当前位置:文档之家› 1KW光伏发电单相离网220V 逆变器设计毕业设计

1KW光伏发电单相离网220V 逆变器设计毕业设计

1KW光伏发电单相离网220V 逆变器设计毕业设计
1KW光伏发电单相离网220V 逆变器设计毕业设计

1KW光伏发电单相离网220V 逆变器设计毕业设计

目录

1 绪论 (3)

1.1太阳能应用的背景 (3)

1.2光伏发电应用现状和意义 (2)

1.2.1 国内光伏发电应用现状 (2)

1.2.2 国外光伏发电发展现状 (3)

1.2.3 研究的意义 (4)

1.3本课题研究的内容 (4)

1.4本课题结构 (4)

2 光伏发电系统的基本组成和工作方式 (5)

2.1光伏发电系统的基本组成 (5)

2.2光伏发电系统的工作方式 (6)

3 太阳能电池和MPPT控制 (9)

3.1太阳能电池的工作原理 (9)

3.1.1 太阳能电池的V-I特性 (10)

3.1.2 太阳能电池最大效率点的跟踪控制(MPPT) (13)

3.1.3 常用MPPT控制技术 (14)

3.2光伏组件的几种结构 (17)

4 蓄电池的分类和充电方式 (19)

4.1蓄电池的分类 (19)

4.2蓄电池的充电方式 (20)

5 主电路拓扑、控制方式及IPM模块的介绍 (23)

5.1DC-DC部分的电路拓扑 (23)

5.2DC-AC(逆变)部分的电路拓扑 (24)

5.3控制方式 (25)

5.4IPM模块的介绍 (27)

6 本课题中蓄电池以及光伏电池的选择 (30)

6.1蓄电池的选择 (30)

6.2光伏电池的选择 (31)

7 1KW单相离网220V逆变器的硬件系统设计 (32)

7.1系统的构成和主要参数 (32)

7.1.1 系统的构成 (32)

7.1.2 主要参数 (32)

7.2主电路拓扑及电路主要参数设计 (33)

7.2.1 主电路拓扑 (33)

7.2.2 功率开光管的选择 (33)

7.2.3 功率开光管的缓冲电路的设计 (34)

7.2.4 电路主要参数设计 (34)

7.3IPM模块PM50B4LB060的驱动电源和外围的保护 (36)

7.3.1 PM50B4LB060驱动电路 (38)

7.3.2 PM50B4LB060外围的保护 (40)

7.4基于DSP的控制系统设计 (40)

7.4.1 DSP端口资源的分配 (42)

7.4.2 取样检测电路 (43)

8 系统软件的构架 (46)

8.1系统的软件构架 (46)

8.1.1 PI算法的程序框图 (48)

8.1.2 PI控制程序框图 (49)

8.1.3 SPWM波的生成 (50)

8.1.4 系统的保护 (52)

9 结论与展望 (53)

9.1结论 (53)

9.2展望 (53)

参考文献 (54)

翻译部分 (56)

英文原文 (56)

中文翻译 (60)

致谢 (70)

1 绪论

1.1 太阳能应用的背景

目前,世界能源结构中,人类主要利用的是化石能源,其中石油、天然气、煤炭的消费构成分别为41%、23%和27%而根据目前所探明的储量和消费量计算,这些能源资料仅可供全世界大约消费170年。具体来说,石油将在40年内耗尽,天然气将在60年内用光,煤炭也只够使用220年。

由此可见,在人类开发利用能源的历史长河中,以石油、天然气和煤炭等化石能源为主的时期仅是一个不太长的阶段,化石能源被新能源取代是历史的必然。因此,人类必须未雨绸缪,及早寻求替代能源。同时我们也知道,化石能源的大量开发和利用是造成人类生存环境恶化的主要原因之一,如燃烧化石能源所排放出的二氧化碳和含氧硫化物直接导致了地球温室效应和酸雨的产生,全世界每天约产生1亿吨温室效应气体,如果不对温室气体采取减排措施,人们预计,全球平均气温每10年将升高0.2℃,到2100年全球平均气温将升高13.5℃,这将对人类生存空间带来极大的威胁。21世纪,人类面临着经济和社会可持续发展的双重挑战,在有限资源和环保要求的双重制约下发展经济已成为全球的热点问题,这就要求我们所寻求的替代能源必须是可再生的清洁能源。

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。太阳能作为一种可再生的新能源,越来越引起人们的关注。

根据国际权威机构预测,到21世纪50年代,全球直接利用太阳能的比例将会发展到世界能源结构中的13%~15%,而整个可再生能源在能源结构中的比例将大于50%。太阳能将成为2l世纪最重要的能源之一[1]。

所以,在能源需求急剧增加而其他能源日益紧张的背景下,太阳能作为一种取之不尽的、无污染的可再生能源已成为当今最热门的能源开发应用的课题之一,它也必将是21世纪最重要的能源之一。因此对光伏发电设计具有巨大应用价值和现实意义。

1.2 光伏发电应用现状和意义

1.2.1 国内光伏发电应用现状

我国于1958年开始对光伏电池的生产和应用进行研究,1971年成功将其应用到东方红二号卫星上。由于受到价格与产量的限制,市场发展很慢,太阳能电池的年产量一直徘徊在10Kwp左右。除了作为卫星电源,在地面上太阳能电池仅用于小功率电源系统,如微波中继站、军队通信系统、铁路信号系统、小型户用系统及偏远地区的供电。在1981年~1990年间,我国的光伏工业得到一定的巩固与发展,并在一些应用领域建立了示范工程。同时,国家也加大了对光伏发电系统研究及生产的投入,先后从国外引进了多条太阳能电池生产线,除了一条1Mwp的非晶硅电池生产线外,其余全部是单晶硅电池生产线,使我国太阳能电池的生产能力由每年的10KWp发展到4.5MWp售价也由80元/w,下降到40元/WP左右。随着国家对产业的不断重视,我国光伏电池的总装机容量和生产能力有较大的提高,到2005年全国光伏组件装机量已达70MWp光伏电池的制造能力也已超过200Mwp,生产企业有十多家。尽管如此,与世界光伏产业发达国家相比还有很大的差距,目前光伏应用比较广泛的国家光伏总装机容量已接近或达到500MW的规模。

我国太阳能光伏电池的年产量约为3MW生产能力约为5-8MW,累计用量约为15MW,同国外相比有很大差距!光伏发电产业生产规模小,水平低,生产成本高,市场培育迟缓,其总体水平落后国外约15年。我国“十五"规划提出了解决600万人(即无电人口的10%)的用电问题等目标!这给光伏发电产业提供了前所未有的市场和发展机会[2]。

我国光伏发电的重点项目:

(1)我国“光明工程”计划

由国家发展计划委员会牵头制定的“中国光明工程”计划,筹集l00亿元,计划到2010年利用风力发电和光伏发电技术解决2300万边远地区人口的生活、边防哨所、微波通讯站、公路道班、输油管线维护站、铁路信号站等用电问题。使他们达到人均拥有发电容量100瓦的水平。

(2)深圳园博园光伏并网发电系统,该项目总投资750万美元,这是国内第一座MW级太阳能发电站。是目前中国乃至亚洲最大的太阳能并网发电系统,发电能力约为100万千瓦。该电站采用与市电并网形式。投入使用以来共发电200多万度。

(3)京奥运会鸟巢体育场太阳能光伏发电系统

2008年4月。北京奥运会鸟巢体育场太阳能光伏系统实现并网发电。这是2008北京奥运会主场馆鸟巢工程首次采用太阳能光伏发电。这套光伏发电系统总投资约1000万元,总装机容量为100千瓦。该太阳能光伏系统使用单晶硅组件,采用了不可逆流、无储能的太阳能光伏发电技术。可以就地安装、维护费用低。该太阳能光伏发电系统安装在位于国家体育场鸟巢周围的5个安检棚顶部,每个安检棚为一个

