R ,R ?

.甲球

从弧形槽的球心处自由落下,乙球从A 点由静止释放,问: (1)两球第1次到达C 点的时间之比.

(2)若在圆弧的最低点C 的正上方h 处由静止释放小球甲,让其自由下

图14

落,同时乙球从圆弧左侧由静止释放,欲使甲、乙两球在圆弧最低点C 处相遇,则甲球下落的高度h 是多少? 解析 (1)甲球做自由落体运动 R =12gt 21

,所以t 1=

2R g

乙球沿圆弧做简谐运动(由于

?R ,可认为摆角θ<5°).此振动与一个摆长为R 的单摆

振动模型相同,故此等效摆长为R ,因此乙球第1次到达C 处的时间为t 2=14T =1

4×2π

R g =π

2

R g ,所以t 1∶t 2=2 2π

(2)甲球从离弧形槽最低点h 高处开始自由下落,到达C 点的时间为t 甲= 2h

g

由于乙球运动的周期性,所以乙球到达C 点的时间为 t 乙=T 4+n T 2=π2

R

g

(2n +1) n =0,1,2,… 由于甲、乙在C 点相遇,故t 甲=t 乙

解得h =(2n +1)2π2R

8

(n =0,1,2,…)

答案 (1)2 2

π (2)(2n +1)2π2R 8

(n =0,1,2,…)

突破训练4 一个半圆形光滑轨道如图15所示,半径是R ,圆心是O ,

如果拿两个物体分别放在O 点和B 点(B 点离A 点很近),同时从静

止释放,问这两个物体谁先到达A 点?

图15

答案 放在O 点的物体先到达A 点

解析 解决此问题的关键是看这两个物体的运动可以看成什么物理模型.对于放在O 点的物体,可看成是自由落体运动,于是可以求出从O 到A 的时间t 1,由R =1

2gt 21,得

t 1=1.41

R g

对于放在B 点的物体,从受力情况来看,受到了重力与指向圆心O 的轨道面的支持力的作用,这个运动物体与单摆摆球的受力情况相似.又由于B 离A 很近,相当于摆角很小,于是,可以把它的运动看成单摆运动,从B 到A 经历1

4个周期,设为t 2,由T =2π

R g

得t 2=1

4

T =1.57

R

g

,即t 2>t 1,所以,放在O 点的物体先到达A 点.

高考题组

1. (2012·重庆理综·14)装有砂粒的试管竖直静浮于水面,如图16所示,将试管竖

直提起少许,然后由静止释放并开始计时,在一定时间内试管在竖直方向近似做简谐运动.若取竖直向上为正方向,则以下描述试管振动的图象中可能正确的是

( )

图16

答案 D

解析 试管在竖直方向上做简谐运动,平衡位置是在重力与浮力相等的位置,开始计时时向上提起的距离,就是其偏离平衡位置的位移,为正向最大位移,因此应选D. 2. (2012·北京理综·17)一个弹簧振子沿x 轴做简谐运动,取平衡位置O 为x 轴坐标原点.从

某时刻开始计时,经过四分之一周期,振子具有沿x 轴正方向的最大加速度.能正确反映振子位移x 与时间t 关系的图像是

( )

答案 A

解析 根据F =-kx 及牛顿第二定律得a =F m =-k

m x ,当振子具有沿x 轴正方向的最大

加速度时,其具有沿x 轴负方向的最大位移,故选项A 正确,选项B 、C 、D 错误. 3. (2011·上海单科·5)两个相同的单摆静止于平衡位置,使摆球分别以水平初速度v 1、v 2(v 1>v 2)

在竖直平面内做小角度摆动,它们的频率与振幅分别为f 1,f 2和A 1,A 2,则 ( ) A .f 1>f 2,A 1=A 2 B .f 1A 2

D .f 1=f 2,A 1

答案 C

解析 由单摆周期公式T =2π

L

g

知,单摆振动的周期或频率只与摆长和当地重力加速度有关,因此两单摆的频率相等,即f 1=f 2;由机械能守恒定律有12m v 2

=mgh ,解得h =v 22g ,

即摆球经过平衡位置的速度越大,到达的高度越高,其振幅也就越大,则本题只有选项C 正确.

4. (2011·江苏单科·12B(3))将一劲度系数为k 的轻质弹簧竖直悬挂,下端系上质量为m 的物

块.将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期.请由单摆的周期公式推算出该物块做简谐运动的周期T . 答案 2π

m

k

解析 物块平衡时,弹簧伸长量为L ,则mg =kL ,由单摆周期公式T =2π L

g

,解得T =2π m k

. 模拟题组

5. 有一个单摆,在竖直平面内做小摆角振动,周期为2 s .如果从单摆向右运动通过平衡位

置时开始计时,在t =1.4 s 至t =1.5 s 的过程中,摆球的

( )

A.速度向右在增大,加速度向右在减小

B.速度向左在增大,加速度向左也在增大

C.速度向左在减小,加速度向右在增大

D.速度向右在减小,加速度向左也在减小

答案 C

解析在t=1.4 s至t=1.5 s的过程中,摆球在向左从平衡位置到最大位移处运动的过程中,所以速度向左在减小,加速度向右在增大,C项正确.

