当前位置:文档之家› 典中点图形的相似专训3 三角形中位线的应用

典中点图形的相似专训3 三角形中位线的应用

典中点图形的相似专训3   三角形中位线的应用
典中点图形的相似专训3   三角形中位线的应用

典中点图形的相似专训3 三角形中位线的应用

?名师点金?

三角形中位线定理有着广泛的应用,可以用来证明或求解许多问题,但我们往往不能直接利用这个定理,要仔细观察图形中与定理有关的基本图形,特别是涉及与中点有关的条件时,要通过巧妙添辅助线构造三角形中位线。

应用1:利用三角形中位线进行证明

类型1:证相等关系

1.如图,在四边形ABCD 中,对角线AC=BD,E,F 分别为AB,CD 的中点,点O 为AC,BD 的交点,G,H 为EF 与BD,AC 的交点.求证:OG=OH 。

类型2:证倍分关系

2.如图,在平行四边形ABCD 中,BD 为对角线,点E,F 分别是AB,BC 的中点,连结EF,交BD 于M 点。 求证:(1)BM=41BD;(2)ME=MF

类型3:证不等关系

3.如图,M,N 是四边形ABCD 的边BC,AD 的中点,且AB 与CD 不平行.求证:MN<

2

1(AB+CD)。

类型4:证位置关系

4.如图,自△ABC的顶点A向∠ABC和∠ACB的平分线作垂线,垂足分别为D,E,连结DE。求证:DE∥BC。

应用2:利用三角形中位线探究多边形形状

5.顺次连结对角线相等的四边形各边中点,所得四边形是( )

A.矩形

B.平行四边形

C.菱形

D.任意四边形

6.顺次连结正方形各边中点所得的四边形一定是()

A.平行四边形

B.矩形

C.菱形

D.正方形

7.D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连

结OB,OC,点G,F分别是OB,OC的中点,顺次连结点D,G,F,E.如图,当点O在△ABC的内部时,试判断四边形DGFE的形状,并说明理由。

应用3:利用三角形中位线求值

8.如图所示,在四边形ABCD中,AD∥BC,AD+BC=8,且AD:BC=3:7,E,F分别是BD,AC的中点,求EF的长。

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

中考数学专题复习三角形专题训练

三角形 一、选择题 1.若一个直角三角形的两边长为12和5,则第三边为() A. 13 B.13或 C. 13或5 D. 15 2.三角形的角平分线、中线和高() A. 都是射线 B. 都是直线 C. 都是线段 D. 都在三角形内 3.小明用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中框架△ABC的质量为840克,CF的质量为106克,则整个金属框架的质量为() A. 734克 B. 946克 C. 1052克 D. 1574克 4.到△ABC的三条边距离相等的点是△ABC的是() A. 三条中线的交点, B. 三条角平分线的交点 C. 三条高线的交点 D. 三条边的垂直平分线的交点 5.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做使用的数学道理是() A. 两点之间线段最短 B. 三角形的稳定性 C. 两点确定一条直线 D. 长方形的四个角都是直角 6.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )

A. 100° B. 80° C. 70° D. 50° 7.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 无法确定 8.已知在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( ) A. AB=DE,AC=DF- B. AC=EF,BC=DF - C. AB=DE,BC=EF- D. ∠C=∠F,AC=DF 9.若等腰三角形的顶角为80°,则它的一个底角度数为() A. 20° B. 50° C. 80° D. 100° 10.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是() A. 5 B. 4 C. 3 D. 2 二、填空题 11.在△ABC中,已知∠A=30°,∠B=70°,则∠C的度数是________。 12.将一副三角板如图叠放,则图中∠α的度数为________. 13.如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.

