当前位置:文档之家› 光伏离网逆变器并机典型设计

光伏离网逆变器并机典型设计

光伏离网逆变器并机典型设计
光伏离网逆变器并机典型设计

光伏离网逆变器并机典型设计GrOWan古湍巨特

TOP3

全球单相逆变器

IlIIl

在一些无电地区,安装光伏离网储能系统,比采用油机发电,更经济和环保。相对于

并网系统,离网系统较为复杂,需考虑用户的负载、用电量、当地的天气情况,特别

是负载情况多样化,有像水泵类的感性负载、也有像电炉类的阻性负载,有单相,也

有三相。对于大于IOkW 的光伏离网系统,可以采用单机或者多机并联的方式,但各

有其优缺点。

本文主要介绍采用多台离网逆变器搭建的中大功率光伏离网系统设计方法。

古瑞瓦特离网控制逆变一体SPF5000TL HVM 机型,最多支持6台并机,可以搭建

30kW以内的光伏离网系统。既可组成30kW的单相系统,还可组成30kW的三相系统。考虑到三相负载不一定均衡,6台逆变器组成三相系统时,还有多种配置方法,如222、321、411等,可以应对不同场景的用户需要。下表是一个用户的实际负载

情况和用电情况。

这个系统较特殊,有单相负载与三相负载两种,且三相不平衡。我们根据负载的分布,

先进行逆变器选型设计,系统总负载功率是24kW ,用户表示,不会所有的负载都同

时运行,最大功率在20kW 左右,因此设计采用6台5kW 单相离网逆变器,A相用

3台共15kW,B相用2台共IOkW,C相用1台共5kW,构成一个30kW 三相不平衡的离网系统。单相逆变器输出有两根线:相线和零线,6台逆变器的零线全接在

一起,3台逆变器的相线接在A相,2台逆变器的相线接在B相,1台逆变器的相线

接在C相。

多台逆变器并联,每台机还需连接通信线,A相的3台机均流线接在一起,B相的2

台机均流线接在一起,连接完线,再接上蓄电池,关闭输出断路器,在面板上设置逆

变器的相位,SPF5000进入设置第23项,A相的3台机设为3P1,B相的2台机设为3P2,C相的1台机设为3P3 ,设置完成,便可运行。

1

选完逆变器,我们再计算组件用量,该系统平均每天需80度电,当地的峰值日照小

时数据是平均每天3.5小时,离网系统的效率比并网低,约为0.7,这样算

80∕(3.5*0?7),需要32kW 左右的光伏组件,设计采用280W 的组件120块,每台

逆变器20块,功率 5.6kW ,组件采用10串2并的方式接入逆变器,系统总功率

33.6kW。

再来计算蓄电池容量,经了解,用户大部分时间是白天用电,约为50度,晚上没有

太阳时用电约为30度,客户要求蓄电池尽量少配,满足基本要求即可,因此设计采

用12V250AH 的铅炭电池16个,总容量48度,放电深度为0.7 ,可用电量为33.6

度,基本满足客户需要,蓄电池采用4串4并方式,6台逆变器的蓄电池全部共用。

相对于一台整机30kW的中功率离网逆变器,采用多台小功率单相并机的方式,

接线和调试较复杂,但价格较便宜,灵活性高,即使有一两台逆变器损坏,系统仍可继续

运行,是不错的选择。

基于DSP的单向光伏离网逆变器的设计

本科毕业论文(设计、创作)题目:基于DSP的单向光伏离网逆变器的设计 学生姓名:学号:103402035 所在系院:专业:电子信息工程入学时间:2010年9月导师姓名:职称/学位:副教授/硕士 导师所在单位: 完成时间:2014年5月安徽三联学院教务处制

基于DSP的单向光伏离网逆变器的设计 摘要:随着石油化工资源的枯竭、生态环境的日趋恶化和人类可持续发展的需要,一种低碳环保的绿色能源太阳能引起了众多人群的关注,并且成为现代能源领域发展预期最好的新能源。以TMS320F2812DSP为核心控制芯片,Infineon公司型号为IGP50N6OT的IGBT(50A,60OV)作为开关器件,以IR公司的IR2llO作为驱动芯片的离网光伏发电系统,可以更好地解决偏远地区供电中出现的种种问题。设计分析了各种光伏发电系统在应用方面的优、缺点。比较了光伏发电逆变器三种重要的拓扑结构,给出了系统总体框图及分电路原理,并实现了仿真测验。 关键词:光伏发电;离网逆变器;DSP