6. 如图17所示为某弹簧振子在0~5 s内的振动图象,由图可知,下

列说法中正确的是()

A.振动周期为5 s,振幅为8 cm

B.第2 s末振子的速度为零,加速度为负向的最大值图17

C.第3 s末振子的速度为正向的最大值

D.从第1 s末到第2 s末振子在做加速运动

答案 C

解析根据图象可知,弹簧振子的周期T=4 s,振幅A=8 cm,选项A错误;第2 s末振子到达波谷位置,速度为零,加速度最大,且沿x轴正方向,选项B错误;第3 s末振子经过平衡位置,速度达到最大,且向x轴正方向运动,选项C正确;从第1 s末到第2 s末振子经过平衡位置向下运动到达波谷位置,速度逐渐减小,选项D错误.7.甲、乙两弹簧振子,振动图象如图18所示,则可知()

图18

A.两弹簧振子完全相同

B.两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1

C.振子甲速度为零时,振子乙速度最大

D.两振子的振动频率之比f甲∶f乙=1∶2

答案CD

解析从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙=1∶2,D选项正确;弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误;由于弹簧的劲度系数k不一定相同,所以两振子所受回复力(F=-kx)的最大值之比F甲∶F乙不一定为2∶1,所以B错误;由简谐运动的特点可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,

从图象中可以看出,在振子甲到达最大位移处时,振子乙恰好到达平衡位置,所以C正确.

(限时:30分钟)

?题组1 对简谐运动的概念及对称性的考查 1. 简谐运动的平衡位置是指

( )

A .速度为零的位置

B .回复力为零的位置

C .加速度为零的位置

D .位移最大的位置

答案 B

解析 简谐运动的平衡位置是回复力为零的位置,而物体在平衡位置时加速度不一定为零,例如单摆在平衡位置时存在向心加速度.简谐运动的物体经过平衡位置时速度最大,位移为零.

2. 如图1所示,弹簧振子在振动过程中,振子从a 到b 历时0.2 s ,振子经

a 、

b 两点时速度相同,若它从b 再回到a 的最短时间为0.4 s ,则该振子的振动频率为

( )

A .1 Hz

B .1.25 Hz

C .2 Hz

D .2.5 Hz

图1

答案 B

解析 由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T

4=0.2 s ,解得T =0.8 s ,f

=1

T =1.25 Hz ,选项B 正确. ?题组2 对简谐运动的图象的考查

3. 摆长为l 的单摆做简谐运动,若从某时刻开始计时(取t =0),当振动至t =3π

2

l

g 时,摆球具有负向最大速度,则单摆的振动图象是下列图中的

( )

答案 D

4. 悬挂在竖直方向上的弹簧振子,周期为2 s ,从最低点的位置向上运动时开始计时,它的

振动图象如图2所示,由图可知 ( )

图2

A .t =1.25 s 时振子的加速度为正,速度为正

B .t =1.7 s 时振子的加速度为负,速度为负

C .t =1.0 s 时振子的速度为零,加速度为负的最大值

D .t =1.5 s 时振子的速度为零,加速度为负的最大值 答案 C

解析 弹簧振子振动时,加速度的方向总是指向平衡位置,且在最大位移处,加速度的值最大,在平衡位置处加速度的值为0,由图可知,t =1.25 s 时,振子的加速度为负;t =1.7 s 时,振子的加速度为正;t =1.5 s 时,振子的加速度为零,故A 、B 、D 均错误,只有C 正确.

5. 一质点做简谐运动的图象如图3所示,下列说法正确的是( )

A .质点振动频率是4 Hz

B .在10 s 内质点经过的路程是20 cm

C .第4 s 末质点的速度为零

D .在t =1 s 和t =3 s 两时刻,质点位移大小相等,方向相同

图3

答案 B

解析 振动图象表示质点在不同时刻相对平衡位置的位移,由题图可看出,质点运动的周期T =4 s ,其频率f =1T =0.25 Hz ,A 错误;10 s 内质点运动了52T ,其运动路程为s =

5

2×4A =5

2×4×2 cm =20 cm ,B 正确;第4 s 末质点在平衡位置,其速度最大,C 错;t

=1 s 和t =3 s 两时刻,由题图可看出,位移大小相等,方向相反,D 错.由以上分析可知,只有B 项正确.

6. 有一个在y 方向上做简谐运动的物体,其振动图象如图4所示.下

列关于图5中(1)~(4)的判断正确的是(选项中v 、F 、a 分别表示物体的速度、受到的回复力和加速度)

( )

图4

图5

A.图(1)可作为该物体的速度—时间图象B.图(2)可作为该物体的回复力—时间图象C.图(3)可作为该物体的回复力—时间图象D.图(4)可作为该物体的回复加速度—时间图象答案 C

解析因为F=-kx,a=-kx

m,故图(3)可作为F-t、a-t图象;而v随x增大而减小,

故v-t图象应为图(2).

?题组3对单摆的考查

7.图6甲是利用沙摆演示简谐运动图象的装置.当盛沙的漏斗下面的薄木板被水平匀速拉出时,做简谐运动的漏斗漏出的沙会在板上显示出沙摆的振动位移随时间变化的关系曲线.已知木板被水平拉动的速度为0.20 m/s,图乙所示的一段木板的长度为0.60 m,则这次实验沙摆的摆长大约为(取g=π2) ()

甲乙

图6

A.0.56 m B.0.65 m C.1.00 m D.2.25 m

答案 A

解析由于木板匀速拉动,据x=v t,则t=x

v=0.60

0.20s=3 s,显然t=2T,则T=1.5 s,

据T=2πl

g,可计算出摆长l大约为0.56 m.故A正确.