初中几何中三角形中位线定理的应用

初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系; (2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH=21BD ,HF=21AC,因为AC=BD,从而 得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH=21BD ,EH//BD ,HF=21AC ,FH//AC (三角形中位线定理) 而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵EH//BD ,HF//AC ,∴∠HEF=∠ DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN

三角形中考总复习专题训练(精华)

《三角形》专题训练 一、选择题 1.若等腰三角形底角为72°,则顶角为()。 A.108° B.72° C.54° D.36° 2.等腰三角形的两边长分别为5和6,则这个三角形的周长是()。A.16 B.17 C.13 D.16或17 3. 下列条件能确定△ABC是直角三角形的条件有()。 (1) ∠A+∠B=∠C; (2) ∠A:∠B:∠C=1:2:3; 1∠C (3) ∠A=90°-∠B; (4)∠A=∠B= 2 A.1个 B.2个 C.3个 D.4个 4. 正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于() A.60° B.90° C.120° D.150° 5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()。 A.60°B.120° C.60°或150° D.60°或120°

个外角都相等的三角形;(3)一边上的高也是这边上的中线的等腰三角形;(4)有一个角为60°的等腰三角形。其中一定是等边三角形的有( )。 A .4个 B .3个 C .2个 D .1个 7.已知△ABC ,⑴如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°2 1 ∠A ; ⑵如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A ; ⑶如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-21 ∠A 。 上述说法下确的个数是( )。A .0个 B .1个 C .2个 D .3个 8.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其 不变形,这种做法的根据是( )。 A.两点之间线段最短 B.矩形的对称性 C.矩形的四个角都是直角 D.三角形的稳定性

三角形的中位线

三角形的中位线(一) 一、教学目的和要求 使学生了解三角形中位线的定义,掌握三角形中位线性质定理的证明和应用。 通过定理的证明进一步培养学生的逻辑推理能力。 二、教学重点和难点 重点:掌握三角形中位线定义,及性质定理的证明。 难点:证题中正确添加辅助线。 三、教学过程 (一)复习、引入 提问: 1、平行线等分线段定理的内容 2、叙述定理的两个推论(画图示意) 练习:见图1 AD 是ABC ?中BC 边上的中线,E 为AD 的中点,连结BE 并延长交AC 于F ,若AF=2,求AC 的长。 A B D C 图1 过D 点作BF 的平行线交AC 于M ,因为BD=DC ,AE=ED ,利用平行线等分线段定理推论2,可得AF=FM=MC ,所以AC=6。 如果我们将平行线等分线段定理推论2的条件、结论交换一下,是否成立? 已知:D 、E 是ABC ?中AB 、AC 边的中点,则DE//BC 。这就是我们今天将要研究的课题。 (二)新课 定义:连结三角形两边中点的线段叫做三角形的中位线。 DE 叫做ABC ?的中位线。 注意: 1. 中位线是线段,它的端点是三角形两边的中点。 2. 中位线与中线都是三角形的重要线段,它们端点位置不同,是两个不同的概念。 每个三角形有三条中位线。 下面我们研究三角形的中位线与第三边的数量及位置关系。 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 已知:如图2,ABC ?中,AD=DB ,AE=EC 求证:BC DE BC DE 2 1,//=

图2 分析:证明一条线段是第二条线段的一半,可将第一条线段倍长,证明等于第二条线段;也可将第二条线段取中点,证明其一半等于第一条线段。这里我们用第一种方法。 证明:延长DE到F使EF=DE,连结CF 在中 四边形DBCF是平行四边形。 DE//BC 小结:到目前为止,在我们学过的定理中,结论存在一条线段等于另一条线段一半的有哪些? 1. 直角三角形中,角所对直角边等于斜边的一半。 2. 直角三角形中,斜边的中线等于斜边的一半。 3. 三角形中位线定理。 例1已知:如图3,中,,D、E、F分别是BC、AB、CA边的中点,求证:AD=EF C D F A E B 图3 分析:要证AD=EF,我们先要结合图形认识线段AD、EF在图形的位置就会很容易找到解决问题的方法。 AD是斜边BC的中线,所以,EF是的中位线,所以。

