当前位置:文档之家› 现代密码学第四讲:分组密码3(必修)

现代密码学第四讲:分组密码3(必修)

(完整版)北邮版《现代密码学》习题答案.doc

《现代密码学习题》答案 第一章 1、1949 年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理 论基础,从此密码学成了一门科学。 A、Shannon B 、Diffie C、Hellman D 、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥 5 部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要 的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A 无条件安全 B计算安全 C可证明安全 D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为 4 类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B 、已知明文攻击 C 、选择明文攻击D、选择密文攻击 5、1976 年,和在密码学的新方向一文中提出了公开密钥密码的思想, 从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通

信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 对9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为 称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对( B )算法最有效。 A、置换密码 B 、单表代换密码C、多表代换密码D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A 仿射密码 B维吉利亚密码C轮转密码 D希尔密码 3、重合指数法对( C)算法的破解最有效。 A 置换密码 B单表代换密码C多表代换密码 D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是 (C )。

现代密码学:第55讲 后量子密码学

现代密码学 第五十五讲后量子密码学信息与软件工程学院

第五十七讲后量子密码学 量子计算对密码学的影响 后量子密码学的研究方向

量子计算对密码学的威胁 ?贝尔实验室,Grove算法,1996年 ?针对所有密码(包括对称密码)的通用的搜索破译算法 ?所有密码的安全参数要相应增大 ?贝尔实验室,Shor算法,1994年 ?多项式时间求解数论困难问题如大整数分解问题、求解离散对数问题等?RSA、ElGamal、ECC、DSS等公钥密码体制都不再安全

量子计算对密码学的威胁(续) 密码算法类型目的受大规模量子计算机的影响 AES对称密钥加密密钥规模增大SHA-2, SHA-3Hash函数完整性输出长度增加RSA公钥密码加密,签名,密钥建立不再安全ECDSA,ECDH公钥密码签名,密钥交换不再安全DSA公钥密码签名不再安全

量子计算机的研究进展 ?2001年,科学家在具有15个量子位的核磁共振量子计算机上成功利用Shor算法对15进行因式分解。 ?2007年2月,加拿大D-Wave系统公司宣布研制成功16位量子比特的超导量子计算机,但其作用仅限于解决一些最优化问题,与科学界公认的能运行各种量子算法的量子计算机仍有较大区别。 ?2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。同年,英国布里斯托尔大学的科学家研制出基于量子光学的量子计算机芯片,可运行Shor算法。 ?2010年3月31日,德国于利希研究中心发表公报:德国超级计算机成功模拟42位量子计算机。 ?2011年5月11日, 加拿大的D-Wave System Inc. 发布了一款号称“全球第一款商用型量子计算机”的计算设备“D-Wave One”。

现代密码学考试重点总结 (1)

古典密码 1.密码的基本概念 ○1作为数学的一个分支,是密码编码学和密码分析学的统称 ○2密码编码学:使消息保密的技术和科学 研究内容:1、序列密码算法的编码技术 2、分组密码算法的编码技术 3、公钥密码体制的编码技术 ○3密码分析学:破译密文的科学和技术 研究内容:1、密码算法的安全性分析和破译的理论、方法、技术和实践 2、密码协议的安全性分析的理论与方法 3、安全保密系统的安全性分析和攻击的理论、方法、技术和实践2.密码体制的5构成要素: ○1M:明文消息空间,表示所有可能的明文组成的有限集。 ○2C:密文消息空间,表示所有可能的密文组成的有限集。 ○3K:密钥空间,表示所有可能的密钥组成的有限集。 ○4E:加密算法集合。 ○5D:解密算法集合 3.密码体制的分类: ○1对称密匙密码系统加密密钥=解密密钥钥匙是保密的依赖密钥选择 ○2非对称密匙密码系统加密密钥≠解密密钥 加密密钥为公钥(Public Key)解密密钥为私钥(Private Key) 4.古典密码体制的算法 ○1棋盘密码希腊作家Polybius提出密钥空间:25 ○2移位密码 ○3代换密码 ○4维吉尼亚密码 ○5仿射密码:仿射密码是移位密码的一个推广,其加密过程中不仅包含移位操作,而且使用了乘法运算 例题: 1-1mod26=1 3-1mod26=9 5- 1mod26=21 7-1mod26=15 11-1mod26=19 17-1mod26=23 25- 1mod26=25 ○6置换密码 ○7Hill密码 例题: 5.密码分析的Kerckhoffs原 则:攻击者知道所用的加密算法的内部机理,不知道的仅仅是加密算法所采用的加密密钥 6.常用的密码分析攻击分为以下四类:

现代密码学课后答案第二版讲解

现代密码学教程第二版 谷利泽郑世慧杨义先 欢迎私信指正,共同奉献 第一章 1.判断题 2.选择题 3.填空题 1.信息安全的主要目标是指机密性、完整性、可用性、认证性和不可否认性。 2.经典的信息安全三要素--机密性,完整性和可用性,是信息安全的核心原则。 3.根据对信息流造成的影响,可以把攻击分为5类中断、截取、篡改、伪造和重放,进一 步可概括为两类主动攻击和被动攻击。

4.1949年,香农发表《保密系统的通信理论》,为密码系统建立了理论基础,从此密码学 成为了一门学科。 5.密码学的发展大致经历了两个阶段:传统密码学和现代密码学。 6.1976年,W.Diffie和M.Hellman在《密码学的新方向》一文中提出了公开密钥密码的 思想,从而开创了现代密码学的新领域。 7.密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的《保密系统的通信理 论》和 1978年,Rivest,Shamir和Adleman提出RSA公钥密码体制。 8.密码法规是社会信息化密码管理的依据。 第二章 1.判断题 答案×√×√√√√××

2.选择题 答案:DCAAC ADA

3.填空题 1.密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分 析学。 2.8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 3.9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和 非对称。 4.10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列 密码。

第三章5.判断 6.选择题

现代密码学期终考试试卷和答案

一.选择题 1、关于密码学的讨论中,下列(D )观点是不正确的。 A、密码学是研究与信息安全相关的方面如机密性、完整性、实体鉴别、抗否认等的综 合技术 B、密码学的两大分支是密码编码学和密码分析学 C、密码并不是提供安全的单一的手段,而是一组技术 D、密码学中存在一次一密的密码体制,它是绝对安全的 2、在以下古典密码体制中,属于置换密码的是(B)。 A、移位密码 B、倒序密码 C、仿射密码 D、PlayFair密码 3、一个完整的密码体制,不包括以下(?C?? )要素。 A、明文空间 B、密文空间 C、数字签名 D、密钥空间 4、关于DES算法,除了(C )以外,下列描述DES算法子密钥产生过程是正确的。 A、首先将DES 算法所接受的输入密钥K(64 位),去除奇偶校验位,得到56位密钥(即经过PC-1置换,得到56位密钥) B、在计算第i轮迭代所需的子密钥时,首先进行循环左移,循环左移的位数取决于i的值,这些经过循环移位的值作为下一次 循环左移的输入 C、在计算第i轮迭代所需的子密钥时,首先进行循环左移,每轮循环左移的位数都相同,这些经过循环移位的值作为下一次循 环左移的输入 D、然后将每轮循环移位后的值经PC-2置换,所得到的置换结果即为第i轮所需的子密钥Ki 5、2000年10月2日,NIST正式宣布将(B )候选算法作为高级数据加密标准,该算法是由两位比利时密码学者提出的。 A、MARS B、Rijndael C、Twofish D、Bluefish *6、根据所依据的数学难题,除了(A )以外,公钥密码体制可以分为以下几类。 A、模幂运算问题 B、大整数因子分解问题 C、离散对数问题 D、椭圆曲线离散对数问题 7、密码学中的杂凑函数(Hash函数)按照是否使用密钥分为两大类:带密钥的杂凑函数和不带密钥的杂凑函数,下面(C )是带密钥的杂凑函数。 A、MD4 B、SHA-1