8. (1)将一个电动传感器接到计算机上,就可以测量快速变化的

力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时

间变化的曲线如图7所示.某同学由此图象提供的信息做出

的下列判断中,正确的是________.

A.t=0.2 s时摆球正经过最低点图7 B.t=1.1 s时摆球正经过最低点

C.摆球摆动过程中机械能减小

D.摆球摆动的周期是T=1.4 s

(2)图8为同一地点的两单摆甲、乙的振动图象,下列说法中

正确的是________.

A.甲、乙两单摆的摆长相等

B .甲摆的振幅比乙摆大 图8

C .甲摆的机械能比乙摆大

D .在t =0.5 s 时有最大正向加速度的是乙摆 答案 (1)AC (2)ABD

解析 (1)在摆球经过最低点时悬线拉力最大,t =0.2 s 时,F 有正向最大值,故A 选项正确;t =1.1 s 时,F 有最小值,摆球不在最低点,B 选项错误;周期应为T =1.2 s ,D 选项错误;因振幅减小,故机械能减小,C 选项正确.

(2)可从题图上看出甲摆振幅大,故B 对.且两摆在同一地点、周期相等,则摆长相等,因质量关系不明确,无法比较机械能.t =0.5 s 时乙摆球在负的最大位移处,故有最大正向加速度,所以正确答案为A 、B 、D. ?题组4 对受迫振动和共振的考查

9. 铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行的列车经过轨端接缝

处时,车轮就会受到一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长为12.6 m ,列车固有振动周期为 0.315 s .下列说法正确的是

( )

A .列车的危险速率为40 m/s

B .列车过桥需要减速,是为了防止列车发生共振现象

C .列车运行的振动频率和列车的固有频率总是相等的

D .增加钢轨的长度有利于列车高速运行 答案 AD

解析 列车在钢轨上运动时,受钢轨对它的冲击力作用做受迫振动,当列车固有振动频率等于钢轨对它的冲击力的频率时,列车振动的振幅最大,因v =l t =12.6 m

0.315 s =40 m/s ,

故A 正确;列车过桥做减速运动,是为了使驱动力频率远小于桥梁固有频率,防止桥发生共振现象,而不是防止列车发生共振现象,B 、C 错;增加钢轨的长度有利于列车高速运行,D 对.

10.下表记录了某受迫振动的振幅随驱动力频率变化的关系,若该振动系统的固有频率为

f 固,则

( )

A.f 固B .60 Hz <f 固<70 Hz C .50 Hz <f 固<60 Hz D .以上三个都不对

答案 C

解析 从如图所示的共振曲线,可判断出f 驱与f 固相差越大,受迫

振动的振幅越小;f 驱与f 固越接近,受迫振动的振幅越大.并可以从中看出f 驱越接近f 固,振幅的变化越慢.比较各组数据知f 驱在50 Hz ~60 Hz 范围内时,振幅变化最小,因此50 Hz <f 固<60 Hz ,即C 正确.

?题组5 简谐运动中的能量转化

11. 一质点做简谐运动,其位移和时间关系如图9所示.

(1)求t =0.25×10-

2 s 时的位移;

(2)在t =1.5×10-

2 s 到2×10-

2 s 的振动过程中,质点的位移、回复力、

速度、动能、势能如何变化?

图9

(3)在t =0到8.5×10-

2 s 时间内,质点的路程、位移各多大? 答案 (1)- 2 cm (2)变大 变大 变小 变小 变大 (3)34 cm 2 cm

解析 (1)由题图可知A =2 cm ,T =2×10-

2 s ,振动方程为x =A sin (ωt -π2)=-A cos ωt

=-2cos

2×10-2

t cm =-2cos 100πt cm 当t =0.25×10-

2 s 时,x =-2cos π4

cm =- 2 cm.

(2)由图可知在1.5×10-

2 s ~2×10-

2 s 的振动过程中,质点的位移变大,回复力变大,速

度变小,动能变小,势能变大.

(3)从t =0至8.5×10-

2 s 时间内为174

个周期,质点的路程为s =17A =34 cm ,位移为2 cm.

【步步高】2017版高考物理(全国通用)选考题专练(选修3-3)

近四年全国Ⅰ卷选考题涉及的考点与内容 命题形式 例题展示 (1)(2016·全国乙卷·33(1))(5分)关于热力学定律,下列说法正确的是____.(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分) A.气体吸热后温度一定升高 B.对气体做功可以改变其内能 C.理想气体等压膨胀过程一定放热 D.热量不可能自发地从低温物体传到高温物体 E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡 (2)(2016·全国乙卷·33(2))(10分)在水下气泡内空气的压强大于气泡表面外侧水的压强,两压