中考数学专题复习《三角形》专题训练

、选择题 A. 13 C. 13 或 5 2. 三角形的角平分线、中线和高( 克,CF 的质量为106克,则整个金属框架的质量为( 4. 到厶ABC 的三条边距离相等的点是厶 ABC 的是( 5. 如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做使用的数学道理是 6. 如图,△ ABC 内有一点 D,且 DA=DB=DC 若/ DAB=20,/ DAC=30,则/ BDC 的大小是( 三角形 1.若一个直角三角形的两边长为 12和 5,则第三边为 D. 15 A. 都是射线 B. 都是直线 C.都是线段 D. 都在三角形内 3. 小明用同种材料制成的金属框架如图所示,已知/ B=Z E , AB=DE BF=EC 其中框架厶ABC 的质量为840 A. 734 克 B. 946 克 C. 1052 克 D. 1574 克 A. 三条中线的交点, B. 三条角平分线的交点 C.三条高线的交点 D.三条边的垂直平分线的交点 A.两点之间线段最短 角都是直角 B.三角形的稳定性 C.两点确定一条直线 D.长方形的四个 B.13 或

A. 100° B. 80° C. 70° D. 50° 7. 若一个三角形的一个外角小于与它相邻的内角,则这个三角形是() A.直角三角形 B.锐角三角形 C. 钝角三角形 D.无法确定 8. 已知在△DEF中,/ A=Z D=9C°,则下列条件中不能判定△DEF全等的是() A. AB=DE AC=DF- B. AC=EF BC=DF - C. AB=DE BC=EF- D. / C=Z F , AC=DF 9. 若等腰三角形的顶角为80°,则它的一个底角度数为() A. 20° B. 50° C. 80° D. 100° 10. 如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△ DMP 面积达到5cm2的时刻的个数是() D C A 冠B A. 5 B. 4 C. 3 D. 2 二、填空题 11. 在厶ABC中,已知/ A=30°,/ B=70°,则/ C的度数是______________ 12. 将一副三角板如图叠放,则图中/ a的度数为________ ?

三角形的中位线

第十八章平行四边形 18.1.2 平行四边形的判定 第3课时三角形的中位线 学习目标:1.理解三角形中位线的概念,掌握三角形的中位线定理; 2.能利用三角形的中位线定理解决有关证明和计算问题. 重点:理解三角形中位线的概念,掌握三角形的中位线定理. 难点:能利用三角形的中位线定理解决有关证明和计算问题. 一、知识回顾 1.平行四边形的性质和判定有哪些? 边:①AB∥CD,AD____BC ②AB=CD,AD____BC 平行四边形ABCD ③AB∥CD,AB_____CD 角:∠BAD____∠BCD,∠ ABC____∠ADC 对角线:AO____CO,DO____BO 一、要点探究 探究点1:三角形的中位线定理 概念学习三角形中位线:连接三角形两边中点的线段. 如图,在△ABC中,D、E分别是AB、AC的中点,连接DE. 则线段DE就称为△ABC的中位线. 想一想 1.一个三角形有几条中位线?你能在△ABC中画出它所有 的中位线吗? 2.三角形的中位线与中线有什么区别? 猜一猜如图,DE是△ABC的中位线,DE与BC有怎样的位置关系,又有 怎样的数量关系? 猜想:三角形的中位线________三角形的第三边且 ________第三边的________. 量一量度量一下你手中的三角形,看看是否有同样的结论? 证一证如图,在△ABC中,点D,E分别是AB,AC边的中点. 1 . 2 DE BC DE BC 求证:∥, 分析: 课堂探究 自主学习 教学备注 学生在课前 完成自主学 习部分 配套PPT讲 授 1.情景引入 (见幻灯片 3-4) 2.探究点1新 知讲授 (见幻灯片 5-18) 性质 判定 教学备注 2.探究点1新 知讲授 (见幻灯片 5-18)倍长DE至F DF与AC互相平分 构造全等 三角形 角、边 相等 平行四 边形 线段相 等、平行

中考总复习专题训练(三角形)知识分享

2010年中考总复习专题训练(三角形)

