多次动态规划
- 格式:ppt
- 大小:145.50 KB
- 文档页数:15
题目:贪心算法、分治算法、动态规划算法间的比较贪心算法:贪心算法采用的是逐步构造最优解的方法。
在每个阶段,都在一定的标准下做出一个看上去最优的决策。
决策一旦做出,就不可能再更改。
做出这个局部最优决策所依照的标准称为贪心准则。
分治算法:分治法的思想是将一个难以直接解决大的问题分解成容易求解的子问题,以便各个击破、分而治之。
动态规划:将待求解的问题分解为若干个子问题,按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。
在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。
依次解决各子问题,最后一个子问题就是初始问题的解。
二、算法间的关联与不同1、分治算法与动态规划分治法所能解决的问题一般具有以下几个特征:①该问题的规模缩小到一定程度就可以容易地解决。
②该问题可以分为若干个较小规模的相似的问题,即该问题具有最优子结构性质。
③利用该问题分解出的子问题的解可以合并为该问题的解。
④该问题所分解出的各个子问题是相互独立的且子问题即之间不包含公共的子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是分治法应用的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划算法;第四条特征涉及到分治法的效率,如果各个子问题不是独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。
这类问题虽然可以用分治法解决,但用动态规划算法解决效率更高。
当问题满足第一、二、三条,而不满足第四条时,一般可以用动态规划法解决,可以说,动态规划法的实质是:分治算法思想+解决子问题冗余情况2、贪心算法与动态规划算法多阶段逐步解决问题的策略就是按一定顺序或一定的策略逐步解决问题的方法。
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告算法设计与分析实验报告实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 理解最优子结构的问题。
有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。
这类问题的解决是多阶段的决策过程。
在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。
对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。
最优子结构性质:原问题的最优解包含了其子问题的最优解。
子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。
2.理解分段决策Bellman 方程。
每一点最优都是上一点最优加上这段长度。
即当前最优只与上一步有关。
U s 初始值,u j 第j 段的最优值。
⎪⎩⎪⎨⎧+==≠}.{min ,0ijiji js w u u u3.一般方法1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;4)根据计算最优值时得到的信息,构造一个最优解。
步骤1-3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。
二.实验内容1.编程实现多段图的最短路径问题的动态规划算法。
2.图的数据结构采用邻接表。
3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。
4.验证算法的时间复杂性。
实验二最长公共子序列(动态规划算法)班级:08计算机科学与技术(1)班学号:E08620113 姓名:戴斌江机器号:实验二最长公共子序列问题一、实验目的:1、理解动态规划算法的概念;2、掌握动态规划算法的基本要素;3、掌握设计动态规划算法的步骤;4、通过应用范例学习动态规划算法的设计技巧与策略;二、实验内容及要求:1、使用动态规划算法解决最长公共子序列问题:给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
2、通过上机实验进行算法实现。
3、保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。
三、实验原理:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
算法总体思想:1)动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
2)与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。
子问题中存在大量的公共子问题,在分治求解过程中被多次重复计算,保存计算结果,为后面的计算直接引用,减少重复计算次数这就是动态规划的基本思想。
3)用动态规划算法求解问题,可依据其递归式以自底向上的方式进行计算。
在计算过程中,保存已解决的子问题的答案。
每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量重复计算,最终得到多项式时间算法。
动态规划之矩阵连乘【问题描述】给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
分析:矩阵链乘法问题描述:给定由n个矩阵构成的序列{A1,A2,...,An},对乘积A1A2...An,找到最⼩化乘法次数的加括号⽅法。
1)寻找最优⼦结构此问题最难的地⽅在于找到最优⼦结构。
对乘积A1A2...An的任意加括号⽅法都会将序列在某个地⽅分成两部分,也就是最后⼀次乘法计算的地⽅,我们将这个位置记为k,也就是说⾸先计算A1...Ak和Ak+1...An,然后再将这两部分的结果相乘。