Research on Single-phase Off-grid Inverter of Photovoltaic Power based on DSP Abstract:With the exhausted of traditional energy sources,the worsening of the ecological environment and human requirements of sustainable development,solar energy as an ideal green energy has caused more and more attention,to become the world's most promising new energy technology.TMS32OF2812 DSP,a high–performance digital signal processing chip,is used to controlling the core in our researeh.IGP50N60model of infien on corporation is selected as switching device.The single-Phase off-grid PV inverter is researched.can better solve the problems in the remote area power supply.Design of photo voltaic power generation system are analyzed advantages and disadvantages in the https://www.doczj.com/doc/0014268148.html,parison of the photovoltaic inverter topology structure of three important,gives the system block diagram and circuit principle,and realizes the simulation test. Keywords:PV;Off-grid inverter;DSP

毕业论文DCAC逆变器的设计

1 绪论 (1) 1.1 DC/AC逆变器的基本概念 (2) 1.2 逆变器的分类和用途 (3) 1.2.1 逆变器的基本分类 (3) 1.2.2 逆变器的用途 (4) 1.3 DC/AC逆变器的发展背景和发展方向 (4) 1.3.1 DC/AC逆变器的发展背景 (4) 1.3.2 DC/AC逆变器的发展方向 (5) 2 逆变器的主电路研究 (6) 2.1逆变系统基本工作原理 (6) 2.2 SPWM波的生成原理及控制方法分析 (6) 2.2.1 PWM控制的理论基础 (7) 2.2.2 PWM逆变电路及其控制方法 (8) 2.3 逆变器的主电路分析 (10) 2.3.1 低频环节逆变技术逆变器 (10) 2.3.2 高频环节逆变技术 (13) 3 小功率光伏并网系统的逆变器设计 (15) 3.1光伏发电的发展现状及前景 (15) 3.1.1 国外光伏发电现状及前景 (15) 3.1.2 国内光伏发电现状及前景 (16) 3.2 并网逆变器的拓扑 (16) 3.2.1低频环节并网逆变 (17) 3.2.2 高频环节并网逆变 (18) 3.2.3非隔离型并网逆变 (18) 3.3 小功率光伏并网逆变器的设计 (19) 3.3.1 小功率光伏并网逆变器的工作原理 (19) 3.3.2系统控制方案 (20) 3.3.3 TMS320F240软件控制流程 (25) 3.3.4系统保护 (26) 4 光伏并网逆变器的控制策略研究 (28) 4.1 输出控制方式 (28) 4.2 输出电压控制策略 (28) 4.3 输出电流控制策略 (29) 4.4 控制策略的选择和参考电流的确定 (30) 5总结 (32) 1 绪论

太阳能逆变器的测试系统详解

太阳能逆变器的测试系统详解 太阳能逆变器测试系统详细描述: 1.防孤岛检测装置(手动型) ACLT-2210M RLC各11.1K,总装机容量33.3K,步进幅度0.001K,最大电流分辨率1mA,满足10K逆变器防孤岛保护试验检测需要 ACLT-3803M RLC各32.97K,总装机容量98.91K,步进幅度0.01K,最大电流分辨率1mA,满足30K逆变器防孤岛保护试验检测需要 ACLT-3820M RLC各66.97K,总装机容量200.91K,步进幅度0.01K,最大电流分辨率1mA,满足60K逆变器防孤岛保护试验检测需要 ACLT-3830M RLC各109.97K,总装机容量329.91K,步进幅度0.01K,最大电流分辨率1mA,满足100K逆变器防孤岛保护试验检测需要 ACLT-3840M RLC各139.97K,总装机容量419.91K,步进幅度0.01K,最大电流分辨率1mA,满足130K逆变器防孤岛保护试验检测需要 ACLT-3860M RLC各209.97K,总装机容量629.91K,步进幅度0.01K,最大电流分辨率1mA,满足200K逆变器防孤岛保护试验检测需要

ACLT-3880M RLC各269.97K,总装机容量809.91K,步进幅度0.01K,最大电流分辨率1mA,满足250K逆变器防孤岛保护试验检测需要 ACLT-38160M RLC各529.97K,总装机容量1589.91K,步进幅度0.01K,最大电流分辨率1mA,满足500K逆变器防孤岛保护试验检测需要 ACLT-38300M RLC各1079.97K,装机容量3239.91K,步进幅度0.01K,最大电流分辨率1mA,满足1000K逆变器防孤岛保护试验检测需要 太阳能逆变器测试系统 一、太阳能逆变器测试系统关于谐振频率的难点为了模拟孤岛运行环境,需要RLC负载能够精确产生一个稳定的基频频率(50Hz或60Hz),谐振频率公式,L与C一定要均衡,才能达到基频频率。为了高效率实施逆变器检测,防孤岛试验检测装置在选型时一定要注意选择一套可以稳定、快速、自动调试出基频频率的RLC负载。 二、太阳能逆变器测试系统关于逆变器输出无功对谐振频率的影响所有被测光伏逆变器一定会有无功输出,无功可能是容性,也可能也是感性。关键是在实施防孤岛效应保护试验时,逆变器输出无功功率一定要可以自动补偿到RLC 负载调试中,避免在试验过程过欠频触发保护,导致测量结果错误。所以一定要注意选择一套可以自动补偿逆变器输出无功功率的RLC负载。 三、太阳能逆变器测试系统关于寄生量对测量结果的影响如果试验的电感负荷比电容大,谐振频率会大于50Hz,电感负荷比电容小,谐振频率会小于