2010年中考总复习专题训练(三角形) 考试时间:120分钟满分150分 一、选择题(每小题3分,共45分) 1. 满足下列条件的三角形,按角分类有三个属于同一类,则另一个是 ()。 A.∠A:∠B:∠C=1:2:3 B.∠A-∠B=∠C C.∠A=∠C=40° D.∠A=2∠B=2∠C 2. 如果线段a、b、c能组成直角三角形,则它们的比可以是()。 A. 1:2:4 B. 1:3:5 C. 3:4:7 D. 5:12:13 3. 已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为 ()。 A.90° B.110° C.100° D.120° 4. 在一个三角形中有两个内角相等,这个三角形还有一个外角为110°,则两个 相等的内角的度数为()。 A.40° B.55° C.70°或55° D.70° 5.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周 长最小值是()。 A.14 B.15 C.16 D.17 6. 下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中, 任意两内角之和必大于90°,其中错误的个数是()。 A.0 个 B.1个 C.2个 D.3个

F E D C B 7.锐角三角形的三个内角是∠A 、∠B 、∠ C ,如果B A ∠+∠=∠α, C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 ( )。 A .没有锐角 B .有1个锐角 C .有2个锐角 D .有3个锐角 8.如图1,已知AB ∥CD ,则( )。 A .∠1=∠2+∠3 B .∠1=2∠2+∠3 C .∠1=2∠2-∠3 D .∠1=180o-∠2-∠3 9. 如图2,将一张矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知 2AB =,30DEC '∠=,则折痕DE 的长为( )。 A.2 B.23 C.4 D. 1 10. 如图3,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S ABC =4cm 2, 则阴影面积等于( )。 A.2cm 2 B.1cm 2 C.12cm 2 D.14 cm 2 图1 图2 图3 11.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是( )。 A.∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ B.∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ C.∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ D.AB=A ′B ′,AC=A ′C ′,BC=B ′C ′ 12.有五根细木棒,长度分别为1cm ,3cm ,5cm ,7cm ,9cm ,现任取其中的三根 木棒,组成一个三角形,问有几种可能( )。 A.1种 B.2种 C.3种 D.4种

三角形的中位线经典练习题及其答案

三角形的中位线练习题及其答案 1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4.如图△ABC 中,D 、E 分别是AB 、 AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______ 5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cm (2)中线AD 与中位线EF 的关系是___ 6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm . (1) (2) (3) (4) 7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm . 8.在Rt △ABC 中,∠C=90°,AC=?5,?BC=?12,?则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm 10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m 11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、 20081 B 、20091 C 、220081 D 、2 20091 12.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上 从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定 13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF?的周长是( ) A .10 B .20 C .30 D .40 14.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .

七年级下册数学三角形专题训练

1.一个三角形的三个内角中( ) A 、至少有两个锐角 B 、至多有一个锐角 C 、至少有一个直角 D 、至少有一个钝角 2. 下列三条线段的长度能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,10 3.关于三角形的边的叙述正确.. 的是( ) A 、三边互不相等 B 、至少有两边相等 C 、任意两边之和一定大于第三边 D 、最多有两边相等 4.等腰三角形两边长分别为 3、7,则它的周长为( ) A 、13 B 、17 C 、13 或17 D 、不能确定 5.如右图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高, 那么图中与∠A 相等的角是( ) A 、∠ B B 、∠ACD C 、∠BC D D 、∠BDC 6.下列图形中具有稳定性有( ) A 、正方形 B 、长方形 C 、梯形 D 、直角三角形 7. 若三角形两边长分别是4、5,则周长c 的范围是( ) A.1<c <9 B.9<c <14 C.10<c <18 D. 无法确定 8. 一个三角形的三个内角中( ) A. 至少有一个等于90° B. 至少有一个大于90° C. 不可能有两个大于89° D. 不可能都小于60° 9.等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .13 C .17或22 D .22 10、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为( ) A 、6 B 、8 C 、10 D 、12 A B C D