最优⼦结构如下:假设A1A2...An的⼀个最优加括号把乘积在Ak和Ak+1间分开,则前缀⼦链A1...Ak的加括号⽅式必定为A1...Ak的⼀个最优加括号,后缀⼦链同理。
⼀开始并不知道k的确切位置,需要遍历所有位置以保证找到合适的k来分割乘积。
2)构造递归解设m[i,j]为矩阵链Ai...Aj的最优解的代价,则3)构建辅助表,解决重叠⼦问题从第⼆步的递归式可以发现解的过程中会有很多重叠⼦问题,可以⽤⼀个nXn维的辅助表m[n][n] s[n][n]分别表⽰最优乘积代价及其分割位置k 。
辅助表s[n][n]可以由2种⽅法构造,⼀种是⾃底向上填表构建,该⽅法要求按照递增的⽅式逐步填写⼦问题的解,也就是先计算长度为2的所有矩阵链的解,然后计算长度3的矩阵链,直到长度n;另⼀种是⾃顶向下填表的备忘录法,该⽅法将表的每个元素初始化为某特殊值(本问题中可以将最优乘积代价设置为⼀极⼤值),以表⽰待计算,在递归的过程中逐个填⼊遇到的⼦问题的解。
强化学习算法中的最优化方法详解强化学习是一种通过交互和试错来学习最优行为策略的机器学习方法。
在强化学习中,智能体通过与环境进行交互,根据环境的反馈来调整自己的行为,以获得最大的累积奖励。
强化学习算法中的最优化方法是指如何通过数学和计算方法来找到最优的学习策略。
本文将详细介绍强化学习算法中的最优化方法,包括基本的数学原理和常用的算法技巧。
1. 基本原理在强化学习中,智能体通过与环境进行交互,根据环境的反馈来调整自己的行为。
智能体的目标是最大化累积奖励,即在与环境交互的过程中获得尽可能多的奖励。
为了实现这一目标,智能体需要学习一个最优的策略,即在不同的环境状态下采取最佳的行为。
最优化方法就是用来找到这样一个最优策略的数学和计算方法。
在强化学习中,最优化方法的基本原理是通过最大化累积奖励来找到最优的学习策略。
这一过程可以建模为一个优化问题,即在给定的环境和奖励函数下,找到一个最优的策略使得累积奖励最大化。
为了解决这一优化问题,可以使用各种数学和计算方法,如动态规划、蒙特卡洛方法、时序差分学习等。
2. 动态规划动态规划是一种用来解决具有重叠子问题和最优子结构性质的优化问题的方法。
在强化学习中,动态规划可以用来找到最优的学习策略。
动态规划的基本思想是将原问题分解为若干个子问题,通过求解子问题的最优解来得到原问题的最优解。
在强化学习中,动态规划可以用来求解值函数和策略函数。
值函数表示在给定状态下采取某个行为所能获得的期望奖励,而策略函数表示在给定状态下应该采取的最佳行为。
通过动态规划,可以逐步求解值函数和策略函数,从而找到最优的学习策略。
3. 蒙特卡洛方法蒙特卡洛方法是一种通过多次采样来估计某个随机变量的数学方法。
在强化学习中,蒙特卡洛方法可以用来估计值函数和策略函数。
其基本思想是通过与环境进行交互,多次采样得到不同的轨迹,然后根据这些轨迹来估计值函数和策略函数。
在强化学习中,蒙特卡洛方法可以用来求解值函数和策略函数的近似解。
暨南大学本科生课程论文论文题目:动态规划算法的应用学院:珠海学院学系:计算机科学系专业:计算机科学与技术课程名称:ACM学生姓名:赵莎学号:2007052391指导教师:陈双平2009年 6 月10 日动态规划算法——试析动态规划算法在ACM中的应用[摘要]通过实例,分析了动态规划算法在ACM中的应用。
[关键词]ACM; 动态规划算法; DPDynamic programming algorithm——Analysis the dynamic programming algorithm in the application of ACM[Abstract] The application of Dynamic programming algorithmhas been studied[Keywords]ACM; Dynamic programming algorithm; DP1.绪论1.1综述[1]动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
动态规划:钢条切割问题问题:Serling公司购买长钢条,将其切割为短钢条出售。
不同的切割⽅案,收益是不同的,怎么切割才能有最⼤的收益呢?假设,切割⼯序本⾝没有成本⽀出。
假定出售⼀段长度为i英⼨的钢条的价格为p i (i=1,2,…)。
钢条的长度为n英⼨。
如下给出⼀个价格表P。
给定⼀段长度为n英⼨的钢条和⼀个价格表P,求切割钢条⽅案,使得销售收益 r n最⼤。
(如果长度为n英⼨的钢条的价格p n ⾜够⼤,则可能完全不需要切割,出售整条钢条是最好的收益)⾃顶向下动态规划算法:1public static int buttom_up_cut(int[] p) {2int[] r = new int[p.length + 1];3for (int i = 1; i <= p.length; i++) {4int q = -1;5//①6for (int j = 1; j <= i; j++)7 q = Math.max(q, p[j - 1] + r[i - j]);8 r[i] = q;9 }10return r[p.length];11 }为什么长度为i时的最⼤收益 r[i] 可以通过注释①处的循环来求呢?假设长度为i时钢条被分割为x段{m1,m2,m3,...,mx}可得最⼤收益 r[i] ,取出其中⼀段mk,则最⼤收益可表⽰为r[i] = p[mk] + r[i - mk]如果r[i - mk] 不是长度为 i - mk 时的最⼤收益的话,则r[i]是长度为i时的最⼤收益也就不成⽴,所以最⼤收益r[i]⼀定可以表⽰成单独切出⼀段的价格p[mk] 加上余下长度的最⼤收益 r[i - mk]以下内容转载⾃: https:///szz715/blog/3103246前⾔众所周知,递归算法时间复杂度很⾼为(2^n),⽽动态规划算法也能够解决此类问题,动态规划的算法的时间复杂度为(n^2)。