光伏逆变器行业现状及发展趋势前景

一、光伏逆变器产业链结构分析 图表光伏发电用逆变器产业链结构 资料来源:产研智库 一、上游原材料 逆变器企业主要外购产品包括各种电子元器件、结构件、电气元器件、电线电缆等。 逆变器的主功率元件的选择至关重要,使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,在大容量系统中一般均采用IGBT模块,而在高压特大容量(1000KVA以上)系统中,一般均采用IGCT、GTO等作为功率元件。 图表光伏发电用逆变器主要原料 资料来源:产研智库 二、下游需求领域 图表光伏发电逆变器国内主要应用领域

资料来源:产研智库 三、产业链各环节传导机制 光伏逆变器上游为电力电子元器件、微电子芯片、集成电路、电力电容器、电抗器、变压器、机柜、机箱壳体制造等行业。该行业与上游行业的关联性较低,上游行业的影响主要体现在本行业采购成本。 逆变器行业与下游行业的发展密切相关,下游行业对本行业的发展具有较大的牵引和驱动作用,国家光伏项目建设与投资是决定本行业未来需求的重要部分,其需求变化直接决定了本行业未来的发展状况。 二、国外光伏逆变器市场格局 光伏逆变器的主要厂商分布在光伏安装的主要区域,包括德国、中国、美国等地。2015年,全球逆变器的主要产能集中在德国、中国、美国,其中SMA、阳光电源、华为占据前三位。国外厂商逆变器项目经验丰富,产品质量高,成本也相对较高。国内自主研发的光伏逆变器,成本较低、售后服务效率更高。从地域来看,预计未来新增光伏逆变器需求将主要来自美国、日本和中国等新兴市场国家。 2015年全球逆变器市场格局在领先厂商之间日趋巩固。全球逆变器需求在2015年上涨了33%,排名前10的光伏逆变器厂商市场份额提高到了75%,产业集中度不断提高,全球光伏逆变器出货量达2010年以来的最高值。 德国SMA继续保持其2015年全球最大光伏逆变器供应商的地位,但在出货量上继续损失市场份额。虽然SMA仍然在光伏逆变器收入上处于全球领导者地位,但其从逆变器出货排行榜流失的全球需求已转向中国。2015年出货量前十名厂商中有四个是中国企业,其中华为出货量领先。SMA业绩提升的主要得益于美国和其他快速增长的公用事业规模市场,该公司还更新了其逆变器产品组合,表示其在住宅、商业和公用事业规模市场都有竞争力产品推出。 图表2015全球10大光伏逆变器厂商出货量排名

5kWp光伏太阳能离网发电系统设计方案

5kWp光伏太阳能离网发电系统 设 计 方 案

目录 一、光伏太阳能离网发电系统简介 (2) 二、项目地参数 (2) 三、相关规范和标准 (5) 四、系统组成与原理 (6) 五、设计过程 (8) 1、方案简介 (8) 2、用户信息 (8) 3、蓄电池设计选型 (8) 4、组件设计选型 (12) 5、离网逆变器设计选型 (16) 6、控制器设计选型 (18) 7、交直流断路器 (21) 8、电缆设计选型 (23) 9、方阵支架 (23) 10、配电室设计 (23) 11、接地及防雷 (23) 12、数据采集检测系统 (24) 六、仿真软件模拟设计 (25) 七、设备配置清单及详细参数 (31) 八、系统建设及施工 (31) 九、系统安装及调试 (32) 十、工程预算投资分析报告 (36) 十二、运行及维护注意事项 (38) 十三、设计图纸 (41)

5kWp光伏太阳能离网发电系统配置方案 一、光伏太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电 的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。 二、项目地参数 图片来自Google地球 1、项目地点:江苏省泰州市XX区XX镇; 2、经度:120°12’ ,纬度:32°23’; 3、平均海拔高度:7m;