量子密码学

密码学(cryptography)简单的说就是通过某种方式只能将信息传递给特定的接受者。 实现的手段基本上就是对要传递的信息实行加密 (encryption) 和解密 (decryption) 算法,从而使任何其它人没有办法获得原始信息。密钥 (key) 指的是一串特定的参数, 发送信息的一方用密钥和原始信息进行加密运算得到密文 (cryptogram),接收方用密 钥和密文进行解密运算得到原始信息。加密和解密的算法是公开的,密文的保密性依赖 于密钥的保密性。密钥的保密性依赖于密钥的随机性和有足够的长度。密钥分两类,一 类是对称密钥 (Symmetric key) ,发送和接收方用同样的密钥进行加密解密,比如DES (Data Encryption Standard) 算法;另一类是非对称密钥 (Asymmetric key) ,发送 和接收方用不同的密钥进行加密解密,发送方用公用密钥 (Public key) 加密,接收方 用私有密钥 (Private key) 解密。两个密钥有一定的数学关系,但是很难从公用密钥 获得私有密钥,比如RSA算法采用的分解大数法。一旦双方获得相应的密钥,密文就可 以在公共信道上传递而不必顾忌公共信道上可能存在的窃听者,因为窃听者没有密钥, 无法成功解密。但是为了通信双方成功建立密钥,必须要有一个可靠和高度机密的信道 传递密钥。然而从理论上说,任何经典的密钥传递 (key distribution) 都不能保证总 能察觉密钥是否被窃听。因为经典的信息是无法区分的 (跟量子相比) ,窃听者可以读 取信息然后还原该信息,接收方无法知道中间是否发生过窃听。非对称密钥的好处就在 于避免了密钥的传递,由于双方的密钥有一定的数学关系,但又不是用现有的计算能力 能够快速破解的,比如RSA的分解大数关系,所以达到保密的目的。这种方法的缺陷在 于如果有一种比现有快很多的计算方法出现,就很容易获得私有密钥。比如已经有人提 出如果量子计算机可以实现,采用量子算法可以大大加快分解大数的时间 (Peter Shor at AT&T lab. 1994) 。 有没有绝对的保密呢?香农 (Shannon at Bell lab.) 在四十年代从理论上证明了如果 密钥的长度不小于密文,并且保证绝对随机,同时采用one-time-pad算法(简单的说就是密钥只能用一次),就没有办法破译,即使你有量子计算机也没有用。但是这个算法在实 用上非常难实现,首先就是不能保证密钥传递的可靠性。 量子密码学 (Quantum Cryptography) 的优势就在于利用海森堡测不准原理 (Heisenberg uncertainty principle) 和量子纠缠(quantum entanglement)这些基本的量子原理使得 密钥可以绝对保密地传递。量子密钥传递(Quantum Key Distribution:QKD) 是现在Quan- tum Cryptography的核心。 现在具体介绍QKD的实现方法。 最早的QKD协议由Bennett and Brassard于1984年提出,简称为"BB84"。发送方Alice 和接收方Bob使用一个量子信道传递四种偏振光子,同时使用一个经典信道传递普 通信号。窃听者Eve被允许随意窃听,也就是说可以随意测量量子信道里的光子的 偏振方向,同时听到任意经典信道里的信息,但是不能改变听到的信息。首先 Alice产生并发送给Bob一串光子,这些光子被任意偏振在0, 45, 90 ,135度上。然 后Bob测量接收到的光子的偏振方向。根据量子力学,Bob只能区分正交的偏振方向 ,比如0和90度,45和135度,但是不能区分所有方向。因此整个过程可以用简单的 图示表示。Alice发送给Bob的光子偏振方向如下: | / - \ - / | |

现代密码学考试总结

现代密码学考试总结 https://www.doczj.com/doc/ff2455630.html,work Information Technology Company.2020YEAR

密码主要功能: 1.机密性:指保证信息不泄露给非授权的用户或实体,确保存储的信息和传输的信息仅 能被授权的各方得到,而非授权用户即使得到信息也无法知晓信息内容,不能使用。 2.完整性:是指信息未经授权不能进行改变的特征,维护信息的一致性,即信息在生 成、传输、存储和使用过程中不应发生人为或非人为的非授权篡改(插入、替换、删除、重排序等),如果发生,能够及时发现。 3.认证性:是指确保一个信息的来源或源本身被正确地标识,同时确保该标识的真实 性,分为实体认证和消息认证。 消息认证:向接收方保证消息确实来自于它所宣称的源; 实体认证:参与信息处理的实体是可信的,即每个实体的确是它所宣称的那个实体,使得任何其它实体不能假冒这个实体。 4.不可否认性:是防止发送方或接收方抵赖所传输的信息,要求无论发送方还是接收方 都不能抵赖所进行的行为。因此,当发送一个信息时,接收方能证实该信息的确是由所宣称的发送方发来的;当接收方收到一个信息时,发送方能够证实该信息的确送到了指定的接收方。 信息安全:指信息网络的硬件、软件及其系统中的数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改、泄露、否认等,系统连续可靠正常地运行,信息服务不中断。 信息安全的理论基础是密码学,根本解决,密码学理论 对称密码技术——分组密码和序列密码——机密性; 消息认证码——完整性,认证性; 数字签名技术——完整性,认证性,不可否认性; 1949年Shannon发表题为《保密系统的通信理论》 1976年后,美国数据加密标准(DES)的公布使密码学的研究公开,密码学得到了迅速发展。 1976年,Diffe和Hellman发表了《密码学的新方向》,提出了一种新的密码设计思想,从而开创了公钥密码学的新纪元。 置换密码 置换密码的特点是保持明文的所有字符不变,只是利用置换打乱了明文字符的位置和次序。 列置换密码和周期置换密码 使用密码设备必备四要素:安全、性能、成本、方便。 密码体制的基本要求: 1.密码体制既易于实现又便于使用,主要是指加密函数和解密函数都可以高效地计算。 2.密码体制的安全性是依赖密钥的安全性,密码算法是公开的。 3.密码算法安全强度高,也就是说,密码分析者除了穷举搜索攻击外再找不到更好的攻 击方法。 4.密钥空间应足够大,使得试图通过穷举密钥空间进行搜索的方式在计算上不可行。