11.如图,图中共有_____个三角形 ,其中以BC 为一边的三角形是________________;以∠A 为一个内角的三角形是___________. 12.如图,AE 、AD 、CF 分别是△ABC 的高、中线和角平分线, ⑴∵AE 是△ABC 的高, ∴∠____=∠____=90°; ⑵∵AD 是△ABC 的中线,∴____=___=2 1 ____; ⑶∵CF 是△ABC 的角平分线,∴∠____=∠____= 2 1 ∠____. 13.如果三角形的两边分别是a=3cm ,b=4cm ,那么第三边c 的长度范围是__________. 14.△ABC 的周长为12,三边a 、b 、c 之间存在关系a -1=b ,b -1=c ,则三边长a=____,b=_____,c=____. 15.直角三角形两个锐角的外角平分线所组成的锐角等于_________度. 16.在△ABC 中,若∠C+∠A=2∠B ,∠C -∠A=80°,则∠A=___,∠B=___,∠C=___. 17.一个三角形三个外角度数的比是3∶3∶2,则该三角形的形状是______________. 18.等腰三角形的一腰中线分该三角形的周长为15cm 、18cm ,则底边长为__________. 19.△ABC 中,如果∠C=55°,∠B -∠A=10°,那么∠A=_____. 20.如图,△ABC 中,D 是BC 延长线上一点,E 是AC 上一点,∠A=∠B ,∠ACD=∠EDC ,如果∠AED=140°,那么∠ACD=________,∠B=_______. A B C D E F A B C D E

三角形中位线在初中几何中的应用

1 初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要 取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH= 21BD ,HF=2 1 AC,因为AC=BD,从而得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH= 21BD ,EH//BD ,HF=2 1 AC ,FH//AC (三角形中位线定理)而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵ EH//BD ,HF//AC ,∴∠HEF=∠DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证: ∠AEF=∠DFE 分析:欲证:∠AEF=∠DFE 。由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN=∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有 12GM AB ∥,1 2 GN CD ∥,由于AB=CD ,进而有GM=GN , ∠GMN=∠GNM 然后再转化∠EPN=∠Q ,从而证出结论。 证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD , 取BD 的中点G ,连结GM 、GN 。∵G 、M 分别为△ABD 的边BD 、AD 的中点∴ 12GM AB ∥。同理可证:12 GN AB ∥,又∵AB=CD ,∴GM=GN ,∴∠GMN=∠GNM , ∵GM//AB ,GN=CD ,∴∠GMN=∠EPN ,∠GNM=∠Q ,∴∠EPN=∠Q ,又 EF ⊥MN ,

三角形的中位线经典习题类型大全

第 1 页 共 2 页 1 三角形的中位线综合练习题 姓名 例1如图1,在△ABC 中,AC>AB ,M 为BC 的中点.AD 是∠BAC 的平分线,若CF ⊥AD 交AD 的延长线于F .求证: ()1 2MF AC AB = - . F E D C B A 图1 图2 图3 图4 图5 例2. 如图2,在四边形ABCD 中,E 、F 分别为AC 、BD 的中点,则EF 与AB +CD 的关系是 ( ) A .2EF AB CD =+ B. 2EF AB CD >+ C. 2EF AB CD <+ D. 不确定 例3. 如图5,AB ∥CD ,E 、F 分别是BC 、AD 的中点,且AB=a ,CD=b ,则EF 的长为 . 4.在Rt △ABC 中,∠C=90°,AC=?5,?BC=?12,?则连结两条直角边中点的线段长为_______. 5.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm 6.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、 20081 B 、20091 C 、220081 D 、2 20091 7.如图4所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从 点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定 8.如图5,在△ABC 中, E ,D , F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF?的周长是( ) A .10 B .20 C .30 D .40 9.顺次连接一个四边形的各边中点,得到一个菱形,这个四边形一定是( ) A.平行四边形 B.菱形 C 、矩形 D.对角线相等的四边形 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 12.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 13.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。 求证:四边形EFGH 是平行四边形。 F E D B H G F E D C B A