逆变器毕业设计成果

毕业设计成果(产品、作品、方案) 设计题目: 智能逆变器的设计与制作 二级学院航空电子电气工程学院 专业航空电子信息技术 班级航电1303班 学号 201300023036 姓名唐震 指导老师宋烨 二Ο一五年十二月二十日

诚信声明 本人郑重声明:所呈交的毕业设计,是本人在指导老师的指导下,独立进行研究所取得的成果。尽我所知,除设计中特别加以标注的地方外,设计中不包含其他人已经发表或撰写过的研究成果。本人完全意识到本声明的法律结果由本人承担。 毕业设计作者签名:指导教师签名: 年月日年月日

目录 摘要 (3) 1. 设计任务和设计思路 (4) 1.1 设计意义 (4) 1.2 设计要求 (4) 1.3 设计思路 (4) 1.4 方案选择 (4) 2. 硬件原理及其电路设计 (6) 2.1 CC-PWM变换器的基本原理 (6) 2.2 CC-PWM逆变器的数学模型 (7) 2.3 CC-PWM逆变器的主要控制方法 (9) 2.3.1 滞环电流控制方法 (9) 2.3.2 线性电流控制方法 (9) 2.3.3预测电流控制方法 (10) 2.4 改进型CC-PWM滞环电流控制器设计 (11) 2.4.1 正弦环宽滞环电流控制方案 (11) 2.5 模糊变环宽滞电流控制方案 (11) 2.6 模糊自整定PI控制器设计 (12) 2.6.1 控制方案 (12) 2.6.2 控制器设计 (13) 2.7 基于神经网络的模糊推理自整定PI控制器设计 (13) 2.7.1 控制方案 (14) 2.7.2 控制器设计 (14) 3.电路的制作 (15) 3.1 元器件的选择 (15) 3.1.1 GTR电力晶体管 (15) 3.1.2 MOSFET (15) 3.1.3 通态电阻 (15) 3.1.4 热阻 (16) 3.1.5 输入电容 (16) 3.1.6栅极驱动电压 (16) 3.2 元器件的焊接 (16) 3.2.1 焊接要点 (16) 3.2.2 注意事项 (17) 3.3 电路调试 (17) 3.3.1 检测各个参数点 (17) 3.4成品展示 (18) 设计总结 (19) 参考文献 (20)

光伏并网逆变器测试规范

深圳市晶福源电子技术有限公司 并网逆变器电性能测试规范 (此文档只适用于金太阳标准) 拟制:彭庆飞/丁川日期:2012.11.19 审核:石绍辉日期:2012.12.01 复审:石绍辉日期:2012.12.07 批准:石绍辉日期:2012.12.07 文件编号:20111219 生效日期:2013.1.1版本号:VA.1

文件修订记录

目录 1目的 (6) 2适用范围 (6) 3定义 (6) 4引用/参考标准 (6) 5测试基本原则及判定准则 (6) 5.1测试基本原则 (6) 5.2 测试问题分类的基本原则和标准 (6) 5.4 质量判定准则 (6) 6测试仪器、测试工具、测试环境 (7) 6.1 测试仪器 (7) 6.2 测试工具 (7) 6.3 测试环境 (7) 7测试项目、测试说明、测试方法、判定标准 (7) 7.1基本性能测试 (7) 7.1.1 直流输入电压范围和过欠压测试 (7) 7.1.2 电网电压响应测试 (8) 7.1.3 电网频率响应测试 (9) 7.1.4 并网电流直流分量 (10) 7.1.5 并网电压的不平衡度测试 (10) 7.1.6 功率因数测试 (10) 7.1.7 效率测试 (11) 7.1.8 最大功率点跟踪(MPPT)测试 (11) 7.1.9 并网电流谐波测试 (13) 7.1.10 噪声测试 (13) 7.1.11 检测和显示精度测试 (14) 7.1.12 母线软启动及浪涌电流测试 (15) 7.1.13 自动开关机测试 (15) 7.1.14 逆变软启动测试 (16) 7.1.16 PV输入限流测试 (16) 7.1.18 输出隔离变压测试 (16) 7.1.19 恢复并网保护测试 (17) 7.1.20 输出过流保护测试 (17) 7.1.21 防反放电保护测试 (18) 7.1.22 极性反接保护测试 (18) 7.1.23 输入过载保护测试 (19) 7.1.24 孤岛保护测试 (19) 7.1.25 逆向功率保护测试 (21) 7.1.26 EPO紧急关机测试 (22) 7.1.29 EPO关机驱动电压测试 (22) 7.1.30 电容放电时间测试 (23) 7.1.31 死区时间测试 (23) 7.1.33 母线电容纹波电流测试 (23) 7.1.34 逆变滤波电容纹波电流测试 (24) 7.1.35 逆变电感纹波电流测试 (24) 7.2 故障模拟测试 (24) 7.2.1 母线软启动失败测试 (24) 7.2.3 输出变压器和电抗器过温模拟测试 (25) 7.2.5 逆变晶闸管/接触器开路故障模拟测试 (25) 7.2.7 风扇故障模拟测试 (26) 7.2.8 输出相序接反保护测试 (26)