(完整版)密码学学习心得

密码学认识与总结 专业班级信息112 学号201112030223 姓名李延召报告日期. 在我们的生活中有许多的秘密和隐私,我们不想让其他人知道,更不想让他们去广泛传播或者使用。对于我们来说,这些私密是至关重要的,它记载了我们个人的重要信息,其他人不需要知道,也没有必要知道。为了防止秘密泄露,我们当然就会设置密码,保护我们的信息安全。更有甚者去设置密保,以防密码丢失后能够及时找回。密码”一词对人们来说并不陌生,人们可以举出许多有关使用密码的例子。现代的密码已经比古代有了长远的发展,并逐渐形成一门科学,吸引着越来越多的人们为之奋斗。 一、密码学的定义 密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。 密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。 密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。 本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容 密码学主要包括两个分支,即密码编码学和密码分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信

现代密码学论文

现代密码学论文 院(系)名称理学院 专业班级计算131班学号130901027 学生姓名王云英

摘要 现代密码学研究信息从发端到收端的安全传输和安全存储,是研究“知己知彼”的一门科学。其核心是密码编码学和密码分析学。前者致力于建立难以被敌方或对手攻破的安全密码体制,即“知己”,后者则力图破译敌方或对手已有的密码体制,即“知彼”。人类有记载的通信密码始于公元前400年。1881年世界上的第一个电话保密专利出现。电报、无线电的发明使密码学成为通信领域中不可回避的研究课题。 现有的密码体制千千万万各不相同。但是它们都可以分为私钥密码体制(如DES密码)和公钥密码(如公开密钥密码)。前者的加密过程和脱密过程相同,而且所用的密钥也相同;后者,每个用户都有公开和秘密钥。现代密码学是一门迅速发展的应用科学。随着因特网的迅速普及,人们依靠它传送大量的信息,但是这些信息在网络上的传输都是公开的。因此,对于关系到个人利益的信息必须经过加密之后才可以在网上传送,这将离不开现代密码技术。PKI是一个用公钥概念与技术来实施和提供安全服务的具有普适性的安全基础设施。PKI公钥基础设施的主要任务是在开放环境中为开放性业务提供数字签名服务。

现代密码学的算法研究 密码算法主要分为对称密码算法和非对称密码算法两大类。对称加密算法指加密密钥和解密密钥相同,或知道密钥之一很容易推导得到另一个密钥。通常情况下,对称密钥加密算法的加\解密速度非常快,因此,这类算法适用于大批量数据的场合。这类算法又分为分组密码和流密码两大类。 1.1 分组密码 分组密码算法实际上就是密钥控制下,通过某个置换来实现对明文分组的加密变换。为了保证密码算法的安全强度,对密码算法的要求如下。 1.分组长度足够大:当分组长度较小时,分组密码类似于古典的代替密码,它仍然保留了明文的统计信息,这种统计信息将给攻击者留下可乘之机,攻击者可以有效地穷举明文空间,得到密码变换本身。 2.密钥量足够大:分组密码的密钥所确定密码变换只是所有置换中极小一部分。如果这一部分足够小,攻击者可以有效地穷举明文空间所确定所有的置换。这时,攻击者就可以对密文进行解密,以得到有意义的明文。 3.密码变换足够复杂:使攻击者除了穷举法以外,找不到其他快捷的破译方法。 分组密码的优点:明文信息良好的扩展性,对插入的敏感性,不需要密钥同步,较强的适用性,适合作为加密标准。 分组密码的缺点:加密速度慢,错误扩散和传播。 分组密码将定长的明文块转换成等长的密文,这一过程在秘钥的控制之下。使用逆向变换和同一密钥来实现解密。对于当前的许多分组密码,分组大小是 64 位,但这很可能会增加。明文消息通常要比特定的分组大小长得多,而且使用不同的技术或操作方式。 1.2流密码 流密码(也叫序列密码)的理论基础是一次一密算法,它是对称密码算法的一种,它的主要原理是:生成与明文信息流同样长度的随机密钥序列(如 Z=Z1Z2Z3…),使用此密钥流依次对明文(如X=X0X1X2...)进行加密,得到密文序列,解密变换是加密变换的逆过程。根据Shannon的研究,这样的算法可以达到完全保密的要求。但是,在现实生活中,生成完全随机的密钥序列是不可行的,因此只能生成一些类似随机的密钥序列,称之为伪随机序列。 流密码具有实现简单、便于硬件实施、加解密处理速度快、没有或只有有限的错误传播等特点,因此在实际应用中,特别是专用或机密机构中保持着优势,典型的应用领域包括无线通信、外交通信。如果序列密码所使用的是真正随机方式的、与消息流长度相同的密钥流,则此时的序列密码就是一次一密的密码体制。若能以一种方式产生一随机序列(密钥流),这一序列由密钥所确定,则利用这样的序列就可以进行加密,即将密钥、明文表示成连续的符号或二进制,对应地进行加密,加解密时一次处理明文中的一个或几个比特。 流密码研究内容集中在如下两方面: (1)衡量密钥流序列好坏的标准:通常,密钥序列的检验标准采用Golomb的3点随机性公设,除此之外,还需做进一步局部随机性检验,包括频率检验、序列