并网发电单元。通过光伏并网逆变器与公共电网并接,实现了与公共电网的互联、互通和互补。该系统发电除满足鸟巢检票系统的自身用电外,多余电力将并人国家体育场的电力供应系统。按平均每天5小时光照时间计算。这套光伏发电系统每天可为鸟巢提供520度绿色电力。该系统将稳定运行25年,累计可生产约475万度绿色电力,可减排2500多吨废气.替代1500吨标准煤。

(4)上海十万个太阳能屋顶计划上海十万个太阳能屋顶计划研究,是在世界自然基金会和上海市经委的支持下。由上海交通大学太阳能研究所承担的太阳能应用项目课题,总投资近百亿元。上海计划利用十年的时间,将现有2亿平方米平屋顶的1.5%,约300万平方米,即十万个屋顶用作太阳能发电。相当于新建一个30万千瓦的电站,而且是峰值发电。在1000瓦,平方米标准日照条件下安装太阳能屋顶,可发电130~180千瓦时,平方米。按上海地区标准日照时间1100~1300小时/年计算。每年最低发电量可达143千瓦时,平方米.每年至少发电3.3亿度。

(5)其他建设项目

西部7省无电乡村通信工程项目、无锡国家工业设计园300千瓦屋顶并网光伏系统、上海崇明岛生态公园85千瓦屋顶光伏系统、香港湾仔政府大楼屋顶光伏系统、广州十万个光伏屋顶计划、乌拉特后期1MW沙漠太阳能光伏并网电站,该电站将是目前国内最大的沙漠太阳能光伏电站。

1.2.2 国外光伏发电发展现状

20世纪80年代以来,世界各国特别是发达国家相继投入大量的人力、物力

开展对太阳能、风能、地热能、生物能等新型可再生能源的研究、开发和利用工作。并制定相应的光伏发电系统的发展计划。1990年德国政府率先推出“一千屋顶计划"。1998年进一步提出10万套屋顶计划。日本政府1994年开始实施“朝日七年计划”,总容量185WMp,1997年又宣布实施“七万屋顶计划”,总容量280MWp。意大利1998年实行“全国太阳能屋顶计划”,总容量50MWp,在这类系统中,规模最大的是1997年6月美国宣布的“百万太阳能屋顶计划”,到2010年将安装101.4万套光电系统,总安装量3025MWp。表所示为2000~2004年五年内世界光伏器件的年产量数据,从中可以看到近五年光伏产品需求的强劲上升势头,年平均增长率超过50%。充分说明了该产业的迅猛发展态势。美国能源部预测,在今后十年内世界太阳电池销售量将以年均30%的速度增长,到2010年将达到4.6GWp,累计容量将达到20GWp[6]。

近几年国际上光伏发电快速发展,2007年全球太阳能新装容量达2826mwp,其中德国约占47%,西班牙约占23%,日本约占8%,美国约占8%。2007年,在太阳能光电产业链中有大量的投资集中到新产能的提升上。除此之外,太阳能光电企业在2007年间的贷款融资金额增长了近100亿美元,使得该产业规模不断扩大。虽然受金融危机影响,德国、西班牙对太阳能光伏发电的扶持力度有所降低,但其

它国家的政策扶持力度却在逐年加大。日本政府2008年11月发布了“太阳能发电普及行动计划”,确定太阳能发电量到2030年的发展目标是要达到2005年的40倍,并在3-5年后,将太阳能电池系统的价格降至目前的一半左右。2009年还专门安排30亿日元的补助金,专项鼓励太阳能蓄电池的技术开发。2008年9月16日,美国参议院通过了一揽子减税计划,其中将光伏行业的减税政策续延2-6年[3]。

1.2.3 研究的意义

通过上面的叙述,可以看出,在能源日渐紧张的情况下,太阳能不仅仅是现在能源发展的一种趋势,还是未来能源发展的主要部分,在环境和经济的情况下看,光伏发电技术是新能源技术的重要组成部分,是正在发展着的高新技术。在国家能源政策的引导下,随着人们对可再生能源认识的提高以及太阳能光伏发电系统性能价格比的提高,太阳能资源的开发及应用前景将是十分广阔的。光伏发电技术也是具有很大的意义。

1.3 本课题研究的内容

本课题为1KW单相离网220V逆变器设计,为小功率的一个发电系统,是家用型的一个光伏发电系统,根据所给的课题,主要是针对逆变器及其控制系统的设计。

第一部分:根据太阳能电池板输出功率1KW来进行蓄电池和太阳能电池的选择。以及充电方式和控制方式。

第二部分:选择DC-DC、DC-AC部分的主电路拓扑。

第三部分:逆变器选用的是IPM模块,控制系统是基于DSP的控制。IPM模块选用的是PM50B4LB06,DPS选用的是TMS320LF2407A。

1.4 本课题结构

第一章:阐述选题背景,课题研究的目的和意义,以及国内外光伏的发展现状及本课题研究的主要内容;

第二章:简单的阐述了光伏发电系统的基本组成。

第三章:简要的阐述太阳能电池的工作原理,以及其控制方式。

第四章:简单的阐述了蓄电的分类和充电方式。

第五章:阐述了DC-DC,AC-DC部分的电路拓扑以及控制方式。以及IPM模块的简单介绍。

第六章:对本课题中使用的蓄电池和光伏电池进行了选择

第七章:对设计的硬件系统部分进行设计,对使用的技术参数进行了计算确定。

第八章:简述了系统软件的构架。

第九章:总结了在本次设计中得到的成果以及系统的不足,以及整个系统的发展前景。

2 光伏发电系统的基本组成和工作方式

2.1 光伏发电系统的基本组成

(1)光伏电池阵列:

光伏电池是组成太阳能光伏发电系统的最小单位,单个光伏电池功率较小,最大输出功率不超过5Wp,为满足不同等级负载供电需要,人们将光伏电池串并联后统一封装构成光伏模块(Photovoltaic Module—PV),这是目前光伏器件的主要存在及应用方式。因大功率光伏模块安装、维护方便,因此在光伏发电系统中200Wp以上的光伏模块更受欢迎。如果光伏发电系统中所需功率超过光伏模块功率,则需要根据光伏发电系统的功率要求,将同规格的光伏模块串联起来构成光伏阵列(PV Array)为系统提供更高的输出功率和输出电压[5]。

(2)直流变换部分(DC-DC):

直流变换部分作用主要是把光伏阵列输出电压变换成能够满足储能系统和逆变器要求的电压等级。同时由于光伏阵列输出特性的特殊性,其输出功率为日照强度和模块温度的非线性函数,存在着最大输出功率跟(Maximum Power Point Tracking—MPPT)问题。如果不加以控制直接用于给负载提供能量,则很难有较好地发挥光伏模块转换效率。为此,控制系统除了完成对DC-DC变换和DC-AC变换所需的基本控制外,还需在DC—DC变换环节中增加MPPT控制,以实现光伏阵列的最大功率输出。

(3)逆变部分(DC-AC):

光伏电池发出的只能是直流电,而包括电网在内的许多用电场合需要交流电,所以(DC-AC)逆变器是光伏发电系统中的一个关键环节。它的功能是受控制系统控制,从而将直流转变为与交流电网或本地交流负载相匹配的交流电。该环节的主要指标要求是变换的高可靠性和高转换效率。目前我国在小功率逆变器上与国外处于同一水平,但在大功率逆变器上有较大的差距。

(4)储能部分:

光伏发电系统只有在白天有阳光时才能发电,而人们的一般用时间会在晚上,所以蓄电池可以在白天将太阳能储存起来以供人们夜间使用,同时也可作为交流电网断电时的不间断电源(UPS源(uninterruptible Power Supply)为本地重要交流负载供电。这种包括蓄电池作为储能环节的光伏发电系统称为“可调度式光伏发电系

统”。如图2-1所示:

图2-1 可调度式光伏发电系统

还有一种不含蓄电池的发电系统,这种系统称为“不可调度式光伏发电系统”。如图2-2所示:本课题主要讨论并实现的对象是对“可调度的光伏并网发电系统”。

图2-2 不可调度式光伏发电系统

2.2 光伏发电系统的工作方式

光伏并网发电系统根据系统本身的结构、系统运行环境情况、输出容量的大小、本地负载容量的大小以及交流电网的情况,分别可工作于独立运行模式、并网发电运行模式和混合运行模式三种[4]。

1独立运行方式:

光伏发电系统的“独立运行模式”是指远离电网的光伏发电系统。它通常

用作便携式设备的电源,向远离现有电网的地区和设备供电或者用于任何不想与电网发生联系的供电场合。该系统中,蓄电池作为储能单元一般是不可缺少的,它将日照时发出的剩余电能存储起来供日照不足或没有日照时使用,所以它属于可调度光伏发电系统。如图2-3所示。

图2-3 独立运行方式

本人设计的主要方式为独立运行方式,在后面的章节中会有具体的阐述。

2并网运行方式:

在公用电网的场合,光伏发电系统可直接与电网连接,在系统容量足够大和日照强度较大时,可将多余的电能回送给电网。所以该系统对应的逆变器所输出的交

所示。

流电要求满足并网的条件。如图2-4

3混合运行方式:

混合型光伏发电系统是指在光伏发电的基础上增加一组发电系统,以弥补光伏发电系统受环境变化影响较大造成的阵列发电不足,或电池容量不足等因素带来的供电不连续。较为常见的混合系统是风一光互补系统,系统结构框图如图2-5所示。

图 2-5 混合运行方式

在通常情形下,白天日照强,夜间风多;夏季日照强、风小;冬春季日照强度小而且风大。显然风能发电与太阳能发电具有很好的互补性,其优点显见:利用太阳能、风能的互补特性可以产生稳定的输出,提高系统供电的稳定性和可靠性;在保证供电情况下,可以大大减少储能蓄电池的容量;对混合发电系统进行合理的设计和匹配,可以基本上由风/光系统供电,无须启动备用电源和备用发电机,以此获得较好的经济效益。但是,风/光互补联合发电系统存在:一次性投资较大,并需定期更换蓄电池等缺点。

3 太阳能电池和MPPT 控制

3.1 太阳能电池的工作原理

在自然界中,物体根据其导电能力和电阻率的大小分为导体、绝缘体和半导体三类,其中把电阻率在10e —3~10e+8Ω。cm 左右的称为半导体。半导体有许多的特性如掺杂特性、热敏特性、光敏特性等,这些特性在现代电力电子技术中已得到极为广泛的应用。除此之外,半导体还具有很强的光伏效应[1]。

光伏效应是指当物体吸收光能后,其内部能传导电流的载流子的分布状态和浓度发生变化,由此产生电流和电动势的效应。光伏电池是以半导体PN 结上接受太阳光照射产生光生伏特效应为基础,直接把光能转换成电能的能量转换器。当光照射到表面时,部分光线被其表面反射,对发电不起作用;部分被电池吸收,给电池加热,产生电池的温升;其它部分太阳光进入半导体内部,冲击N 区和P 区的价电子,使其得到超过禁带宽度Eg 的能量,从而脱离共价键的束缚,形成非平衡状态的电子一空穴对。这些被激发的电子一空穴对,部分复合后对外不显电性,属于光伏电池能量损耗部分;剩下部分处于非平衡状态的电子一空穴对,在原PN 结垫垒电场的作用下,把P 区的光生非平衡少子电子拉入N 区,同样把N 区的光生非平衡少子空穴拉入P 区,从而形成一个与原垫垒电场Ei 方向相反的光生电场Epv ,如图3-1所示:

电子-E i

E pv

图3-1 光伏电池的机理图

当光伏电池的外部与负载接通后,就会形成电流,电流方向由电池的外部从P 区流向N 区。这就是光伏发电的基本机理[7]。光生电压可以由式3-l [7]给出,从式中可以看出,PN 结的饱和电流越小,光生电压U pv 就越大。

ln(1)KT Jpv Upv q Jsat =+ (3-1)

(1)qUpv

KT J Jpv Jsat e =-- (3-2)

式中:

K ——波耳兹曼常数

T ——电池绝对温度

q ——电子电量

J pv ——光生电流密度

J sat ——二极管反向饱和电流密度

J 一一负载电流密度

U pv ——光伏电池端电压

3.1.1 太阳能电池的V-I 特性

为了更好地描述光伏电池的输出V —I 特性,图3—2给出了实际使用的单个光伏电池的等效电路模型。在该模型中,光伏电池相当于一个电流为I pv 的恒流源与一个正向二极管并联。图中的R S 为串联电阻,该值较小,理想状态下可以等效为0;R SH 为旁路电阻,阻值相对较大,理想状态下为无穷大。实际上希望R S 尽可能小,而R SH 尽可能的大。

图3—2 单个光伏电池的等效电路图

根据图3--2等效原理图,可以求出单个太阳能电池的V--I 特性方程:

I Iph Id Ir =-- (3-3) 其中:

()1000ph sc t ref S I I C T T =?+?- (3-4)

()

[1]q U IRs AKT d o I I e +=-

(3-5) 3qEg

AKT d Io C T e =

(3-6) U IRs

Ir Rsh +=

(3-7)

将式(3-4)(3-5)(3-6)(3-7)带入(3-3)可得式(3-8):

()

3+()[1]1000qEg q U IRs AKT AKT sc ref d S U IRs

I I Ct T T C T e e Rsh +=?+?--?--

3-8) 式中:

I ——负载电流

U 一一电池端电压

I PH 一一光生电流

S 一一光照强度(W/m 2)

T 一一电池温度(K)

I d0——二极管反向电流

R S 一一串联电阻(取R S =0.0419Ω)

R sh 一一分流电阻(取R sh =2000Ω)

C t 一一温度补偿系数(1.6mA/K)

E g 一一禁带宽度电压(1.13eV)

K——玻尔兹曼常数(1.38e一23 J/K)

q——电子电量(q=1.6x10-19C)

C d一一温度系数(C d=10.O)

A一一光伏电池中半导体器件的P—N结系数(A=1.11)

S=1000W/m2T=T ref时电池短路电流(设I SC=-3A)

从式(3——3)到式(3——6)可以清楚地看到,太阳能电池的输出电流与太阳光照强度S和电池模块的温度T有着密切的关系,它们之间是种非线性的函数关系,显然电池的输出功率P与S、T同样存在着非线性关系如图(3-3)(a)(b)所示,其为同一电池结温、不同光照条件下的I—V特性曲线和P—V特性曲线[10];

图3-3同一电池相同结温、不同光照条件下的I—V,P—V图

图 3—4 相同光照强度不同电池结温时的I—V、P—V特性曲线

由上述可以看出:

光伏电池的输出特性具有如下特性:

1 输出短路电流几乎随光照的强度的增加而线性增加,而其输出开路电压增幅较小[15];

2 输出电压在图3——3(a)中的A点以前,输出电流近似为光伏电池的短路电流,呈现出恒流特性,而当电压超过A点后,输出电流迅速下降,呈现出恒压特性;