强差Δp 与气泡半径r 之间的关系为Δp =2σ r ,其中σ=0.070 N /m.现让水下10 m 处一半径为 0.50 cm 的气泡缓慢上升.已知大气压强p 0=1.0×105 Pa ,水的密度ρ=1.0×103 kg/m 3,重力加速度大小g =10 m/s 2. (ⅰ)求在水下10 m 处气泡内外的压强差; (ⅱ)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值. 解析 (1)气体内能的改变ΔU =Q +W ,故对气体做功可改变气体内能,B 选项正确;气体吸热为Q ,但不确定外界做功W 的情况,故不能确定气体温度变化,A 选项错误;理想气体等压膨胀,W <0,由理想气体状态方程pV T =C ,p 不变,V 增大,气体温度升高,内能增 大,ΔU >0,由ΔU =Q +W ,知Q >0,气体一定吸热,C 选项错误;由热力学第二定律,D 选项正确;根据热平衡性质,E 选项正确. (2)(ⅰ)由公式Δp =2σ r 得Δp =2×0.0705×10-3 Pa =28 Pa 水下10 m 处气泡内外的压强差是28 Pa. (ⅱ)气泡上升过程中做等温变化,由玻意耳定律得 p 1V 1=p 2V 2 ① 其中,V 1=43πr 31 ② V 2=43 πr 32 ③ 由于气泡内外的压强差远小于10 m 深处水的压强,气泡内压强可近似等于对应位置处的水的压强,所以有 p 1=p 0+ρgh 1=1×105 Pa +1×103×10×10 Pa =2×105 Pa =2p 0 ④ p 2=p 0 ⑤ 将②③④⑤代入①得,2p 0×43πr 31=p 0 ×43πr 3 2 2r 31=r 32 r 2r 1 =3 2 答案 (1)BDE (2)(ⅰ)28 Pa (ⅱ)3 2 命题分析与对策 1.命题特点

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

【步步高】2018版浙江省高考物理《选考总复习》模块检测卷一-必修1

模块检测卷一必修1 第Ⅰ卷 一、选择题Ⅰ(本题共13小题,每小题3分,共39分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分) 1.下列各组物理量中,全部是矢量的一组是() A.质量、加速度B.位移、速度变化量 C.时间、平均速度D.路程、加速度 答案 B 解析质量只有大小,没有方向,是标量,而加速度是既有大小又有方向的物理量,是矢量,故A错误;位移和速度变化量都是既有大小又有方向的物理量,是矢量,故B正确;平均速度是矢量,而时间是标量,故C错误;路程只有大小,没有方向,是标量,加速度是矢量,故D错误. 2.如图1甲所示,火箭发射时,速度能在10 s内由0增加到100 m/s;如图乙所示,汽车以108 km/h的速度行驶,急刹车时能在2.5 s内停下来,下列说法中正确的是() 图1 A.10 s内火箭的速度变化量为10 m/s B.刹车时,2.5 s内汽车的速度变化量为-30 m/s C.火箭的速度变化比汽车的快 D.火箭的加速度比汽车的加速度大 答案 B

解析10 s内火箭的速度变化量为100 m/s,加速度为10 m/s2;2.5 s内汽车的速度变化量为-30 m/s,加速度大小为12 m/s2,故汽车的速度变化快,加速度大. 3.杭州第二中学在去年的秋季运动会中,高二(9)班的某同学创造了100 m和200 m短跑项目的学校纪录,他的成绩分别是10.84 s和21.80 s.关于该同学的叙述正确的是() A.该同学100 m的平均速度约为9.23 m/s B.该同学在100 m和200 m短跑中,位移分别是100 m和200 m C.该同学的200 m短跑的平均速度约为9.17 m/s D.该同学起跑阶段加速度与速度都为零 答案 A 解析100 m是直道,而200 m有弯道. 4.一辆汽车运动的v-t图象如图2,则汽车在0~2 s内和2~3 s内相比() 图2 A.位移大小相等B.平均速度相等 C.速度变化相同D.加速度相同 答案 B 解析由图象面积可知位移大小不等,平均速度均为v 2=2.5 m/s,B正确;速度变化大小相等, 但方向相反,由斜率可知0~2 s内加速度小于2~3 s内加速度. 5.2016年里约奥运会上,施廷懋凭高难度的动作夺得三米板女子跳水冠军.起跳前,施廷懋在跳板的最外端静止站立时,如图3所示,则()

高考物理二轮复习计划五步走

2019年高考物理二轮复习计划五步走 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 选考模块的复习不可掉以轻心,抓住规律区别对待。 选考模块的复习要突出对五个二级知识点的加强(选修3—4中四个,

选修3—5中一个)。由于分数的限制,该部分的复习重点应该放在扩大知识面上,特别是选修3—3,没有二级要求的知识点,应该是考生最容易拿分的版块,希望认真钻研教材。课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、弄透,一次不够就两次,两次不行需再来,绝不能留任何的死角,包括课后的阅读材料、小实验、小资料等,因为大多的信息题是从这里取材的。 实验部分一直是高考复习的重点和难点 实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。复习中还要注意器材选择的基本原则,灵活地运用这些基本原则是二轮实验复习的一个目的。针对每一个实验,注意做到“三个掌握、五个会”,即掌握实验目的、步骤、原理;会控制条件、会使用仪器、会观察分析、会处理数据并得出相应的结论、会设计简单的实验方案。选做题中考实验的可能性也很大,不要忽视这方面内容。 突出重点知识,狠抓主干知识,落实核心知识 二轮复习中我们不可能再面面俱到,切忌“眉毛胡子一把抓”,而且时