量子密码导论

量子密码学导论期末论文 量子密码的简单介绍和发展历程及其前景 0引言 保密通信不仅在军事、社会安全等领域发挥独特作用,而且在当今的经济和日常通信等方面也日渐重要。在众多的保密通信手段中,密码术是最重要的一种技术措施。 经典密码技术根据密钥类型的不同分为两类:一类是对称加密(秘密钥匙加密)体制。该体制中的加解密的密钥相同或可以互推,收发双方之间的密钥分配通常采用协商方式来完成。如密码本、软盘等这样的密钥载体,其中的信息可以被任意复制,原则上不会留下任何印迹,因而密钥在分发和保存过程中合法用户无法判断是否已被窃听。另一类是非对称加密(公开密钥加密)体制。该体制中的加解密的密钥不相同且不可以互推。它可以为事先设有共享密钥的双方提供安全的通信。该体制的安全性是基于求解某一数学难题,随着计算机技术高速发展,数学难题如果一旦被破解,其安全性也是令人忧心的。

上述两类密码体系的立足点都是基于数学的密码理论。对密码的破解时间远远超出密码所保护的信息有效期。其实,很难破解并不等于不能破解,例如,1977年,美国给出一道数学难题,其解密需要将一个129位数分解成一个64位和一个65位素数的乘积,当时的计算机需要用64?10年,到了1994年,只用了8个月就能解出。 经典的密码体制都存在被破解的可能性。然而,在量子理论支配的世界里,除非违反自然规律,否则量子密码很难破解。量子密码是量子力学与信息科学相结合的产物。与经典密码学基于数学理论不同,量子密码学则基于物理学原理,具有非常特殊的随机性,被窃听的同时可以自动改变。这种特性,至少目前还很难找到破译的方法和途径。随着量子信息技术的快速发展,量子密码理论与技术的研究取得了丰富的研究成果。量子密码的安全性是基于Heisenberg 测不准原理、量子不可克隆定理和单光子不可分割性,它遵从物理规律,是无条件安全的。文中旨在简述量子密码的发展历史,并总结量子密码的前沿课题。 1 量子密码学简介 量子密码学是当代密码理论研究的一个新领域,它以量子力学为基础,这一点不同于经典的以数学为基础的密码体制。量子密码依赖于信息载体的具体形式。目前,量子密码中用于承载信息的载体主要有光子、微弱激光脉冲、压缩态光信号、相干态光信号和量子光弧子信号,这些信息载体可通过多个不同的物理量描述。在量子密码中,一般用具有共轭特性的物理量来编码信息。光子的偏振可编码为量子比特。量子比特体现了量子的叠加性,且来自于非正交量子比特信源的量子比特是不可克隆的。通过量子操作可实现对量子比特的密码变换,这种变换就是矢量的线性变换。不过变换后的量子比特必须是非正交的,才可保证安全性。一般来说,不同的变换方式或者对不同量子可设计出不同的密码协议或者算法,关键是所设计方案的安全性。 在量子密码学中,密钥依据一定的物理效应而产生和分发,这不同于经典的加密体制。目前,在经典物理学中,物体的运动轨迹仅山相应的运动方程所描述和决定,不受外界观察者观测的影响。但是在微观的量子世界中,观察量子系统的状态将不可避免地要破坏量子 系统的原有状态,而且这种破坏是不可逆的。信息一旦量子化,量子力学的特性便成为量子信息的物理基础,包括海森堡测不准原理和量子不可克隆定理。量子密钥所涉及的量子效应主要有: 1. 海森堡不确定原理:源于微观粒子的波粒二象性。自由粒子的动量不变,自由粒子同时 又是一个平面波,它存在于整个空间。也就是说自由粒子的动量完全确定,但是它的位置完全不确定. 2. 在量子力学中,任意两个可观测力学量可由厄米算符A B ∧∧来表示,若他们不对易,则不 能有共同的本征态,那么一定满足测不准关系式: 1,2A B A B ? ∧∧∧∧????≥ ||???? 该关系式表明力学量A ∧和B ∧不能同时具有完全确定的值。如果精确测定具中一个量必然无法精确测定以另一个力学量,即测不准原理。也就是说,对任何一个物理量的测量,都

现代密码学试卷(含答案)