三角形练习题

第10 题第9题图 第一章 三角形练习题 基础题★ 一、选择题 1.一个三角形的三个内角中,锐角的个数最少为 ( )A .0 B .1 C .2 D .3 2.下面说法错误的是 ( ) A .三角形的三条角平分线交于一点 B .三角形的三条中线交于一点 C .三角形的三条高交于一点 D .三角形的三条高所在的直线交于一点 3.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线 4.如图5—12,已知∠ACB =90°,CD ⊥AB ,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B 5.一个三角形的两边长分别为 3 cm 和7 cm ,则此三角形的第三边的长可能是( )A .3 cm B .4 cm C .7 cm D .11 cm 6.如图所示, 、 、 分别表示△ABC 的三边长,则下面与△ 一定全等的三角形 是( ) 7.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 8.小华在电话中问小明:“已知一个三角形的三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) A. B. C. D. 9.要测量河两岸相对的两点 , 的距离,先在 的垂线 上取两点 , , 使 ,再作出 的垂线 ,使 , , 在一条直线上(如图所示),可以说明△ ≌△ ,得 ,因此测得 的长就是 的长,判定△ ≌△ 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 10.如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则 不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 二、填空题 1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形. 2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.一个等腰三角形的两边长分别为5和6,则它的周长是 . 4.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 第7题图

三角形的中位线知识、方法总结

三角形的中位线济宁附中李涛 1.定义 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线. 如图:DE是△ABC的中位线。 符号语言 说明:(1)一个三角形有3条中位线 (2)定义有双重性:即是性质,也是判定 (3)注意与三角形中线的区别:要把三角形的中位线与三角形的中线区分开.三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角 形两边中点的并且与底边平行且等于底边一半的的线段. 2.三角形中位线性质定理 定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半 符号语言:(重点,书上记了) 说明:(1)作用:证明平行关系,倍分关系;转移线段,转移角。 (2)常用辅助线:见中点,构造中位线。 (3)分离基本图形:全等,平行四边形 证明(转化思想,常用辅助线) 证明1: 如图,延长DE 到F,使EF=DE ,连结CF.-------(中线加倍,构造全等) ∵DE=EF ∠AED=∠CEF AE=EC ∴△ADE ≌△CFE(SAS) ∴AD=FC ∠A=∠ECF ∴AB∥FC 又∵AD=DB ∴BD∥CF,BD=CF ∴四边形BCFD是平行四边形

∴DE∥BC 且DE=1/2BC 证明2: 如图,延长DE 到F,使EF=DE ,连结CF、DC、AF ∵AE=CE DE=EF ∴四边形ADCF为平行四边形 ∴AD∥CF,AD=CF ∵AD=BD ∴BD∥CF,BD=CF ∴四边形BCFD为平行四边形 ∴BC∥DF,BC=DF ∴DE∥BC 且DE=1/2BC 中位线的应用: (1)中点三角形 定义:中点三角形就是把一个三角形的三边中点顺次 连接起来的一个新三角形. 性质:(1)这个新三角形的各个边长分别是原来三角形三 边长的一半且分别平行,角的度数与原三角形分别相等,4个三角形都全等(2)中点三角形周长是原三角形的周长一半。 (3)中点三角形面积是原三角形面积的四分之一。 补充:中点三角形与原三角形不仅相似,而且位似。 (2)中点四边形 定义:依次连接任意四边形各边中点所得的四边形称为中点四边形。 中点四边形的形状与原四边形的对角线的数量和位置关系有关。 性质(1)不管原四边形的形状怎样改变,中点四边形的形状始终是 平行四边形。 证明:连接AC,BD-----------(连对角线,构造中位线) ∵E,H,G,F是边AB,AD,DC,BC中点 ∴EH,GF是△ABD,BCD的中位线 ∴EH=1/2BD,GF=1/2BD,EH//BD,GF//BD ∴EH平行等于GF ∴EFGH是平行四边形