光伏离网逆变器并机典型设计

光伏离网逆变器并机典型设计GrOWan古湍巨特 TOP3 全球单相逆变器 IlIIl 在一些无电地区,安装光伏离网储能系统,比采用油机发电,更经济和环保。相对于 并网系统,离网系统较为复杂,需考虑用户的负载、用电量、当地的天气情况,特别 是负载情况多样化,有像水泵类的感性负载、也有像电炉类的阻性负载,有单相,也 有三相。对于大于IOkW 的光伏离网系统,可以采用单机或者多机并联的方式,但各 有其优缺点。 本文主要介绍采用多台离网逆变器搭建的中大功率光伏离网系统设计方法。 古瑞瓦特离网控制逆变一体SPF5000TL HVM 机型,最多支持6台并机,可以搭建 30kW以内的光伏离网系统。既可组成30kW的单相系统,还可组成30kW的三相系统。考虑到三相负载不一定均衡,6台逆变器组成三相系统时,还有多种配置方法,如222、321、411等,可以应对不同场景的用户需要。下表是一个用户的实际负载

情况和用电情况。 这个系统较特殊,有单相负载与三相负载两种,且三相不平衡。我们根据负载的分布, 先进行逆变器选型设计,系统总负载功率是24kW ,用户表示,不会所有的负载都同 时运行,最大功率在20kW 左右,因此设计采用6台5kW 单相离网逆变器,A相用 3台共15kW,B相用2台共IOkW,C相用1台共5kW,构成一个30kW 三相不平衡的离网系统。单相逆变器输出有两根线:相线和零线,6台逆变器的零线全接在 一起,3台逆变器的相线接在A相,2台逆变器的相线接在B相,1台逆变器的相线 接在C相。 多台逆变器并联,每台机还需连接通信线,A相的3台机均流线接在一起,B相的2 台机均流线接在一起,连接完线,再接上蓄电池,关闭输出断路器,在面板上设置逆 变器的相位,SPF5000进入设置第23项,A相的3台机设为3P1,B相的2台机设为3P2,C相的1台机设为3P3 ,设置完成,便可运行。

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

(完整word版)光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点 提出问题: 1.光伏发电系统并网时的主要部件是什么? 2.光伏逆变器如何分类?其电路如何构成? 3.IGBT是什么,有什么特点,主要参数? 4.电力MOSFET是什么,主要参数和特性? 5.逆变器的常用电路有哪些,各自的接线和特点是什么? 6.常用逆变器的形式有哪些,各自特点是什么,主要生产厂家? 1?光伏发电系统并网时的主要部件是什么? 光伏发电系统并网时的主要部件是逆变器。 无论是太阳能电池、风力发电还是新能源汽车,其系统应用都需要把直流电转换为交流电,承担这一任务的部件为逆变器。 逆变器乂称电源调整器、功率调节器,是光伏系统必不可少的一部分。通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。逆变器的名称由此而來。光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。 逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,逆变器的核心器件是IGBT(绝缘栅双极型晶体管),也是价格最高的部件之一。

2.光伏逆变器如何分类?其电路如何构成? 光伏逆变器的分类如下图: 逆变器的分类 输出波形运行方式输出交流电相数功率流动方向方波逆变器阶梯波 逆变器正弦波逆变 器 离网逆变器并网逆 变器 单相逆变器三相 逆变器 单向逆变器双向逆 变器 功率较小(<4kW)的光伏发电系统一般采用正弦波逆变器。逆变器的显示功能主要包括:直流输入电斥?和电流的测量值,交流输出电床和电流的测最值,逆变器的工作状态(运行、故障、停机等)。 光伏逆变器的电路构成如下图所示: 控制电路: 逆变器的控制电路主要是为主逆变电路提供一系列的控制脉冲來控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。 辅助电路: 辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。辅助电路还包含多 并网逆变器 Sd Conriectca Convener s?. AC Elecincrty Q 电网s >

基于DSP光伏并网逆变器的硬件电路设计

本科生毕业设计说明书(毕业论文) 题目:基于DSP的光伏并网逆变器 硬件电路的设计 学生姓名: 学号: 专业:电气工程及其自动化 班级: 指导教师:

基于DSP的光伏并网逆变器硬件电路的设计 摘要 由于近年来不可再生能源的不断消耗,能源危机日益凸显,各国都在加紧开发新能源。太阳能发电作为一种全新的电能生产方式,具有清洁无污染、来源永不衰竭且维护措施简单等特点,因而受到越来越广泛的关注。本文针对太阳能应用的一个重要研究领域——光伏发电系统,尤其是小功率光伏并网发电系统,设计实现了基于DSP控制的单相光伏并网逆变器的硬件电路。 论文首先介绍了太阳能光伏并网的国内外发展现状,阐述了利用DSP控制光伏并网系统的基本原理。然后提出了以逆变器DC/AC变换技术为核心的单相光伏并网逆变器的硬件电路设计方案,并在Matlab软件上进行了仿真测试。最后对后续研究工作进行了展望,为进一步制作电路板及其调试提供了参考。 关键词:光伏并网;逆变器;数字信号处理器;Matlab仿真

PV Grid-Connected Inverter Hardware Circuit Design Based on DSP Abstract In recent years, with the continuous consumption of non-renewable energy, the energy crisis has become increasingly prominent, countries are stepping up the pace to develop new energy. Solar power, as a new energy production methods, owns many features, such as, clean, non-polluting, never failure of source and simple maintenance measures, and thus draws more and more attention. In this paper, as for an important research field of solar energy applications-photovoltaic systems, especially low-power photovoltaic power generation system, the hardware circuit of the DSP-based control of single phase photovoltaic grid-connected inverter is designed and implemented. The paper firstly described the development of solar photovoltaic grid in the world, and explained the basic principles of DSP controlled photovoltaic grid system. Then objective of the single-phase PV grid inverter with the core of DC / AC conversion technology inverter hardware circuit is designed and its simulation tests on the Matlab software is proceeded. Finally, the prospect of follow-up study provides a reference for the further production of circuit boards and their debugging. Key words: grid-connected photovoltaic; inverter; DSP; Matlab simulation

逆变电源 毕业设计 2008

系:电气与信息工程系 专业:电气工程及其自动化班级: 0404 学号: 学生姓名: 导师姓名: 完成日期: 2008年月日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

湖南工程学院 毕业设计(论文)任务书 设计(论文)题目:15kV A逆变电源设计 姓名陈欣宁系电气系专业_电气工程及其自动化班级学号 指导老师职称讲师教研室主任 一、基本任务及要求: 主要设计内容如下: 1、理解逆变电源的工作原理,确定系统主电路: 包括主电路结构的选择,逆变功率器件的选择,参数计算 2、确定系统驱动电路 3、设计系统的控制电路(包括保护电路、触发电路等) 4、提交毕业设计论文和图纸 参数如下: 直流侧输入电压:750V 输出交流电压:380/220V 输出频率:50HZ 容量:15kVA 进度安排及完成时间 1、2月26日至3月15日:查阅资料;写开题报告;确定总体方案。 2、3月16日至3月29日:毕业实习、撰写实习报告。 3、3月30日至4月15日:确定系统主电路 4、4月16日至4月26日:确定系统驱动电路 5、4月27日至6月2日:设计系统的控制电路 6、6月3日至6月12日撰写毕业设计论文。 7、6月13日至6月14日:指导老师评阅、电子文档上传FTP。 8、6月15日至6月18日:毕业设计答辩。

多电平逆变器毕业设计论文

南京工程学院 车辆工程系 本科毕业设计(论文) 题目:多电平逆变器设计 专业:自动化(车辆电子电气)班级: K车电气071 学号: 学生姓名: 指导教师:副教授 起迄日期:2011.2.21~2011.6.10 设计地点:车辆工程实验中心

摘要 近年来在运动控制领域多电平中压变频器的开发研究得到了广泛关注,多电平逆变器使得电压型逆变器的大容量化、高性能化成为可能,具有降低开关管耐压值,减小开关管电压应力,改善输出波形质量,提高系统的电压和功率等级等优点,研究和开发多电平逆变器,无论在技术上还是在实际应用上都有十分重要的意义。所以多电平技术由于越来越广泛的应用于高压大功率领域。目前,在高压大功率领域中,二极管箝位型三电平变换器是研究最多,应用最广的一种多电平拓扑结构。[1] 本文主要对二极管箝位型三电平逆变器进行研究,以此拟作为今后进一步研究的基础。 论文首先详细地介绍了三电平逆变器的工作原理,并在此基础上详细分析了其特性,综合比较了多电平逆变电路三种典型拓扑结构的优缺点。 然后,研究了三电平逆变器空间电压矢量调制技术的基本原理,分析了空间电压矢量调制算法相对于其它方法的优点。详细分析了空间电压矢量调制算法,并给出PWM波的计算公式和开关动作次序。对开关矢量的作用顺序作了有利于中点电压控制的优化,使仿真和实现都比较容易。 最后,分析了三电平逆变器直流侧电容电压不平衡问题的产生。介绍了一种实现中点电压平衡的理论。提出了一种基于MATLAB的建模方法,并通过MATLAB/SIMULINK仿真结果验证了该方法的正确性。采用MATLAB/SIMULINK仿真软件对所推导的三电平逆变器SVPWM调制算法进行了仿真分析,证明了该调制算法的正确性。并与两电平SVPWM调制算法的仿真进行了比较,进一步证明了三电平SVPWM调制算法在谐波抑制和减小器件开关损耗方面的优越性。 关键词:多电平逆变器;空间矢量脉宽调制;中点平衡;MATLAB/SIMULINK仿真