3 出功率随输出端电压的上升近似线性上升,当输出电压达到一定值时,输出功率开始下降,下降速度比上升更迅速,直到输出开路,U=U0C。即光伏电池存在输出最大功率点(Maximum Power Point,MPP),且最大功率随光照强度S的变化而变化,S越大,MPP上移;

4 结温一定的条件下,当光照强度变化使输出功率发生变化时,最大功率点对应的输出电压值基本不变,近似为如图3--3(b)中B点电压,其值约为开路电压的76%左右,对应最大功率点时的电流约为该光照条

件下电池短路电流的90%[11] [12]。

从图3—4(a)、(b)同样可以看出,在太阳光照强度一定的条件下,当环境温度发生变化时光伏电池的输出特性:

1 温度对光伏电池的输出短路电流影响不大,温度上升,输出短路电流略

有增加;而电池输出工作在恒流区的电压变化范围从图3—4(a)可清楚看出,随电池温度的上升而减小温度0℃上升到75℃,拐点从A下降到B,且电池输出开路电压也同样随温度的上升而下降。

2 输出功率总的变化趋势与不同光照条件下的变化相似,但其输出的最大功率点却随电池温度的上升而下降,且最大功率点所对应的电压也随之下降。

综上所述,太阳能电池的输出特性与太阳光照强度、环境温度有着密切的关系,它们之间是种非线性的函数关系。当光照强度或电池结温发生变化时,其输出电压、电流及输出功率会发生较大的变化,特别是其输出功率存着最大功率点,且随着光照强度和电池结温的变化而发生变化,为此在进行光伏电池发电应用时,必须考虑此特性进行电路设计,从而当电池环境条件发生变化时迫使电池有

最大的功率输出,即进行最大功率点的跟踪控制 (MPPT),来保证电池最大的能量传送效率。

3.1.2 太阳能电池最大效率点的跟踪控制(MPPT)

为了使光伏电池有更大的功率传输,必须实时检测电池的输出功率,以及时调整光伏阵列的工作点,使之始终工作在最大工作点附近,即进行最大功率点跟踪(Maximum Power Point Tracking,MPPT)。目前常用的MPPT算法有扰动观察法、电导增量法、模糊逻辑控制法等,除此之外还有其他多种方法可以实现光伏阵列的最大功率点跟踪,包括滞环比较法、神经元网络控制法、最优梯度法等,它们实现

MPPT 控制的原理都是类似的,但具体实现方法各有差别。最大功率点跟踪控制的方法有很多,较为常用的MPPT 控制技术有恒压法、扰动观察法、电导增量法等。

3.1.3 常用MPPT 控制技术

(1)扰动观察法

扰动观察法是目前最常用的MPPT 方法之一。根据图3—4(b)可知,光伏电池的输出工作点在最大功率点的左侧,dP/dV>0,而在最大功率点的右侧,在最

大功率点时,dP/dV=0。根据这个特点,首先初设一个光伏电池工作电压,然后通过调节功率管的占空比给光伏阵列输出电压周期性的扰动,例如使其增加,然后比较扰动前后光伏的输出功率,如果输出功率

也因此增加,即dP/dV>0,说明光伏工作于最大功率点的左侧,则应在下一扰动周期继续保持当前的扰动方向,增大光伏电池输出端电压;反之,若输出功率减小,即dP/dV<0,则说明光伏工作于最大功率点的右侧,当前扰动方向将使工作点远离最大功率点,所以应改变扰动方向,使光伏电池输出端电压减小。经过反复的调整,最后使光伏电池的工作点逼近最大功率点。

这种控制算法控制简单、容易实现,对参数检测精度要求不高,控制效果在日照变化不是很剧烈的情况下能满足光伏系统对最大功率点跟踪的要求。但这种算法存在以下缺点:

1需要周期性的扰动,且当扰动方向确定后,只能在下一个扰动周期去影响输出电压,这将导致光伏阵列的输出在最大功率点附近振荡,从而减小系统的输出效率;

2当环境条件变化剧烈时有可能导致跟踪失败。 (2)电导增量法

由图3-3,3-4的P ——V 曲线可知,最大功率点PMAX 处得斜率为0,即: 0

dp dv = (3-9) 所以: 0dP dv I dI I V dv dv dv ?==+= (3-10) d I I d v v =- (3-11)

由上可知,当系统输出电导的变化量等于输出电导的负值时,光伏电池工作在最大功率点。

与扰动观察法相比,增量电导法控制精确、跟踪速度快;因其能较好地测定MPP,因而基本可以消除扰动观察法中因扰动而产生的最大功率点附近的功率振荡现象。但该方法对硬件的要求较高,特别是传感器的测量精度要求较高,且系统的响应也应足够快才能满足其控制要求。

(3)恒电压控制法

当光伏电池的结温不变的前提下,其输出功率的变化随电压的变化情况如图3—3(b)所示。当光照强度发生变化时,电池输出的开路电压变化不大,最大输出功率会随光照强度的增强而增加,但在最大功率点处对应的输出电压基本不变。根据电池的这一特性,只要知道电池的开路电压,即可得到最大功率点对应的工作电压。

实际控制时,只要以某一温度下最大功率输出对应的工作电压U*M作为控制目标,实际电池输出电压UM与之比较,经PI调节后与三角波比较得到的PWM波去驱动功率管,从而改变电池阵列的负载阻抗,最后使其工作在最大功率点上。

控制如图3-5所示:

图3-5 恒电压控制

这种控制方法控制简单,可靠性和稳定性较高。但是有以下缺点:受工作场合季节、早晚时间、天气情况及环境温度变化的影响较大。

在本课题中选用的是电导增量法。其流程图为:

图3-6 MPPT流程图

图中当电导变化量大于负电导值时,功率曲线斜率为正,Ur增大。当电导变化量小于负电导值时,功率曲线斜率为负,Ur减小。

3.2 光伏组件的几种结构

光伏组件的结构方式有集中式,集成式,串型,多重串型等方式。这四种结构如图所示:

图3-7 集中式

图3-8 集成式

图3-9 串型结构图3-10 多重串型结构

以下是几种结构的一个特性比较[7]:

在实际运用中,一般都使用多重串型的结构。

本科毕业论文(设计、创作)题目:基于DSP的单向光伏离网逆变器的设计 学生姓名:学号:103402035 所在系院:专业:电子信息工程入学时间:2010年9月导师姓名:职称/学位:副教授/硕士 导师所在单位: 完成时间:2014年5月安徽三联学院教务处制

基于DSP的单向光伏离网逆变器的设计 摘要:随着石油化工资源的枯竭、生态环境的日趋恶化和人类可持续发展的需要,一种低碳环保的绿色能源太阳能引起了众多人群的关注,并且成为现代能源领域发展预期最好的新能源。以TMS320F2812DSP为核心控制芯片,Infineon公司型号为IGP50N6OT的IGBT(50A,60OV)作为开关器件,以IR公司的IR2llO作为驱动芯片的离网光伏发电系统,可以更好地解决偏远地区供电中出现的种种问题。设计分析了各种光伏发电系统在应用方面的优、缺点。比较了光伏发电逆变器三种重要的拓扑结构,给出了系统总体框图及分电路原理,并实现了仿真测验。 关键词:光伏发电;离网逆变器;DSP

Research on Single-phase Off-grid Inverter of Photovoltaic Power based on DSP Abstract:With the exhausted of traditional energy sources,the worsening of the ecological environment and human requirements of sustainable development,solar energy as an ideal green energy has caused more and more attention,to become the world's most promising new energy technology.TMS32OF2812 DSP,a high–performance digital signal processing chip,is used to controlling the core in our researeh.IGP50N60model of infien on corporation is selected as switching device.The single-Phase off-grid PV inverter is researched.can better solve the problems in the remote area power supply.Design of photo voltaic power generation system are analyzed advantages and disadvantages in the https://www.doczj.com/doc/ef17977062.html,parison of the photovoltaic inverter topology structure of three important,gives the system block diagram and circuit principle,and realizes the simulation test. Keywords:PV;Off-grid inverter;DSP