几何三角形专题练习

第21课时 线段、角、相交线与平行线 一、选择题 1.( 2008年杭州市) 设一个锐角与这个角的补角的差的绝对值为α, 则( ) A . 900<<α B . 900≤<α C . 900<<α或 18090<<α D . 1800<<α 2.已知:如图,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB=40°,在OB ?上有一点P ,从P 点射出一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB ?的度数是( ) A .60° B .80° C .100° D .120° 3.如图,B 是线段AC 的中点,过点C 的直线L 与AC 成60°的角,?在直线L 上取一点P ,使∠APB=30°,则满足条件的点P 共有( ) A .1个 B .2个 C .3个 D .无数个 4.(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15° 5.学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4) ): 从图中可知,小敏画平行线的依据有( ) ①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④ 二、填空题 6.一副三角板,如图叠放在一起,∠α的度数是 度. 7.如图,AB ∥CD ,若∠ABE=120?°, ∠DCE=?35?°,?则有∠BEC=_______度. 8.如图,地面上有一个钟,钟面12个粗线段刻度是整点时时针(短针)所指位 图6 第2题图 第3题图 第4题图 第6题图 第7题图 第8题图 1 2 3

(完整版)三角形的中位线练习题含答案

三角形的中位线练习题三角形中位线定义: . 符号语言:在△ABC中,D、E分别是AB、AC的中点, 则:线段DE是△ABC的__ __, 三不同点:①三角形中位线的两个端点都是三角形边的中点。 ②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。 相同点:都是一条线段,都有三条。 三角形中位线定理: . 符号语言表述:∵DE是△ABC的中位线(或AD=BD,AE=CE) ∴DE//21BC 练习 1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4.如图△ABC中,D、E分别是AB、 AC的中点,则线段CD是△ABC的___, 线段DE是△ABC_______ 5、如图,D、E、F分别是△ABC各边的中点 (1)如果EF=4cm,那么BC=__cm 如果AB=10cm,那么DF=___cm (2)中线AD与中位线EF的关系是___ 6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm. (1) (2) (3) (4) 7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm. 8.在Rt△ABC中,∠C=90°,AC=?5,?BC=?12,?则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为() A.4.5cm B.18cm C.9cm D.36cm 10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位 E D B E D

初一数学三角形专题练习

A C 第 8 题 D H P G F E D C B A 三角形、 ★★★主要知识点: 1.三角形的分类 三角形按边分类可分为_______和______(等边三角形是等腰三角形的特殊情况);按角分类可分为______、_______和_______, 2.一般三角形的性质 (1)角与角的关系:三个内角的和等于___°;三个外角的和等于___;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角,____________。 (2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。 (3)边与角的大小对应关系:在一个三角形中,__边对等角;等角对等____。 (4)三角形的主要线段的性质(见下表): (1)等腰三角形的特殊性质:①等腰三角形的两个_____角相等;②等腰三角形_______、_____中线和______是同一条线段,三线合一;这条线段所在的直线是等腰三角形的对称轴。 (2)等边三角形的特殊性质:①等边三角形每个内角都等于___°。②三线合一 (3)直角三角形的特殊性质:①直角三角形的两个锐角互为___角; 4. 三角形的面积一般三角形:S △ = 2 1a h ( h 是a 边上的高 ) 例1: (基础题) 如图, AC //DF , GH 是截线. ∠CBF =40°, ∠BHF =80°. 求∠HBF , ∠BFP , ∠BED .∠BEF 例2: (基础题) ①在△ABC 中,已知∠B = 40°,∠C = 80°,则∠A = (度) ②:、。如图,△ABC 中,∠A = 60°,∠C = 50°,则外角∠CBD = 。 ③已知,在△ABC 中, ∠A + ∠B = ∠C ,那么△ABC 的形状为( ) A 、直角三角形 B 、钝角三角形 C 、锐角三角形 D 、以上都不对 ④下列长度的三条线段能组成三角形的是( ) A.3cm ,4cm ,8cm B.5cm ,6cm ,11cm C.5cm ,6cm ,10cm D.3cm ,8cm ,12cm ⑤如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。 ⑥小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ .______.

经典--初中数学三角形专题训练及例题解析

经典《三角形》专题训练 知识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?? ? ??钝角三角形 直角三角形锐角三角形 ???????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

B.n 边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。 考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。

相关主题
文本预览
相关文档 最新文档