武汉大学计算机学院 信息安全专业2004级“密码学”课程考试题 (卷面八题,共100分,在总成绩中占70分) 参考答案 (卷面八题,共100分,在总成绩中占70分) 一、单表代替密码(10分) ①使加法密码算法称为对合运算的密钥k称为对合密钥,以英文为例求出其对合密钥,并以明文 M=WEWILLMEETATMORNING 为例进行加解密,说明其对合性。 ②一般而言,对于加法密码,设明文字母表和密文字母表含有n个字母,n为≥1的正整数,求出其对合密钥k。 解答: 1.加法密码的明密文字母表的映射公式: A为明文字母表,即英文字母表,B为密文字母表,其映射关系为: j=i+k mod 26 显然当k=13时,j=i+13 mod 26,于是有i = j+13 mod 26。此时加法密码是对合的。称此密钥k=13为对合密钥。举例:因为k=13,所以明文字母表A和密文字母表B为 a b c d e f g h i j k l m n o p q r s t u v w x y z n o p q r s t u v w x y z a b c d e f g h i j k l m 第一次加密:M=W E W I L L M E E T A T M O R N I N G C=J R J V Y Y Z R R G O G Z B E A V A T

第二次加密:C=W E W I L L M E E T A T M O R N I N G?? 还原出明文,这说明当k=13时,加法密码是对合的。 称此密钥为对合密钥。 ②设n为模,若n为偶数,则k=n/2为对合密钥。若n为奇数,n/2不是整数,故不存在对合密钥。 二、回答问题(10分) 1)在公钥密码的密钥管理中,公开的加密钥Ke和保密的解密钥Kd的秘密性、真实性和完整性都需要确保吗?说明为什么?解答: ①公开的加密钥Ke:秘密性不需确保,真实性和完整性都需要确保。因为公钥是公开的,所以不需要保密。 但是如果其被篡改或出现错误,则不能正确进行加密操作。如果其被坏人置换,则基于公钥的各种安全性将受到破坏, 坏人将可冒充别人而获得非法利益。 ②保密的解密钥Kd:秘密性、真实性和完整性都需要确保。因为解密钥是保密的,如果其秘密性不能确保, 则数据的秘密性和真实性将不能确保。如果其真实性和完整性受到破坏,则数据的秘密性和真实性将不能确保。 ③举例 (A)攻击者C用自己的公钥置换PKDB中A的公钥: (B)设B要向A发送保密数据,则要用A的公钥加密,但此时已被换为C的公钥,因此实际上是用C的公钥加密。 (C)C截获密文,用自己的解密钥解密获得数据。 2)简述公钥证书的作用? 公钥证书是一种包含持证主体标识,持证主体公钥等信息,并由可信任的签证机构(CA)签名的信息集合。 公钥证书主要用于确保公钥及其与用户绑定关系的安全。公钥证书的持证主体可以是人、设备、组织机构或其它主体。

密码学的发展

课程论文 题目密码学的发展 一、引言 密码学之研究為一般性资讯安全以及网路安全之基础,其研究范畴包括基础密码理论之开拓、基本密码系统设计技术之研发、基本破密理论之研究、应用密码协定之发展与分析。於基础密码理论方面,其探讨之主题包括密码系统安全性所根基之数论、组合论、以及计算复杂度分析。此类研究之目的乃為了进一步深入瞭解目前已被设计密码系统之安全根基,以及為了开创更适合发展密码系统之理论基础。近年来,一个共同之目标更為能够提供可证明安全性之密码系统而努力。基本密码系统设计技术之研发则多方面发展,根据上述之理论基础,以及应用功能之需求而进行设计与分析改良。其研究之主题约略含盖私密性之研究可( 由对称式与非对称式加密器达成) 、资料认证性与不可否认性之研究可由认证协( 定或数位签署达成) 、资料完整性之研究…等等。基本破密理论之研究乃基於基础密码理论以及基本密码系统特性与功能,进行各种一般性或特殊系统适合之密码分析术及破密法研究。该项研究一般均由理论层面进行探讨密码系统所根基之理论基础问题,或者是配合密码系统本身建构特性与其根基理论基础同时进行破密,该类之研究较著重理论之探讨。然而亦有研究者重视实务面以及工程面对於破密之影响,例如几年前诸多以分散式计算之方式进行分解因数演算法能力展示之研究、近年来大量研究利用实际物理世界计算器必然泄露之讯息例如(计算时间、能量消耗、计算可靠度、系统反应:)以破密以及利用密码系统实现时不当之软体界面定义而达成攻击之目的…等等,皆為研究者(特别為工程界人员)不可轻忽之项目。 二、发展历程 概况:密码学还不是科学,而是艺术出现一些密码算法和加密设备,密码算法的基本手段代换和置换(substitution &permutation)出现,针对的是字符,较多的运用了模运算,出现多轮加密的概念简单的密码分析手段出现,Kerckhoff原则。