2018高考物理步步高第五章第1讲

2018高考物理步步高第五章第1讲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

考试内容范围及要求 高考命题解读 内容 要求 说明 1.考查方式 能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将功、功率、动能、势能等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系作为解题工具在综合题中应用. 2.命题趋势 通过比较,动能定理、机械能守恒定律、功能关系的应用在近两年有增加的趋势,常将功和能的知识和方法融入其他问题考查,情景设置为多过程,具有较强的综合性. 9.功和功率 Ⅱ 弹性势能的表达式不作要求 10.动能 动能定理 Ⅱ 11.重力势能 Ⅱ 12.弹性势能 Ⅰ 13.机械能守恒定律及其应用 Ⅱ 14.能量守恒 Ⅰ 实验四:探究动能定理 实验五:验证机械能守恒定 律 第1讲 功 功率 动能定理 一、功 1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功. 2.必要因素:力和物体在力的方向上发生的位移. 3.物理意义:功是能量转化的量度. 4.计算公式 (1)恒力F 的方向与位移l 的方向一致时:W =Fl .

(2)恒力F 的方向与位移l 的方向成某一夹角α时:W =Fl cos_α. 5.功的正负 (1)当0≤α<π 2 时,W >0,力对物体做正功. (2)当π 2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功. (3)当α=π 2时,W =0,力对物体不做功. 6.一对作用力与反作用力的功 做功情形 图例 备注 都做正功 (1)一对相互作用力做的总功与参考系无关 (2)一对相互作用力做的总功W =Fl cos α.l 是相对位移,α是F 与l 间的方向夹角 (3)一对相互作用力做的总功可正、可负,也可为零 都做负功 一正一负 一为零 一为正 一为负 ]7.一对平衡力的功 一对平衡力作用在同一个物体上,若物体静止,则两个力都不做功;若物体运动,则这一对力所做的功一定是数值相等,一正一负或均为零. 二、功率 1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式 (1)P =W t ,P 为时间t 内物体做功的快慢. (2)P =F v ①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率. ③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. 深度思考 由公式P =F v 得到F 与v 成反比正确吗?

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

高2021届高2018级版步步高3-5高中物理第四章 4-5

4 实物粒子的波粒二象性 5 不确定关系 [学习目标] 1.了解德布罗意物质波假说的内容, 知道德布罗意波的波长和粒子动量的关系.2.知道粒子和光一样具有波粒二象性, 了解电子波动性的实验验证.3.初步了解不确定关系的内容, 感受数学工具在物理学发展过程中的作用. 一、实物粒子的波动性 1.德布罗意波 (1)定义:任何运动着的物体, 小到电子、质子, 大到行星、太阳, 都有一种波与它相对应, 这种波叫物质波, 又叫德布罗意波. (2)德布罗意波的波长、频率的计算公式为λ=h p , ν=E h . (3)我们之所以看不到宏观物体的波动性, 是因为宏观物体的动量太大, 德布罗意波的波长太小. 2.电子波动性的实验验证 (1)实验探究思路:干涉、衍射是波特有的现象, 如果实物粒子具有波动性, 则在一定条件下, 也应该发生干涉或衍射现象. (2)实验验证:1926年戴维孙观察到了电子衍射图样, 证实了电子的波动性. (3)汤姆孙做电子束穿过多晶薄膜的衍射实验, 也证实了电子的波动性. 二、氢原子中的电子云 1.定义:用点的多少表示的电子出现的概率分布. 2.电子的分布:某一空间范围内电子出现概率大的地方点多, 电子出现概率小的地方点少.电

子云反映了原子核外的电子位置的不确定性, 说明电子对应的波也是一种概率波. 三、不确定关系 1.定义:在经典物理学中, 一个质点的位置和动量是可以同时测定的, 在微观物理学中, 要同时测出微观粒子的位置和动量是不太可能的, 这种关系叫不确定关系. 2.表达式:Δx·Δp x≥h 4π.其中以Δx表示粒子位置的不确定量, 以Δp x表示粒子在x方向上的动量的不确定量, h是普朗克常量.

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

物理步步高大一轮复习讲义答案

实验基础知识 一、螺旋测微器的使用 1.构造:如图1所示,B为固定刻度,E为可动刻度. 图1 2.原理:测微螺杆F与固定刻度B之间的精密螺纹的螺距为0.5mm,即旋钮D每旋转一周,F前进或后退0.5mm,而可动刻度E上的刻度为50等份,每转动一小格,F前进或后退0.01mm,即螺旋测微器的精确度为0.01mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺. 3.读数:测量值(mm)=固定刻度数(mm)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×0.01(mm). 如图2所示,固定刻度示数为2.0mm,半毫米刻度线未露出,而从可动刻度上读的示数为15.0,最后的读数为:2.0mm+15.0×0.01mm=2.150mm. 图2 二、游标卡尺 1.构造:主尺、游标尺(主尺和游标尺上各有一个内、外测量爪)、游标卡尺上还有一个深度尺.(如图3所示)

图3 2.用途:测量厚度、长度、深度、内径、外径. 3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成. 不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其规格见下表: 4.读数:若用x表示从主尺上读出的整毫米数,K表示从游标尺上读出与主尺上某一刻度线对齐的游标的格数,则记录结果表示为(x+K×精确度)mm. 三、常用电表的读数 对于电压表和电流表的读数问题,首先要弄清电表量程,即指针指到最大刻度时电表允许通过的最大电压或电流,然后根据表盘总的刻度数确定精确度,按照指针的实际位置进行读数即可. (1)0~3V的电压表和0~3A的电流表的读数方法相同,此量程下的精确度分别是0.1V和0.1A,看清楚指针的实际位置,读到小数点后面两位. (2)对于0~15V量程的电压表,精确度是0.5V,在读数时只要求读到小数点后面一位,即读到0.1V. (3)对于0~0.6A量程的电流表,精确度是0.02A,在读数时只要求读到小数点后面两位,这时要求“半格估读”,即读到最小刻度的一半0.01A.

