新型表面活性剂分解
- 格式:ppt
- 大小:554.00 KB
- 文档页数:23
第三章表面活性剂表面活性剂在药物制剂的制备中被广泛应用,其结构特征是具有亲水性与亲脂性两种基团,其作用是能显著降低分散系的表面(界面)张力,因此可用作乳化剂、助悬剂、增溶剂、促吸收剂、润湿剂、起泡剂与消泡剂、去污剂等,是药用乳剂、悬浊剂、脂质体等的重要辅料.本章重点讨论表面活性剂的基本性质(如CMC值、HLB值、Krafft点与昙点等)与测定方法等。
第一节表面活性剂分类一、表面活性剂(surfactant):具有很强表面活性,加入少量就能使液体表面张力显著下降的物质。
1.①纯液体在一定温度有一定的表面张力,是液体的物理常数.②当在水中加入无机盐或糖类物质时,则水的表面张力略有升高;③当在水中加入低级脂肪醇、脂肪酸时,则水的表面张力下降,称此类物质为水的表面活性物质。
④当在水中加入油酸钠、十二烷基硫酸钠(高级脂肪酸)时,则水的表面张力能够显著的降低,称此类物质为该溶剂的表面活性剂(surfactant)。
2.表面活性剂分子的结构特征:是由具有极性的亲水基和非极性的亲油基组成,而且两部分分处两端。
因此,表面活性剂具有既亲水又亲油的两亲性质,但具有两亲性的分子不一定都是表面活性剂。
3.表面活性剂的吸附性:表面活性剂由于其特殊结构可以在两相界面发生定向排列,来改变两相界面性质。
从而起到润湿、乳化、增溶、絮凝、反絮凝、起泡、消泡的作用。
(1)在溶液中的正吸附:表面活性剂在溶液表面层聚集的现象为正吸附,正吸附改变了溶液表面的性质。
最外层疏水,表现低表面张力,产生较好的润湿性、乳化性、增溶性、起泡性.(2)在固体表面的吸附:表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变,易于润湿.二、表面活性剂的类型1。
表面活性剂分类方法有多种,根据来源可分为天然表面活性剂与合成表面活性剂;2。
根据溶解性质可分为水溶性表面活性剂与油溶性表面活性剂;3。
根据极性基团的解离性质分为离子型表面活性剂与非离子型表面活性剂两大类;再根据离子型表面活性剂所带电荷,又分为阳离子、阴离子、两性离子表面活性剂。
微生物发酵法生产生物表面活性剂微生物发酵法生产生物表面活性剂是一种利用微生物代谢活动生产具有表面活性的生物分子的过程。
这种生产方式因其环境友好、可再生和生物降解性等特点,越来越受到工业和科研领域的重视。
本文将探讨微生物发酵法生产生物表面活性剂的原理、应用以及面临的挑战和未来的发展方向。
一、微生物发酵法生产生物表面活性剂的原理微生物发酵法生产生物表面活性剂主要依赖于某些微生物在特定条件下的代谢活动。
这些微生物能够产生具有表面活性的代谢产物,如糖脂、脂肽、多糖和蛋白质等。
这些生物表面活性剂分子通常具有两亲性质,即分子的一部分亲水,另一部分疏水,这使得它们能够在水和油的界面上降低表面张力,从而表现出表面活性。
1.1 生物表面活性剂的分类生物表面活性剂可以根据其化学结构和来源进行分类。
常见的生物表面活性剂包括:- 糖脂类:由糖和脂肪酸组成,如鼠李糖脂。
- 脂肽类:由脂肪酸和氨基酸组成,如表面活性素。
- 多糖类:由多糖和脂肪酸组成,如海藻糖脂。
- 蛋白质类:由氨基酸组成,如蛋白质表面活性剂。
1.2 微生物发酵的条件微生物发酵法生产生物表面活性剂需要控制多种条件,包括:- 碳源:提供微生物生长和代谢所需的能量。
- 氮源:提供微生物合成蛋白质和其他含氮化合物所需的氮。
- 温度:影响微生物的代谢速率和酶的活性。
- pH值:影响微生物的生长和代谢产物的稳定性。
- 氧气供应:某些微生物需要氧气进行有氧代谢。
1.3 发酵过程的优化为了提高生物表面活性剂的产量和质量,需要对发酵过程进行优化。
这包括:- 选择合适的微生物菌株:具有高产生物表面活性剂能力的菌株。
- 优化培养基成分:调整碳源、氮源和其他营养物质的比例。
- 控制发酵条件:如温度、pH值和氧气供应,以提高生物表面活性剂的产量。
- 采用发酵技术:如固态发酵、液态发酵和连续发酵等。
二、微生物发酵法生产生物表面活性剂的应用生物表面活性剂因其独特的性质,在多个领域有着广泛的应用。