光伏离网逆控一体机

(敬请用户使用前应详细阅读此使用说明)深圳市普顿电力设备有限公司 使 用 说 明 书

请严格依照以下说明使用或安装: 1、安装逆变电源时要专业人员操作或当地经销商协助完成。 2、确认输入直流电压范围是否符合要求即+15% ,电源极性是否正确。 3、确认负载设备电压等级,功率应不大于逆变电源额定输出功率。 4、勿将液体流入逆变电源内部,或用湿布擦机器外壳。机器运行时人体不能直接接触逆变电源输入输出端子,尤其是湿手,否则造成触电伤害。 5、正常运行的逆变电源如需变动其工作环境,不可自行改变其连线,应由专业人员或经销商确认操作。 6、逆变电源运行环境应在通风良好、温度范围-20至45度环境使用,应远离明火源以及日光直射的位置。不能在结露,灰尘环境下运行。在使用过程中有一定的发热量属正常现象、但要保持安装环境的通风散热、干净清洁,特别不能阻塞通风孔。 7、未成年人不得使用本产品。 8、确认逆变电源地线可靠连接,火线和零线不能接反,线径应符合安全使用条件,连接线尽可能缩短。 9、请不要自行打开逆变电源机箱,否则我方将不承担保修事宜。 10、请保存好本说明书,作为日后参阅。 注意: A、未经许可本产品不可以用于维持生命的设备。 B、本逆变电源不适宜用于超高精密电子设备,需先经专业技术人员确认方可投入运行。 C、如果用于计算机负载,计算机的内置电源应选用品牌电源。 警告! 严禁蓄电池反接,严禁火线和零线接反。 严禁在有易燃性、易爆性气体的环境下使用,谨防火花! 连接顺序,务必是先接蓄电池,后接电池板;严禁颠倒顺序。

一、普顿PD系列太阳能逆变电源介绍 本系列逆变电源结合目前逆变电源的优点和缺点进行升级优化、全面改进,并且采用最新的工频逆变电路方案而设计,具备高转换效率、高稳定性、超低损耗、超强带载能力、超强抗干扰能力的特性;可为商业、工业、民用、军用、电信设备等提供可靠的正弦波交流电源。适用于直流电压为DC12V,DC24V,DC48V,DC72V的光伏离网发电场合,主要用于空调、电视、收银机、冰箱、洗衣机、电脑、电动工具、照明、工业设备、电信设备等各类负载。 太阳能逆变器(带市电充电) 二、普顿产品功能介绍 1:普顿产品原理图 2:产品原理说明(交流主供/直流主供,可以在面板自行选择) A、交流主供(市电优先模式) 步骤1:当有市电时,市电旁路直接输出,并且同时为蓄电池充电; 步骤2:当市电突然停电或异常,在5ms内系统自动切换至逆变供电,确保负载持续工作; 步骤3:当市电恢复后,系统自动切换至市电供电,同时为蓄电池充电; 说明:光伏板在发电情况下,就给电池充电,直至电池充满; B、直流主供(逆变优先模式)(以12V电池模式举例如下,其他电压等级对应翻倍) 主用于光伏给电池充电,市电为互补充电,市电当备用电源。 步骤1:当有市电OK时,只要电池电压高于11V,逆变电源将逆变输出; (此功能主要实现光伏发电优先) 步骤2:当电池放电至11V,逆变电源将自动切换至市电旁路输出,同时市电给电池辅助充电; (电池欠压了说明光伏发电量不够使用,此功能主要实现市电互补充电、保证用电设备持续使用和延长电池使用寿命,不要市电充电,可以在面板取消)。 步骤3:当光伏板或市电通过逆变电源给电池充电至13.5V(或转恒压模式,或转浮充模式)时,逆变电源将自动切换至逆变模式输出(此功能主要实现光伏发电优先)。 步骤4:当市电故障、光伏发电又不够时,并且电池电压低于10V,逆变器将关闭输出。