高考物理二轮复习计划(一)

2019年高考物理二轮复习计划(一) 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 抓住主干知识及主干知识之间的综合 高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,

主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场 中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

2018年高考物理《步步高》(全国通用

2018年高考物理《步步高》(全国通用?含答案 及详细解析)专题复习题 (2套“微专题”题+1套章末综合练习题,共3套题) 第十一章交变电流 1.考点及要求:(1)交变电流、交变电流的图象(Ⅰ);(2)正弦交变电流的函数表达式、峰值和有效值(Ⅰ).2.方法与技巧:(1)线圈每经过中性面一次,电流方向改变一次;从中性面开始转动时,i-t图象为正弦函数图象;(2)交变电流的求解一般选择一个周期,利用电流的热效应来求解. 1.(交变电流的产生)如图1甲所示,矩形线圈abcd在匀强磁场中逆时针匀速转动时,线圈中产生的交流电如图乙所示,设沿abcda方向为电流正方向,则() 图1 A.乙图中Oa时间段对应甲图中①至②图的过程 B.乙图中c时刻对应甲图中的③图 C.若乙图中d等于0.02 s,则1 s内电流的方向改变了50次 D.若乙图中d等于0.02 s,则交流电的频率为25 Hz 2.(交变电流的瞬时值表达式和图象)(多选)在匀强磁场中,一矩形金属线框绕与磁感线垂直

的转动轴匀速转动,如图2甲所示.产生的交变电动势随时间变化的规律如图乙所示.则下列说法正确的是() 图2 A.t=0.01 s时穿过线框的磁通量最小 B.该交变电动势的有效值为11 2 V C.该交变电动势的瞬时值表达式为e=222sin(100πt) V D.电动势瞬时值为22 V时,线框平面与中性面的夹角为45° 图3 3.(交变电流的有效值)一台小型发电机产生的电动势随时间变化的正弦规律图象如图3所示,已知发电机线圈内阻为5 Ω,仅外接一只电阻为105 Ω的灯泡,则() A.线圈从垂直于中性面的位置开始转动 B.电路中的电流方向每秒改变50次 C.灯泡两端的电压为220 V D.发电机线圈内阻每秒产生的焦耳热为20 J 图4 4.(交变电流的“四值”)如图4所示,矩形线圈abcd与可变电容器C、理想电流表组成闭合电路.线圈在有界匀强磁场中绕垂直于磁场的bc边匀速转动,转动的角速度ω=100π rad/s.线圈的匝数N=100,边长ab=0.2 m、ad=0.4 m,电阻不计.磁场只分布在bc边的左 侧,磁感应强度大小B=2 16πT.电容器放电时间不计.下列说法正确的是() A.该线圈产生的交流电动势的峰值为50 V B.该线圈产生的交流电动势的有效值为25 2 V

【步步高】2020高考物理大一轮复习 第一章高考热点探究

高考热点探究 一、运动学图象 1.(2020·海南·8改编)一物体自t=0时开始做直线运动,其速度图线如图1所示.下列选项正确的是( ) A.在0~6 s内,物体离出发点最远为30 m B.在0~6 s内,物体的位移为40 m 图1 C.在0~4 s内,物体的平均速率为7.5 m/s D.在5~6 s内,物体所受的合外力做负功 2.(2020·天津·3)质点做直线运动的v-t图象如图2所示, 规 定向右为正方向,则该质点在前8 s内平均速度的大小和 方 向分别为( ) A.0.25 m/s 向右B.0.25 m/s 向左 C.1 m/s 向右D.1 m/s 向左图2 二、运动情景的分析及运动学公式的应用 3.(2020·新课标全国·15改编)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能不可能 ( )

A.一直增大 B.先逐渐减小至零,再逐渐增大 C.先逐渐增大至某一最大值,再逐渐减小 D.先逐渐减小至某一非零的最小值,再逐渐增大 4.(2020·天津·3)质点做直线运动的位移x与时间t的关系为x=5t+t2(各物理量均采用国际单位制单位),则该质点 ( ) A.第1 s内的位移是5 m B.前2 s内的平均速度是6 m/s C.任意相邻的1 s内位移差都是1 m D.任意1 s内的速度增量都是2 m/s