毕 业 论 文 题 目: 风力发电机的设计及风力发电系统的研究

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 风力发电机的设计及风力发电系统的研究 一、基本任务及要求: 1)基本数据:额定功率 600=N P KW 连接方式 Y 额定电压 V U N 690= 额定转速 min /1512r n N = 相数 m=3 功率因数 88.00=?s c 效率 96.0=η 绝缘等级 F 极对数 P=2 2、本毕业设计课题主要完成以下设计内容: (1) 风力发电机的电磁设计方案; (2) 风力发电系统的研究; (3) 电机主要零部件图的绘制; (4) 说明书。 进度安排及完成时间: 2月20日——3月10日:查阅资料、撰写文献综述、撰写开题报告 3月13日——4月25日:毕业实习、撰写实习报告 3月27日——5月30日:毕业设计 4月中旬:毕业设计中期抽查 6月1日——6月14日:撰写毕业设计说明书(论文) 6月15日——6月17日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP 6月17日——6月20日:毕业设计答辩

目录 摘要 ..............................................................................................I ABSTRACT ......................................................................................II 第1章绪论 .. (1) 1.1 开发利用风能的动因 (1) 1.1.1 经济驱动力 (1) 1.1.2 环境驱动力 (2) 1.1.3 社会驱动力 (2) 1.1.4 技术驱动力 (2) 1.2 风力发电的现状 (2) 1.2.1 世界风力发电现状 (2) 1.2.2 中国风力发电现状[13] (3) 1.3风力发电展望 (3) 第2章风力发电系统的研究 (5) 2.1 风力发电系统 (5) 2.1.1 恒速恒频发电系统 (5) 2.1.2 变速恒频发电机系统 (6) 2.2 变速恒频风力发电系统的总体设计 (10) 2.2.1 变速恒频风力发电系统的特点 (10) 2.2.2 变速恒频风力发电系统的结构 (10) 2.2.3 变速恒频风力发电系统运行控制的总体方案 (20) 第3章风力发电机的设计 (27) 3.1 概述[11] (27) 3.2 风力发电机 (28) 3.2.1 风力发电机的结构 (28) 3.2.2 风力发电机的原理 (29) 3.3 三相异步发电机的电磁设计 (29) 3.3.1 三相异步发电机电磁设计的特点 (30) 3.3.2 三相异步发电机和三相异步电动机的差异[2] (30) 3.3.3 三相异步发电机的电磁设计方案 (31) 3.3.4 三相异步发电机电磁计算程序 (32)

(BIPV)光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成 .................................................... 错误!未定义书签。第3章光伏并网发电系统设计原则与原理 (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司 ........................................................ 错误!未定义书签。 6.1 雄厚的集团背景................................................................................................................................ 错误!未定义书签。 6.2 超强的项目管理能力....................................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队................................................................................................................................ 错误!未定义书签。 6.4 “一揽子交钥匙服务”................................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

一、光伏逆变器产业链结构分析 图表光伏发电用逆变器产业链结构 资料来源:产研智库 一、上游原材料 逆变器企业主要外购产品包括各种电子元器件、结构件、电气元器件、电线电缆等。 逆变器的主功率元件的选择至关重要,使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,在大容量系统中一般均采用IGBT模块,而在高压特大容量(1000KVA以上)系统中,一般均采用IGCT、GTO等作为功率元件。 图表光伏发电用逆变器主要原料 资料来源:产研智库 二、下游需求领域 图表光伏发电逆变器国内主要应用领域

资料来源:产研智库 三、产业链各环节传导机制 光伏逆变器上游为电力电子元器件、微电子芯片、集成电路、电力电容器、电抗器、变压器、机柜、机箱壳体制造等行业。该行业与上游行业的关联性较低,上游行业的影响主要体现在本行业采购成本。 逆变器行业与下游行业的发展密切相关,下游行业对本行业的发展具有较大的牵引和驱动作用,国家光伏项目建设与投资是决定本行业未来需求的重要部分,其需求变化直接决定了本行业未来的发展状况。 二、国外光伏逆变器市场格局 光伏逆变器的主要厂商分布在光伏安装的主要区域,包括德国、中国、美国等地。2015年,全球逆变器的主要产能集中在德国、中国、美国,其中SMA、阳光电源、华为占据前三位。国外厂商逆变器项目经验丰富,产品质量高,成本也相对较高。国内自主研发的光伏逆变器,成本较低、售后服务效率更高。从地域来看,预计未来新增光伏逆变器需求将主要来自美国、日本和中国等新兴市场国家。 2015年全球逆变器市场格局在领先厂商之间日趋巩固。全球逆变器需求在2015年上涨了33%,排名前10的光伏逆变器厂商市场份额提高到了75%,产业集中度不断提高,全球光伏逆变器出货量达2010年以来的最高值。 德国SMA继续保持其2015年全球最大光伏逆变器供应商的地位,但在出货量上继续损失市场份额。虽然SMA仍然在光伏逆变器收入上处于全球领导者地位,但其从逆变器出货排行榜流失的全球需求已转向中国。2015年出货量前十名厂商中有四个是中国企业,其中华为出货量领先。SMA业绩提升的主要得益于美国和其他快速增长的公用事业规模市场,该公司还更新了其逆变器产品组合,表示其在住宅、商业和公用事业规模市场都有竞争力产品推出。 图表2015全球10大光伏逆变器厂商出货量排名

第一章概述 1.1课题研究的目的和意义 数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。 当前,全球都面临着能源枯竭、环境恶化、气温升高等问题,日益增长的能源需求、能源安全问题受到世界各国广泛关注。风能是一种可再生能源,它资源丰富,是一种永久性的本地资源,可为人类提供长期稳定的能源供应;她安全、清洁,没有燃料风险,更不会在使用中破坏环境。为此,世界各国都在加快风力发电技术的研究,以缓解越来越重的能源与环境压力,中国也不例外。 中国是世界上最大的煤炭生产国和消费国,能源利用以煤炭为主。在当前以石化能源为主体的能源结构中,煤炭占73.8%,石油占18.6%,天然气占2%,其余为水电等其它资源。在电力的能源消费中,也是以煤炭为主,燃煤发电量占总发电量的80%。但是,能为人类所用的石化资源是有限的,据第二届环太平洋煤炭会议资料介绍,按目前的技术水平和采掘速度计算,全球煤炭资源还可开采200年。此外,石油探明储量预测仅能开采34年,天然气约能开采60年。随着人口的增长和经济的发展,能源供需矛盾加剧,如果不趁早调整以石化能源为主体的能源结构,势必形成对数亿年来地球积累的生物石化遗产更大规模的挖掘、消耗,由此将导致有限的石化能源趋于枯竭,人类生态环境质量下降的恶性循环,不利于经济、能源、环境的协调发展。电力部己制定“大力发展水电,继续发展火电,适当发展核电,积极发展新能源发电”的基本原则,把风力发电作为优化我国电力工业结构跨世纪的战略发展目标①。 表1-1 1996-2005年世界风电市场增长 从表1-1可以看出,世界上的风电能源增长的非常迅速,10年平均增长率达到了29.77。截止2005年底,全世界并网运行的风力发电机总装机容量达到59237 MW ,是1996年装机容量的9.76倍②。