离网光伏系统设计说明书

离网光伏发电系统容量设计 一.任务目标 1.掌握容量设计的步骤和思路。 2.掌握光伏发电系统的容量设计方法。 3.了解光伏发电系统容量设计考虑的相关因素。 二.任务描述 光伏发电系统容量设计主要涉及蓄电池容量、蓄电池串并联数、光伏发电系统的发电量、光伏组件串并联数的计算。本实验报告主要以两种常见的计算方法为主。计算过程中需要注意不同容量单位之间的换算。 三.任务实施 1.容量设计的步骤及思路: 光伏发电系统容量设计的主要目的是计算出系统在全年能够可靠工作所需的太阳能电池组件和蓄电池的数量。主要步骤: 2.蓄电池容量和蓄电池组的设计: (1)基本计算方法及步骤 ①将负载需要的用电量乘以根据实际情况确定的连续阴雨天数得到初步的蓄电池容量。阴雨天数的选择可参照如下:一般负载,如太阳能路灯等,可根据经验或需要在3-7选取,重要的负载。如通信、导航、医院救治等,在7-15选取。

②蓄电池容量除以蓄电池的允许最大放电深度。一般情况下,浅循环型蓄电池选用50%的放电深度,深循环型蓄电池选用75%的放电深度。 ③综合①②得电池容量的基本公式为 最大放电深度连续阴雨天数 负载日平均用电量蓄电池容量?= 式中,电量的单位是h A ?,如果电量的单位是h W ?,先将h W ?折算为h A ?,折算关系如下: 系统工作电压 )负载日平均用电量(负载平均用电量h W ?= (2)相关因素的考虑 上 ①放电率对蓄电池容量的影响。 蓄电池的容量随着放电率的改变而改变,这样会对容量设计产生影响。计算光伏发电系统的实际平均放电率。 最大放电深度 连续阴雨天数负载工作时间)平均放电率(?=h 负载工作功率负载工作时间负载工作功率负载工作时间∑ ∑?= ②温度对蓄电池容量的影响。 蓄电池的实际容量会随着温度的变化而变化,当温度下降时,蓄电池的实际容量下降;温度升高时,蓄电池的实际容量略有升高。蓄电池的实际容量与温度的关系如图4-3所示曲线所示。

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

光伏逆变器测试实验室 PV inverter testing lab

? T üV , T U E V a n d T U V a r e r e g i s t e r e d b r a n d m a r k s . A n y u s e a n d a p p l i c a t i o n r e q u i r e s p r i o r a p p r o v a l . P 1S B 046z h e n G C 12081.0 光伏逆变器测试实验室PV inverter testing lab 光伏逆变器一站式认证服务 One-stop PV Inverter Certification Service PRODUCTS ? ELECTRICAL TUVdotCOM,展示企业与产品的竞争优势TUVdotCOM.The visible difference. TUVdotCOM 使您的产品在激烈竞争中与众不同。您可以随时随地通过该平台进行查询,所有经德国莱茵TüV 测试的产品、服务、公司、体系或人员信息将一览无余,充分展示客户产品及公司体系的质量和安全性。 The TUVdotCOM Internet platform makes the difference visible: All products, services, companies, systems, personnel certifications tested by TüV Rheinland– extremely well documented and globally-accessible. 我们是全球光伏产品检测和认证的领导者,拥有近30年的丰富经验 我们全球光伏产品测试网络拥有250多名专家,为全球各个地区提供专业服务我们全球6所顶尖光伏产品检测中心拥有最强的测试能力和最大的测试容量我们的光伏逆变器实验室采用国际先进的自动化仪器设备实现快捷、高效、专业检测服务 我们光伏逆变器实验室通过了全球CB 认证体系IECEE 的认可,是中国第一家CBTL 认可的光伏逆变器测试实验室,同时获得CNAS 、CGC 、TAF 、OSHA 、SCC 、DAkkS 等多项资质认可 TüV Rheinland is a global leader in the provision of testing and certification services for PV products, with nearly 30 years of experience Our unique global network backed by more than 250 experts provides professional service to various regions of the world We have six world-class solar energy assessment centres with the strongest testing capabilities and capacity worldwide Our PV inverter testing lab uses advanced automatic equipment to achieve fast, efficient and professional testing results Our lab has been accredited by the IECEE under the CB scheme. It is the first CBTL certified testing laboratory for PV inverters in China, and is recognised by CNAS, CGC, TAF, OSHA, SCC, DAkkS, etc.

相关主题
文本预览
相关文档 最新文档