5.(2020·山东·18)如图3所示,将小球a从地面以初速度v 竖直上抛的同时,将另一相同质量的小球b从距地面h处由静止释 放,两球恰在h 2 处相遇(不计空气阻力).则( ) A.两球同时落地 B.相遇时两球速度大小相等图3 C.从开始运动到相遇,球a动能的减少量等于球b动能的增加量 D.相遇后的任意时刻,重力对球a做功功率和对球b做功功率相等6.(2020·课标全国·24)短跑名将博尔特在北京奥运会上创造了100 m和200 m 短跑项目的新世界纪录,他的成绩分别为9.69 s和19.30 s.假定他在100 m 比赛时从发令到起跑的反应时间是0.15 s,起跑后做匀加速运动,达到最大速率后做匀速运动.200 m比赛时,反应时间及起跑后加速阶段的加速度和加速度时间与100 m比赛时相同,但由于弯道和体力等因素的影响,以后的平均速度只有跑100 m时最大速率的96%.求: (1)加速所用时间和达到的最大速率; (2)起跑后做匀加速度运动的加速度.(结果保留两位小数)

高考物理二轮专项

高考物理二轮专项:功和机械能压轴题训练 1.(10分)如图21所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计。水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B,方向竖直向下。质量均为m、电阻均为R的金属棒a和b垂直导轨放置在其上,金属棒b置于磁场Ⅱ的右边界CD处。现将金属棒a从弯曲导轨上某一高处由静止释放,使其沿导轨运动。设两金属棒运动过程中始终与导轨垂直且接触良好。 (1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为mg,将金属棒a从距水平面高度h处由静止释放。求: 金属棒a刚进入磁场Ⅰ时,通过金属棒b的电流大小; 若金属棒a在磁场Ⅰ运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放时的高度h应满足的条件; (2)若水平段导轨是光滑的,将金属棒a仍从高度h处由静止释放,使其进入磁场Ⅰ。设两磁场区域足够大,求金属棒a在磁场Ⅰ运动过程中,金属棒b中可能产生焦耳热的最大值。 2.(8分)如图所示,长为l的绝缘细线一端悬于O点,另一端系一质量为m、电荷量为q的小球。现将此装置放在水平向右的匀强电场中,小球静止在A点,此时细线与竖直方向成37°角。重力加速度为g,sin37°=0.6,cos37°=0.8。 (1)判断小球的带电性质; (2)求该匀强电场的电场强度E的大小; (3)若将小球向左拉起至与O点处于同一水平高度且细绳刚好紧,将小球由静止释放,求小球运动到最低点时的速度大小。 3.(10分)如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆a b,测得最大速度为v m。改变电阻箱的阻值R,得到v m与R的关系如图乙所示。已知轨距为L = 2m,重力加速度g取l0m/s2,轨道足够长且电阻不计。 (1)当R = 0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;(2)求金属杆的质量m和阻值r;

高2020届高2017级高三物理一轮复习步步高全书学案第一章 第1讲

第1讲 运动的描述 一、质点和参考系 1.质点 (1)用来代替物体的有质量的点叫做质点. (2)研究一个物体的运动时,如果物体的形状和大小对所研究问题的影响可以忽略,就可以看做质点. (3)质点是一种理想化模型,实际并不存在.

(1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的. (2)比较两物体的运动情况时,必须选同一参考系. (3)选取不同的物体作为参考系,对同一物体运动的描述可能不同.通常以地面为参考系. 自测1(多选)关于质点和参考系的理解,下列说法正确的是() A.研究2018年印尼亚运会男子100米冠军苏炳添最后冲线的动作时可以把苏炳添看成质点 B.研究女子50米步枪比赛中杜丽射出的子弹轨迹可以将子弹看成质点 C.“一江春水向东流”是以地面为参考系 D.未起飞的舰载机以航母甲板为参考系是静止的 答案BCD 二、位移和速度 1.位移和路程 2.速度与速率 (1)平均速度:物体发生的位移与发生这段位移所用时间的比值,即v=Δx Δt,是矢量,其方向就是 对应位移的方向. (2)瞬时速度:运动物体在某一时刻或经过某一位置的速度,是矢量,其方向是物体的运动方向或运动轨迹的切线方向. (3)速率:瞬时速度的大小,是标量. (4)平均速率:物体运动实际路程与发生这段路程所用时间的比值,不一定等于平均速度的大小. 自测2在伦敦奥运会上,牙买加选手博尔特在男子100 m决赛(直跑道)和男子200 m决赛(弯曲跑道)中分别以9.63 s和19.32 s的成绩获得两枚金牌.关于他在这两次决赛中的运动情况,下列说法正确的是() A.200 m决赛的位移是100 m决赛的两倍 B.200 m决赛的平均速度约为10.35 m/s C.100 m决赛的平均速度约为10.38 m/s D.100 m决赛的最大速度约为20.76 m/s

高考物理二轮复习专题讲

专题04 曲线运动 考试大纲要求考纲解读 1. 运动的合成与分解Ⅱ1.本专题是牛顿运动定律在曲线运动中的具体应用,万有引力定律是力学中一个重要的、独立的基本定律.运动的合成与分解是研究复杂运动的基本方法. 2.平抛运动的规律及其研究思想在前几年高考题中都有所体现,在近两年的考题中考查得较少,但仍要引起注意. 3.匀速圆周运动及其重要公式,特别是匀速圆周运动的动力学特点要引起足够的重视,对天体运动的考查都离不开匀速圆周运动 4. 本专题的一些考题常是本章内容与电场、磁场、机械能等知识的综合题和与实际生活、新科技、新能源等结合的应用题,这种题难度较大,学习过程中应加强综合能力的培养. 2. 抛体运动Ⅱ 3. 匀速圆周运动、角速度、线 速度、向心加速度 Ⅰ 4.匀速圆周运动的向心力Ⅱ 5.离心现象Ⅰ 纵观近几年高考试题,预测2020年物理高考试题还会考: 1.单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。 2.平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。 3.圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。 考向01 曲线运动运动的合成与分解 1.讲高考 (1)考纲要求 ①掌握曲线运动的概念、特点及条件;②掌握运动的合成与分解法则。