现代密码学教程课后部分答案考试比用

第一章 1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 5、1976年,W.Diffie和M.Hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息及信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码 3、重合指数法对(C)算法的破解最有效。 A置换密码B单表代换密码C多表代换密码D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。 A置换密码B单表代换密码C多表代换密码D序列密码 5、在1949年香农发表《保密系统的通信理论》之前,密码学算法主要通过字符间的简单置换和代换实现,一般认为这些密码体制属于传统密码学范畴。 6、传统密码体制主要有两种,分别是指置换密码和代换密码。 7、置换密码又叫换位密码,最常见的置换密码有列置换和周期转置换密码。 8、代换是传统密码体制中最基本的处理技巧,按照一个明文字母是否总是被一个固定的字母代替进行划分,代换密码主要分为两类:单表代换和多表代换密码。 9、一个有6个转轮密码机是一个周期长度为26 的6次方的多表代替密码机械装置。 第四章 1、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。 A、1949 B、1972 C、1977 D、2001 2、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。 A、AES B、DES C、IDEA D、RC6 3、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。 A、2 B、4 C、8 D、16

量子密码学的应用研究

2009年第11期,第42卷 通 信 技 术 Vol.42,No.11,2009 总第215期Communications Technology No.215,Totally 量子密码学的应用研究 何湘初 (广东工贸职业技术学院计算机系,广东 广州 510510) 【摘 要】文中首先对量子密码学作了简单的介绍,给出了量子密钥所涉及的几个主要量子效应,接着较为详细地阐述了国内外量子密码学发展的历史,给出了量子密码学研究的几个课题:量子密钥分配、量子签名、量子身份认证、量子加密算法、量子秘密共享等,并分别加以简单的说明并详细地分析了阻碍量子密码实用化的几个因素。最后对量子密码学的发展做了展望。 【关键词】量子密码;量子身份认证;量子通信 【中图分类号】TN918 【文献标识码】A【文章编号】1002-0802(2009)11-0093-03 Quantum Cryptography and its Applications HE Xiang-chu (Dep.of Computer, Guangdong Vocational College of Industry & Commerce, Guangzhou Guangdong 510510, China) 【Abstract】This paper first gives a brief introduction of quantum cryptography and several principal quantum effects involved by quantum key; then it describes in detail the development history of quantum cryptography at home, gives some topics in the research of quantum cryptography, including quantum key distribution, quantum signature, quantum identity authentication, quantum encryption, quantum secret-sharing, and their brief descriptions, and analyzes in depth some hindering factors in practical quantum cryptography; finally, the development of quantum cryptography is forecasted. 【Key words】quantum cryptography;quantum authentication; quantum communication 0 引言 随着科学技术的发展,信息交流己经深入到社会生活的各个角落,各种通信手段形成一张大网,将人们紧密联系在一起。人们对信息交流的依赖性越来越强,对信息交流的安全性要求也越来越高,基于数学理论的经典通信保密机制并不能从根本上保证通信的安全,然而,随着量子物理学的发展,人们有了一种基于物理理论的崭新的信息保密方法—量子密码学,理论上讲,这种保密机制可以从根本上保证信息的安全。 1 量子密码学简介 量子密码学是当代密码理论研究的一个新领域,它以量子力学为基础,这一点不同于经典的以数学为基础的密码体制。量子密码依赖于信息载体的具体形式。目前,量子密码中用于承载信息的载体主要有光子、微弱激光脉冲、压缩态光信号、相干态光信号和量子光弧子信号,这些信息载体可通过多个不同的物理量描述。在量子密码中,一般用具有共轭特性的物理量来编码信息。光子的偏振可编码为量子比特。量子比特体现了量子的叠加性,且来自于非正交量子比特信源的量子比特是不可克隆的。通过量子操作可实现对量子比特的密码变换,这种变换就是矢量的线性变换。不过变换后的量子比特必须是非正交的,才可保证安全性。一般来说,不同的变换方式或者对不同量子可设计出不同的密码协议或者算法,关键是所设计方案的安全性[1]。 在量子密码学中,密钥依据一定的物理效应而产生和分发,这不同于经典的加密体制。目前,量子密钥所涉及的量子效应主要有[2]: ① 海森堡不确定原理:源于微观粒子的波粒二象性。自由粒子的动量不变,自由粒子同时又是一个平面波,它存在于整个空间。也就是说自由粒子的动量完全确定,但是它的位置完全不确定; ② 光子的偏振现象:每个光子都具有一个特定的线偏 收稿日期:2008-12-18。 作者简介:何湘初(1977-),男,讲师,硕士,主要研究方向为通 信技术、虚拟一起。 93