5kWp光伏太阳能离网发电系统 设 计 方 案

目录 一、光伏太阳能离网发电系统简介 (2) 二、项目地参数 (2) 三、相关规范和标准 (5) 四、系统组成与原理 (6) 五、设计过程 (8) 1、方案简介 (8) 2、用户信息 (8) 3、蓄电池设计选型 (8) 4、组件设计选型 (12) 5、离网逆变器设计选型 (16) 6、控制器设计选型 (18) 7、交直流断路器 (21) 8、电缆设计选型 (23) 9、方阵支架 (23) 10、配电室设计 (23) 11、接地及防雷 (23) 12、数据采集检测系统 (24) 六、仿真软件模拟设计 (25) 七、设备配置清单及详细参数 (31) 八、系统建设及施工 (31) 九、系统安装及调试 (32) 十、工程预算投资分析报告 (36) 十二、运行及维护注意事项 (38) 十三、设计图纸 (41)

5kWp光伏太阳能离网发电系统配置方案 一、光伏太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电 的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。 二、项目地参数 图片来自Google地球 1、项目地点:江苏省泰州市XX区XX镇; 2、经度:120°12’ ,纬度:32°23’; 3、平均海拔高度:7m;

光伏离网逆变器并机典型设计GrOWan古湍巨特 TOP3 全球单相逆变器 IlIIl 在一些无电地区,安装光伏离网储能系统,比采用油机发电,更经济和环保。相对于 并网系统,离网系统较为复杂,需考虑用户的负载、用电量、当地的天气情况,特别 是负载情况多样化,有像水泵类的感性负载、也有像电炉类的阻性负载,有单相,也 有三相。对于大于IOkW 的光伏离网系统,可以采用单机或者多机并联的方式,但各 有其优缺点。 本文主要介绍采用多台离网逆变器搭建的中大功率光伏离网系统设计方法。 古瑞瓦特离网控制逆变一体SPF5000TL HVM 机型,最多支持6台并机,可以搭建 30kW以内的光伏离网系统。既可组成30kW的单相系统,还可组成30kW的三相系统。考虑到三相负载不一定均衡,6台逆变器组成三相系统时,还有多种配置方法,如222、321、411等,可以应对不同场景的用户需要。下表是一个用户的实际负载

情况和用电情况。 这个系统较特殊,有单相负载与三相负载两种,且三相不平衡。我们根据负载的分布, 先进行逆变器选型设计,系统总负载功率是24kW ,用户表示,不会所有的负载都同 时运行,最大功率在20kW 左右,因此设计采用6台5kW 单相离网逆变器,A相用 3台共15kW,B相用2台共IOkW,C相用1台共5kW,构成一个30kW 三相不平衡的离网系统。单相逆变器输出有两根线:相线和零线,6台逆变器的零线全接在 一起,3台逆变器的相线接在A相,2台逆变器的相线接在B相,1台逆变器的相线 接在C相。 多台逆变器并联,每台机还需连接通信线,A相的3台机均流线接在一起,B相的2 台机均流线接在一起,连接完线,再接上蓄电池,关闭输出断路器,在面板上设置逆 变器的相位,SPF5000进入设置第23项,A相的3台机设为3P1,B相的2台机设为3P2,C相的1台机设为3P3 ,设置完成,便可运行。

目录摘要1 ABSTRACT 2 1 绪论3 2 太阳能光伏电源系统的原理及组成4 2.1 太阳能电池方阵4 2.1.1 太阳能电池的工作原理5 2.1.2 太阳能电池的种类及区别5 2.1.3 太阳能电池组件5 2.2 充放电控制器6 2.2.1 充放电控制器的功能7 2.2.2 充放电控制器的分类7 2.2.3 充放电控制器的工作原理8 2.3 蓄电池组9 2.3.1 太阳能光伏电源系统对蓄电池组的要求9 2.3.2 铅酸蓄电池组的结构10 2.3.3 铅酸蓄电池组的工作原理10 2.4 直流-交流逆变器11 2.4.1 逆变器的分类11 2.4.2 太阳能光伏电源系统对逆变器的要求12 2.4.3 逆变器的主要性能指标12 2.4.4 逆变器的功率转换电路的比较14 3 太阳能光伏电源系统的设计原理及其影响因素16 3.1 太阳能光伏电源系统的设计原理17 3.1.1 太阳能光伏电源系统的软件设计17 3.1.2 太阳能光伏电源系统的硬件设计19 3.2 太阳能光伏电源系统的影响因素20 4 总结21 致谢参考文献 摘要 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上蓄电池组,充放电控制器,逆变器等部件就形成了光伏发电装置。本文首先介绍了太阳能光伏电源系统的原理及其组成,初步了解了光生伏打效应原理及其模块组成,然后进一步研究各功能模块的工作原理及其在系统中的作用,最后根据理论研究成果,利用硬件和软件相结合的方法设计出太阳能光伏电源系统,以及研究系统的影响因素。 关键词:光生伏特效应;太阳能电池组件;蓄电池组;充放电控制器;逆变器

小型家用风力发电机毕 业设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

摘要风能作为一种清洁的可再生能源越来越受到人们的重视,风力发电也逐渐成为了时下的朝阳产业。本论文详细阐明了小型独立风力发电系统的设计方案,对风力发电机组的结构和电能的变换及继电控制电路做了深入的研究。 本文提出的解决方案为,风力发电机组带动单相交流发电机,然后通过AC—DC—AC 变换为用户需要的标准交流电,并且考虑到风力的不稳定性,在系统中并入蓄电池组,通过控制电路的监控实现系统的控制,保证系统在风能充足时可蓄能,在风能不充足时亦可为负载供电。系统的运行状况采用继电控制电路监控和切换。 本论文的重点在于继点控制电路的设计,并对各种不同风力情况下系统的运行状况进行了全面而严谨的分析,最后电气控制部分进行了系统仿真。 关键词:风力发电机组;整流——逆变;继电控制 目录

引言 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的

第一章绪论 风能是一种清洁的、储量极为丰富的可再生能源,它和存在于自然界的矿物质燃料能源,如煤、石油、天然气等不同,它不会随着其本身的转化和利用而减少,因此可以说是一种取之不尽、用之不竭的能源。而矿物质燃料储量有限,正在日趋减少,况且其带来的严重的污染问题和温室效应正越来越困扰着人们。因此风力发电正越来越引起人们的关注。 风力发电概述 1.1.1风力发电现状与展望 全球风能资源极为丰富,技术上可以利用的资源总量估计约53×106亿kWh /年。作为可再生的清洁能源,受到世界各国的高度重视。近20年来风电技术有了巨大的进步,发展速度惊人。而风能售价也已能为电力用户所承受:一些美国的电力公司提供给客户的风电优惠售价已达到2~美分/kWh,此售价使得美国家庭有25%的电力可以通过购买风电获得。 2004年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电已经成为解决世界能源问题的不可或缺的重要力量。按照风电目前的发展趋势,预计2008~2012年期间装机容量增长率为20%,以后到2015年期间为15%,2017~2020年期间为10%。其推算的结果2010年风电装机亿KW,风电电量×104亿kWh,2020年风电装机亿KW,风电电量×104亿kWh,占当时世界总电消费量×104亿kWh的%。 世界风电发展有如下特点:

本科生毕业设计说明书(毕业论文) 题目:基于DSP的光伏并网逆变器 硬件电路的设计 学生姓名: 学号: 专业:电气工程及其自动化 班级: 指导教师:

基于DSP的光伏并网逆变器硬件电路的设计 摘要 由于近年来不可再生能源的不断消耗,能源危机日益凸显,各国都在加紧开发新能源。太阳能发电作为一种全新的电能生产方式,具有清洁无污染、来源永不衰竭且维护措施简单等特点,因而受到越来越广泛的关注。本文针对太阳能应用的一个重要研究领域——光伏发电系统,尤其是小功率光伏并网发电系统,设计实现了基于DSP控制的单相光伏并网逆变器的硬件电路。 论文首先介绍了太阳能光伏并网的国内外发展现状,阐述了利用DSP控制光伏并网系统的基本原理。然后提出了以逆变器DC/AC变换技术为核心的单相光伏并网逆变器的硬件电路设计方案,并在Matlab软件上进行了仿真测试。最后对后续研究工作进行了展望,为进一步制作电路板及其调试提供了参考。 关键词:光伏并网;逆变器;数字信号处理器;Matlab仿真

PV Grid-Connected Inverter Hardware Circuit Design Based on DSP Abstract In recent years, with the continuous consumption of non-renewable energy, the energy crisis has become increasingly prominent, countries are stepping up the pace to develop new energy. Solar power, as a new energy production methods, owns many features, such as, clean, non-polluting, never failure of source and simple maintenance measures, and thus draws more and more attention. In this paper, as for an important research field of solar energy applications-photovoltaic systems, especially low-power photovoltaic power generation system, the hardware circuit of the DSP-based control of single phase photovoltaic grid-connected inverter is designed and implemented. The paper firstly described the development of solar photovoltaic grid in the world, and explained the basic principles of DSP controlled photovoltaic grid system. Then objective of the single-phase PV grid inverter with the core of DC / AC conversion technology inverter hardware circuit is designed and its simulation tests on the Matlab software is proceeded. Finally, the prospect of follow-up study provides a reference for the further production of circuit boards and their debugging. Key words: grid-connected photovoltaic; inverter; DSP; Matlab simulation

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

小型风力发电机毕业设计 摘要 基于开发风能资源在改善能源结构中的重要意义,本论文对风力发电机的特性作了简要的介绍,且对风力发电机的各种参数和风力机类型作了必要的说明。在此基础上,对风力发电机的原理和结构作了细致的分析。首先,对风力发电机的总体机械结构进行了设计,并且设计了限速控制系统。本课题设计的是一种新型的立式垂直轴小型风力发电机,由风机叶轮、立柱、横梁、变速机构、离合装置和发电机组成。这种发电机有体积小、噪音小、使用寿命长、价格低的特点,适合在有风能资源地区的楼房顶部,供应家庭用电,例如照明:灯泡,节能灯;家用电器:电视机、收音机、电风扇、洗衣机、电冰箱。 关键词:风力发电限速控制系统小型风力发电机

Abstract Exploiting wind energy resources is of great significance in improving energy structure. In the discourse,the characters of wind generator are introduced briefly,while parameters and types of wind generators are also narrated. Base on these,the theory and constitution of the wind generator are meticulously analyzed. Firstly,Has carried on the design to wind-driven generator's overall mechanism, And has designed the regulating control system. What I design is one kind of new vertical axis small wind-driven generator, by the air blower impeller, the column, the crossbeam, the gearshift mechanism, the engaging and disengaging gear and the generator is composed. This kind of generator has the volume to be small, the noise is small, the service life is long, the price low characteristic, suits in has the wind energy resources area building crown, the supply family uses electricity, For example illumination: The light bulb, conserves energy the lamp; Domestic electric appliances: Television, radio, electric fan, washer, electric refrigerator. Key words:Wind power generation, Regulating control system, Small wind-driven generator

. .. . 目录 设计总说明 ................................................................................................................... I Introduction .............................................................................................................. III 1 绪论 . (1) 1.1 太阳能光伏发电的研究背景 (1) 1.2 太阳能光伏发电发展历程与现状 (2) 1.3本文主要研究容和任务 (2) 2 光伏系统简介及光伏发电效率分析 (5) 2.1 太阳能光伏系统简介 (5) 2.1.1 光伏系统的基本组成 (5) 2.1.2 光伏系统的分类 (6) 2.2光伏电池特性分析 (7) 2.2.1太阳能电池原理及分类 (9) 2.2.2太阳能电池输出特性 (11) 2.2.3太阳能电池工程用数学模型 (12) 2.3铅酸蓄电池 (13) 铅酸蓄电池充电控制方法 (14) 2.4 影响太阳能光伏发电效率的因素 (15) 2.5提高太阳能光伏发电效率需进一步解决的问题 (18) 3 最大功率点跟踪(MPPT)的研究 (19) 3.1 最大功率点跟踪的概念 (19) ..w..

. .. . 3.2 MPPT原理 (19) 3.3 光伏系统最大功率点跟踪控制方法研究 (20) 3.3.1 定电压跟踪法(Constant Voltage Tracking,CVT) (21) 3.3.2 扰动观察法(P&O,Perturbation and observation method) (22) 3.3.3 导纳增量法 (24) 3.3.4基于梯度变步长的导纳增量法 (26) 4 DC-DC变换器的设计 (27) ..w..

(敬请用户使用前应详细阅读此使用说明)深圳市普顿电力设备有限公司 使 用 说 明 书

请严格依照以下说明使用或安装: 1、安装逆变电源时要专业人员操作或当地经销商协助完成。 2、确认输入直流电压范围是否符合要求即+15% ,电源极性是否正确。 3、确认负载设备电压等级,功率应不大于逆变电源额定输出功率。 4、勿将液体流入逆变电源内部,或用湿布擦机器外壳。机器运行时人体不能直接接触逆变电源输入输出端子,尤其是湿手,否则造成触电伤害。 5、正常运行的逆变电源如需变动其工作环境,不可自行改变其连线,应由专业人员或经销商确认操作。 6、逆变电源运行环境应在通风良好、温度范围-20至45度环境使用,应远离明火源以及日光直射的位置。不能在结露,灰尘环境下运行。在使用过程中有一定的发热量属正常现象、但要保持安装环境的通风散热、干净清洁,特别不能阻塞通风孔。 7、未成年人不得使用本产品。 8、确认逆变电源地线可靠连接,火线和零线不能接反,线径应符合安全使用条件,连接线尽可能缩短。 9、请不要自行打开逆变电源机箱,否则我方将不承担保修事宜。 10、请保存好本说明书,作为日后参阅。 注意: A、未经许可本产品不可以用于维持生命的设备。 B、本逆变电源不适宜用于超高精密电子设备,需先经专业技术人员确认方可投入运行。 C、如果用于计算机负载,计算机的内置电源应选用品牌电源。 警告! 严禁蓄电池反接,严禁火线和零线接反。 严禁在有易燃性、易爆性气体的环境下使用,谨防火花! 连接顺序,务必是先接蓄电池,后接电池板;严禁颠倒顺序。

一、普顿PD系列太阳能逆变电源介绍 本系列逆变电源结合目前逆变电源的优点和缺点进行升级优化、全面改进,并且采用最新的工频逆变电路方案而设计,具备高转换效率、高稳定性、超低损耗、超强带载能力、超强抗干扰能力的特性;可为商业、工业、民用、军用、电信设备等提供可靠的正弦波交流电源。适用于直流电压为DC12V,DC24V,DC48V,DC72V的光伏离网发电场合,主要用于空调、电视、收银机、冰箱、洗衣机、电脑、电动工具、照明、工业设备、电信设备等各类负载。 太阳能逆变器(带市电充电) 二、普顿产品功能介绍 1:普顿产品原理图 2:产品原理说明(交流主供/直流主供,可以在面板自行选择) A、交流主供(市电优先模式) 步骤1:当有市电时,市电旁路直接输出,并且同时为蓄电池充电; 步骤2:当市电突然停电或异常,在5ms内系统自动切换至逆变供电,确保负载持续工作; 步骤3:当市电恢复后,系统自动切换至市电供电,同时为蓄电池充电; 说明:光伏板在发电情况下,就给电池充电,直至电池充满; B、直流主供(逆变优先模式)(以12V电池模式举例如下,其他电压等级对应翻倍) 主用于光伏给电池充电,市电为互补充电,市电当备用电源。 步骤1:当有市电OK时,只要电池电压高于11V,逆变电源将逆变输出; (此功能主要实现光伏发电优先) 步骤2:当电池放电至11V,逆变电源将自动切换至市电旁路输出,同时市电给电池辅助充电; (电池欠压了说明光伏发电量不够使用,此功能主要实现市电互补充电、保证用电设备持续使用和延长电池使用寿命,不要市电充电,可以在面板取消)。 步骤3:当光伏板或市电通过逆变电源给电池充电至13.5V(或转恒压模式,或转浮充模式)时,逆变电源将自动切换至逆变模式输出(此功能主要实现光伏发电优先)。 步骤4:当市电故障、光伏发电又不够时,并且电池电压低于10V,逆变器将关闭输出。