(2)命题规律 单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。案例1.【2020·广东·14】如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物:() A.帆船朝正东方向航行,速度大小为v B.帆船朝正西方向航行,速度大小为v C.帆船朝南偏东45°方向航行,速度大小为2v D.帆船朝北偏东45°方向航行,速度大小为2v 【答案】D 【考点定位】对参考系的理解、矢量运算法则——平行四边形定则的应用。 【名师点睛】此题也可假设经过时间t,画出两者的二维坐标位置示意图,求出相对位移,再除以时间t 即可。 案例2.【2020·安徽·14】图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q 是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动。图中所标出的α粒子在各点处的加速度方向正确的是:() A.M点 B.N点 C.P点 D.Q点 【答案】C 【解析】由库仑定律,可得两点电荷间的库仑力的方向在两者的两线上,同种电荷相互排斥,由牛顿第二定律,加速度的方向就是合外力的方向,故C正确,ABD错误。 考点:考查库仑定律和牛顿第二定律。

高考物理二轮复习各专题练习题及答案解析

运动的描述匀变速直线运动 考点一匀变速直线运动的规律运动图象追及、相遇问题 命题角度1多物体系统(匀变速直线运动)及其v-t、x-t、a-t图象 高考真题体验·对方向 1.(2019全国Ⅰ·18) 如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H.上升第一个H 4 所 用的时间为t1,第四个H 4 所用的时间为t2.不计空气阻力,则H2 H1 满足() A.1

B.从0到t1时间内,两车走过的路程相等 C.从t1到t2时间内,两车走过的路程相等 D.在t1到t2时间内的某时刻,两车速度相等 答案CD 解析图线的斜率大小表示物体运动的速度大小,t1时刻两图线的斜率不同,所以两车速度不同,A选项错误;从0到t1时间内,x乙=x1,x甲

高考物理第二轮专题复习资料

高中物理重点专题汇总 第一讲 平衡问题 一、特别提示[解平衡问题几种常见方法] 1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。 3、正交分解法:将各力分解到x 轴上和y 轴上,运用两坐标轴上的合力等于零的条件)00(∑∑==y x F F 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使落在x 、y 轴上的力多;被分解的力尽可能是已知力。 4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。 5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。 6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 7、相似三角形法:利用力的三角形和线段三角形相似。 二、典型例题 1、力学中的平衡:运动状态未发生改变,即0=a 。表现:静止或匀速直线运动 (1)在重力、弹力、摩擦力作用下的平衡 例1 质量为m 的物体置于动摩擦因数为μ的水平面上,现对它施加一个拉力,使它做匀速 直线运动,问拉力与水平方向成多大夹角时这个力最小? 例2 重力为G 的物体A 受到与竖直方向成α角的外力 F 后,静止在竖直墙面上,如图1-2所示,试求墙对物体A 的静摩擦力。

高考物理二轮复习专题

高考物理二轮复习专题:交流电 1(2011苏北四市二模).如图所示,50匝矩形闭合导线框ABCD 处于磁感应强度大小B= 10 2T 的水平匀强磁场() 中,线框面积 S =0.5m 2 ,线框电阻不计。线框绕垂直于磁场的轴 OO ′以角速度ω=200rad/s 匀速转动,并与理想变压器原线圈相连,副线圈线接入一只 “220V ,60W ”灯泡,且灯泡正 常发光,熔断器允许通过的最大电流为10A ,下列说法正确的是 A .图示位置穿过线框的磁通量为零 B .线框中产生交变电压的有效值为2500V C .变压器原、副线圈匝数之比为25︰11 D .允许变压器输出的最大功率为 5000W 2(2011南京一模).如图甲所示,理想变压器原、副线圈的匝数比为l0:1,b 是原线圈的中 心抽头,图中电表均为理想的交流电表,定值电阻R=10Ω,其余电阻均不计.从某时刻开始 在原线圈c 、d 两端加上 如图乙所示的交变电压.则下列说法中正确的是 A .当单刀双掷开关与a 连接时,电压表的示数为 22V B .当单刀双掷开关与d 连接且产0.01s 时,电流表示数为零 c .当单刀双掷开关由 a 拨向 b 时,原线圈的输入功率变大 D .当单刀双掷开关由 a 拨向 b 时,副线圈输出电压的频率变为 25Hz 3(2011南京二模)·如图甲所示,理想变压器原、副线圈的匝数比为10:1,R 1=20Ω,R 2=30 Ω,L 为无直流电阻的电感线圈.已知通过 R 1的正弦交流电流如图乙所示 ,则 A .原线圈输入龟压的频率为500Hz 。 B .原线圈输入电压为 200 V C .电阻R 1的电功率约为 6.67 w D .若保持u 的大小不变而增加交流电的频率,则电灯 L 1将变暗 4(2011南通三模).某交流发电机给灯泡供电,产生正弦式交变电流的图象如图所示,下列说法中正确的是 灯泡 熔断器

相关主题
文本预览
相关文档 最新文档