《现代密码学》期终考试试卷和答案

? ? 一.选择题 ? ? 1、关于密码学的讨论中,下列(D )观点是不正确的。 ? ? A 、密码学是研究与信息安全相关的方面如机密性、完整性、实体鉴别、抗否认等的综 ? ?合技术 号 ? 学 ? ? B 、密码学的两大分支是密码编码学和密码分析学 ? ? C 、密码并不是提供安全的单一的手段,而是一组技术 ? ? D 、密码学中存在一次一密的密码体制,它是绝对安全的 ? 线 2、在以下古典密码体制中,属于置换密码的是(B )。 名 ? 姓 ? A 、移位密码 B 、倒序密码 ? ? ? C 、仿射密码 D 、PlayFair 密码 ? ? 3、一个完整的密码体制,不包括以下(C )要素。 ? ? A 、明文空间 B 、密文空间 ? 级 ? C 、数字签名 D 、密钥空间 班 ?? 4、关于 DES 算法,除了( C )以外,下列描 述 DES 算法子密钥产生过程是正确的。 ? 封 ? A 、首先将 DES 算法所接受的输入密钥 K ( 64 位),去除奇偶校验位,得到 56 位密钥(即经过 PC-1 置换,得到 56 位 密钥) ? ? B 、在计算第 i 轮迭代所需的子密钥时,首先进行循环左移,循环左移的位数取决于 i 的值,这些经过循环移位的值作为 下一次 ? ? 循环左移的输入 ? 业 ? ? C 、在计算第 i 轮迭代所需的子密钥时,首先进行循环左移,每轮循环左移的位数都相同,这些经过循环移位的 值作为下一次 专 ? 循环左移的输入 ? ? ? D 、然后将每轮循环移位后的值经 PC-2 置换,所得到的置换结果即为第 i 轮所需的子密钥 Ki ? ? 5、2000 年 10 月 2 日, NIST 正式宣布将( B )候选算法作为高级数据加密标准,该算法是由两位比利时密 码学者提出的。 ? ? A 、MARS B 、 Rijndael 别 密 系 ? C 、 Twofish D 、Bluefish ? ? ? *6 、根据所依据的数学难题,除了(A )以外,公钥密码体制可以分为以下几类。 ? ? A 、模幂运算问题 B 、大整数因子分解问题 ? ? C 、离散对数问题 D 、椭圆曲线离散对数问题 ?

量子理论发展史

量子理论发展史 20世纪初,Planck提出了能在全波段与观测结果符合的黑体辐射能量密度随频率分布的公式,即Planck公式。要从理论上导出Planck公式,需假定物体吸收或发射电磁辐射,只能以“量子”(quantum)的方式进行,每个“量子”的ε.由于能量不连续的概念在经典力学中是完全不容许的,所以尽管这能量为hv = 个假设能堆到出与实际观测极为符合的Planck公式,在相当长的时间内量子假设并未受到重视。 Einstein在用量子假设说明光电效应问题时提出了光量子概念,他认为辐射场就是由光量子组成,采用光量子概念后光电效应中的疑难迎刃而解。Einstein 和P.J.W.Debye进一步把能量不连续的概念应用于固体中原子的振动,成功解释了温度趋于零时固体比热容趋于零的现象。至此,物理学家们才开始重视能量不连续的概念,并用它来解决经典物理学中的其它疑难问题。比较突出的是原子结构与原子光谱的问题。 1896年,汤姆生提出原子结构的葡萄干面包模型,即正电荷均匀分布于原子中,电子以某种规则排列镶嵌其中。1911年,卢瑟福根据α粒子的散射实验提出了原子的有核模型:原子的正电荷及几乎全部质量集中于原子中心很小的区域,形成原子核,电子围绕原子核旋转。有核模型可以很好解释α粒子的大角度散射实验,但引来了两大问题:(1)原子的大小问题。在经典物理框架中思考卢瑟福的有核模型,找不到一个合理的特征长度。(2)原子的稳定性问题。电子围绕原子核的加速旋转运动。按照经典电动力学,电子将不断辐射能量而减速,轨道半径不断缩小,最后掉到原子核上,原子随之塌缩。但现实世界表明,原子稳定地存在于自然界。矛盾就这样尖锐地摆在面前,亟待解决。 此时,丹麦年轻的物理学家玻尔来到卢瑟福的的实验室,他深深为此矛盾吸引,在分析了这些矛盾后,玻尔深刻认识到原子世界必须背离经典电动力学。玻尔把作用量子h(quantum of action)引进卢瑟福模型,提出原子的量子论:一是原子的具有离散能量的定态概念,一是两个定态之间的量子跃迁概念和频率条件。[4]然而,玻尔理论应用到简单程度仅次于氢原子的氦原子时,结果与实验不符。对微观粒子的运动规律的探索显得紧迫。为了达到这个目的,1924年德布罗意在光有波粒二象性的启示下,提出了微观粒子也具有波粒二象性的假说。[5]提出了德布罗意关系,按照德布罗意关系,与自由粒子联系的波是一个平面波。1927年,戴维孙和革末的电子衍射实验证明了德布罗意假说的正确性。 量子力学理论在1923—1927年间建立起来。微观粒子的量子态用波函数来描述,Schrodinger 方程表示微观粒子波函数随时间变化的规律。海森堡的矩阵

相关主题
文本预览
相关文档 最新文档