中国矿业大学 风力发电机毕业设计(含程序)

第一章绪论 4 1.1 引言 (4) 1.2 国内外风力发电技术的研究现状 (4) 1.3 风力发电机组控制技术概述 (6) 1.3.1 风力机定桨距控制技术 (6) 1.3.2 风力机变桨距控制技术 (6) 1.4 本课题的研究目的和意义 (7) 1.5 本文的主要研究工作 (7) 1.6 本章小结 (8) 第二章风力发电机的控制理论9 2.1 引言 (9) 2.2 风力发电机组的组成 (9) 2.3 风力发电机组空气动力学理论 (10) 2.3.1 风力发电机组空气动力学理论基础 (10) 2.3.2 风力机风轮空气动力学分析 (13) 2.4 风力机变桨距调节原理 (15) 2.4.1 变桨距控制理论简述 (15) 2.4.2 变桨距风力发电机组的运行状态 (17) 2.5 本章小结 (18) 第三章变桨系统的总体方案及机械机构设计19 3.1 风力发电的工作状态分析 (19) 3.2 现有的几种变桨系统比较 (20) 3.3 总体方案的设计 (21) 3.4 方案的选取 (22) 3.5 变桨系统的机构设计 (22) 3.5.1 轮毂 (23) 3.5.2 变浆轴承 (24) 3.5.3 变浆齿轮箱 (26) 3.5.4 电机 (27) 3.5.5 UPS (33) 3.5.6 变浆中心润滑系统 (36) 3.5.7 润滑剂 (38) 3.6 本章总结 (39) 第四章变桨控制系统的硬件和软件的设计40 4.1 变桨系统的功能概述 (40) 4.2 变桨距系统的控制原理 (40) 4.2.1 变距控制 (41) 4.2.2 转速控制A(发电机脱网) (41) 4.2.3 速度控制B(发电机并网) (42) 4.2.4 功率控制 (42) 4.3 控制系统实现方案 (47)

离网光伏发电系统容量设计 一.任务目标 1.掌握容量设计的步骤和思路。 2.掌握光伏发电系统的容量设计方法。 3.了解光伏发电系统容量设计考虑的相关因素。 二.任务描述 光伏发电系统容量设计主要涉及蓄电池容量、蓄电池串并联数、光伏发电系统的发电量、光伏组件串并联数的计算。本实验报告主要以两种常见的计算方法为主。计算过程中需要注意不同容量单位之间的换算。 三.任务实施 1.容量设计的步骤及思路: 光伏发电系统容量设计的主要目的是计算出系统在全年能够可靠工作所需的太阳能电池组件和蓄电池的数量。主要步骤: 2.蓄电池容量和蓄电池组的设计: (1)基本计算方法及步骤 ①将负载需要的用电量乘以根据实际情况确定的连续阴雨天数得到初步的蓄电池容量。阴雨天数的选择可参照如下:一般负载,如太阳能路灯等,可根据经验或需要在3-7选取,重要的负载。如通信、导航、医院救治等,在7-15选取。

②蓄电池容量除以蓄电池的允许最大放电深度。一般情况下,浅循环型蓄电池选用50%的放电深度,深循环型蓄电池选用75%的放电深度。 ③综合①②得电池容量的基本公式为 最大放电深度连续阴雨天数 负载日平均用电量蓄电池容量?= 式中,电量的单位是h A ?,如果电量的单位是h W ?,先将h W ?折算为h A ?,折算关系如下: 系统工作电压 )负载日平均用电量(负载平均用电量h W ?= (2)相关因素的考虑 上 ①放电率对蓄电池容量的影响。 蓄电池的容量随着放电率的改变而改变,这样会对容量设计产生影响。计算光伏发电系统的实际平均放电率。 最大放电深度 连续阴雨天数负载工作时间)平均放电率(?=h 负载工作功率负载工作时间负载工作功率负载工作时间∑ ∑?= ②温度对蓄电池容量的影响。 蓄电池的实际容量会随着温度的变化而变化,当温度下降时,蓄电池的实际容量下降;温度升高时,蓄电池的实际容量略有升高。蓄电池的实际容量与温度的关系如图4-3所示曲线所示。

编号 淮安信息职业技术学院 毕业论文 题目光伏发电系统控制系统设计 学生姓名*** 学号**** 系部电气工程系 专业机电一体化 班级***** 指导教师【***】【讲师】 顾问教师 二〇一二年十月 摘要 进入二十一世纪,人类面临着实现经济和社会可持续大战的重大挑战,而能源问题日益严重,一方面是常规能源的缺乏,另一方面石油等能源的开发带来一系列的问题,如环境污染,温室效应等。人类需要解决能源问题,实现可持续发展,只能依靠科技进进步,大规模开发利用可再生能源和新能源。太阳能是一种有前途的新型能源,具有永久性、清洁型和灵活性三大优点。太阳能电池寿命长,

只要有太阳在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染问题;光伏发电系统可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,而且还缓解了目前能源危机与环境危机,只是其它电源无法比拟。 关键词:太阳能供电系统蓄电池逆变

目录 编号 ..................................................................................................................... 错误!未指定书签。摘要 ................................................................................................................. 错误!未指定书签。目录 ............................................................................................................. 错误!未指定书签。第一章绪论 ................................................................................................... 错误!未指定书签。光伏发电控制系统简介 ........................... 错误!未指定书签。问题的提出 ..................................... 错误!未指定书签。本课题设计的主要目的和意义 ..................... 错误!未指定书签。本课题设计的主要内容 ........................... 错误!未指定书签。第二章可编程控制器()基础知识 ............................................................. 错误!未指定书签。可编程控制器() ............................... 错误!未指定书签。 的定义......................................... 错误!未指定书签。 的特点......................................... 错误!未指定书签。 的简介及模块................................... 错误!未指定书签。第三章系统硬件设计 ..................................................................................... 错误!未指定书签。 光伏供电装置................................... 错误!未指定书签。光伏供电系统 ................................... 错误!未指定书签。 基于的硬件电路设计............................. 错误!未指定书签。 基于的硬件电路设计............................. 错误!未指定书签。第四章系统软件设计 ..................................................................................... 错误!未指定书签。 主程序设计..................................... 错误!未指定书签。 子程序设计..................................... 错误!未指定书签。 监控界面的设计................................. 错误!未指定书签。第五章系统调试 ............................................................................................... 错误!未指定书签。 调试主要内容................................... 错误!未指定书签。调试结果 ....................................... 错误!未指定书签。第六章总结与展望 ........................................................................................... 错误!未指定书签。 总结........................................... 错误!未指定书签。 展望........................................... 错误!未指定书签。

相关主题
文本预览
相关文档 最新文档