表面活性剂新型应用摘要表面活性剂已经广泛应用于日常生活、工农业及高新技术领域。
表面活性剂是当今世界最重要的工业助剂,其应用已渗透到几乎所有的工业领域,被誉为“工业味精”。
在许多行业中表面活性剂起到画龙点精的作用;作为最重要的助剂常能极大地改进生产工艺和产品的性能。
随着科技的不断发展,表面活性剂也在不断的更新,表面活性剂源自肥皂,发展到今天已经发展成为了一门单独的学科进行其研究。
它的应用已得到了相应的推广,应用领域不断的再扩大,在工业化的现代社会生产中,表面活性剂不断的体现了自身的应用价值,下面主要介绍了它在现代农业技术领域、生物工程和医药技术领域、新能源与高效节能技术领域等新领域的应用。
关键字:表面活性剂;农业;新能源;悬浮剂;分散剂1表面活性剂1.1表面活性剂的概念既然说道至表面活性剂的应用领域,那么首先必须晓得表面活性剂的定义,我们通常就是这样定义:凡是在低浓度下溶解于体系的两相界面上,发生改变界面性质并明显减少界面能够并通过发生改变界面状态,从而产生润湿与反华润湿,乳化与破乳,腹满与消泡以及在较为高浓度下产生配线的物质称作表面活性剂。
表面活性剂是一类具有一定功能特性的化合物,是一类专用化学品。
它通常不作为最终制品或商品直接与使用者或消费者见面,而是作为最终制品或某种商品的一个重要组分加入以应用。
由表面活性剂可以配制多种最终制品或商品,如洗涤剂、润湿剂、渗透剂、乳化剂、破乳剂、消泡剂、分散剂等。
这些制品或商品是按一定的配方调制的产品,其必要组分是表面活性剂,出表面活性剂外,还有助剂、促进剂,其配方的目的是提高表面活性剂的功能。
1.2结构特点表面活性剂之所以能够在界面上溶解,发生改变界面性质,减少界面张力,主要就是由分子结构所同意的。
表面活性剂分子具备不对称性,它涵盖对水由亲和性的极性基团和对油存有亲和性的非极性的基团――烃链。
这样在一个分子中既有亲油基,又存有和亲水基,即为形成了表面活性剂分子的两亲性。
新型季铵盐氟碳表面活性剂的合成及其表面活性周杰华;黄焰根【摘要】以六氟环氧丙烷多聚体为原料,与N-甲基哌嗪经酰胺化反应制得含氟化合物(3);3与碘代烷经季铵化反应合成了4个新型的季铵盐型氟碳表面活性剂(5a~5d),其结构经1H NMR,19F NMR,IR和HR-ESI-MS表征.表面性能测试结果表明,5a ~5d具有较高的表面活性,水溶液的临界胶束浓度(CMC)分别为1.38 × 10-4g·mL-1,1×10-4g·mL-1,1.40×10-4g·mL-1和3.72 ×10-4 g·mL-1,对应CMC的表面张力分别为19.47mN·m-1,17.20 mN· m-1,17.98 mN· m-1和19.79mN· m-1.【期刊名称】《合成化学》【年(卷),期】2014(022)005【总页数】4页(P608-611)【关键词】全氟聚醚;季铵盐;表面活性剂;合成;表面活性【作者】周杰华;黄焰根【作者单位】东华大学生态纺织教育部重点实验室,上海201620;东华大学生态纺织教育部重点实验室,上海201620【正文语种】中文【中图分类】O622.2;O647·研究论文·含氟表面活性剂是迄今为止已知的一类表面性能最优异的表面活性剂[1]。
由于其独特的“三高、两憎”性能,在各行各业中有着广泛的应用[2-3]。
阳离子氟碳表面活性剂是含氟表面活性剂的重要品种之一,主要分为胺盐型和季铵盐型两大类[4-6],并以季铵盐型用途最广。
季铵盐型阳离子含氟表面活性剂不受pH值影响,在酸、碱介质中均可使用。
其亲水基团为季铵阳离子[7-9],憎水基部分除可以是6~10个碳原子的全氟烃基外,也可含有烃基、酰氨基等基团[10]。
传统含氟表面活性剂通常含有全氟烷基链(CnF2n-1,n≥8),其使用或分解过程中产生的全氟辛酸和全氟辛基磺酸类衍生物由于不易进一步被降解,对环境及生物体具有极大的污染性,使得开发新型绿色环保的氟碳表面活性剂成为目前研究的热点[11-12]。
表面活性剂去污原理
表面活性剂是一种能够降低液体表面张力的化学物质。
它在洗涤过程中起到去污的作用,能够使污渍分散在水中,进而将其从物体表面清除。
表面活性剂的去污原理主要有三个方面:
1. 降低水的表面张力:在清洗过程中,表面活性剂能够降低水的表面张力,使水分子更容易与污渍接触,并将污渍分离出来。
这样,污渍就能够被水包裹并悬浮在溶液中。
2. 乳化和分散:表面活性剂具有一定的亲水和疏水性,其分子结构中同时包含了亲水基团和疏水基团。
当表面活性剂与污渍接触时,亲水基团能够与水分子形成氢键,疏水基团则与污渍分子相结合。
这样,表面活性剂能够将污渍分解成小颗粒,并将其分散在水中。
3. 乳化稳定性:表面活性剂在溶液中形成胶束,能够将污渍分散在胶束的内部,防止其重新附着到物体表面。
这种乳化稳定性使得表面活性剂能够将污渍有效地悬浮在洗涤液中,从而实现清洗的效果。
综上所述,表面活性剂能够通过降低水的表面张力、乳化和分散污渍、以及提供乳化稳定性的方式,对物体表面的污渍进行去除。
碳氟表面活性剂摘要:介绍了碳氟表面活性剂的主要物理化学性质,合成方法,国际、国内碳氟表面活性剂的发展及现状。
介绍了碳氟表面活性剂的最新进展,特别是一些新型碳氟表面活性剂的主要性质和用途。
分析了我国碳氟表面活性剂发展缓慢,与国外形成巨大反差的原因,并对进一步发展我国的碳氟表面活性剂工业提出了自己的看法。
关键词:表面活性剂;碳氟表面活性剂;性能;合成;应用;发展普通表面活性剂的疏水基一般为碳氢链,称碳氢表面活性剂。
将碳氢表面活性剂分子碳氢链中的氢原子部分或全部用氟原子取代,就成为碳氟表面活性剂,或称氟表面活性剂。
碳氟表面活性剂是特种表面活性剂中最重要的品种,有很多碳氢表面活性剂不可替代的重要用途。
本文介绍其合成、性能及应用。
1碳氟表面活性剂的物化性质和用途碳氟表面活性剂的独特性能常被概括为“三高”、“两憎”,即高表面活性、高耐热稳定性及高化学稳定性;它的含氟烃基既憎水又憎油。
碳氟表面活性剂其水溶液的最低表面张力可达到20mN/m以下,甚至到15mN/m左右。
碳氟表面活性剂在溶液中的质量分数为0.005%~0.1%,就可使水的表面张力下降至20mN/m以下。
而一般碳氢表面活性剂在溶液中的质量分数为0.1%~1.0%范围才可使水的表面张力下降到30mN/m~35mN/m。
碳氟表面活性剂如此突出的高表面活性以致其水溶液可在烃油表面铺展。
碳氟表面活性剂有很高的耐热性,如固态的全氟烷基磺酸钾,加热到420℃以上才开始分解,因而可在300℃以上的温度下使用。
碳氟表面活性剂有很高的化学稳定性,它可抵抗强氧化剂、强酸和强碱的作用,而且在这种溶液中仍能保持良好的表面活性。
若将其制成油溶性表面活性剂还可降低有机溶剂的表面张力。
早期,碳氟表面活性剂曾用作四氟乙烯乳液聚合的乳化剂,以后逐步用作润湿剂、铺展剂、起泡剂、抗黏剂和防污剂等,广泛应用于消防、纺织、皮革、造纸、选矿、农药和化工等各个领域,显示强大的生命力。
但碳氟表面活性剂由于合成困难,价格较高,目前主要用于一般碳氢表面活性剂难以胜任或使用效果极差的领域。
表面活性剂去污原理
表面活性剂是一种能够降低液体表面张力的化学物质,它在去污过程中发挥着重要作用。
表面活性剂的去污原理主要包括降低表面张力、乳化、分散、渗透和乳化分解等几个方面。
首先,表面活性剂能够降低液体的表面张力,使得水分子更容易与污垢表面接触,并且能够渗透到污垢内部。
这样一来,污垢与表面活性剂形成的混合物会更容易被水冲洗掉,从而达到去污的效果。
其次,表面活性剂具有乳化作用。
当污垢被表面活性剂包围后,它们会形成微小的乳液颗粒,这些颗粒会被分散在水中,从而使得污垢更容易被冲洗掉。
这种乳化作用对于油污的去除尤为明显,因为油水不相溶的特性,表面活性剂能够使油污与水混合,从而更容易清洗。
此外,表面活性剂还能够分散污垢颗粒,使得它们在水中分散均匀,不会重新沉积在被清洗的表面上。
这种分散作用可以使清洗更加彻底,不会留下污渍或者残留物。
表面活性剂还具有渗透作用,它能够渗透到污垢内部,改变其表面性质,使得污垢更容易被清洗。
这种渗透作用可以使得一些顽固的污垢更容易被去除,提高清洗效果。
最后,表面活性剂还能够通过乳化分解的方式去除一些油脂类的污垢。
表面活性剂能够将油脂分解成微小的颗粒,使得它们更容易被水冲洗掉,从而达到去污的效果。
综上所述,表面活性剂去污的原理主要包括降低表面张力、乳化、分散、渗透和乳化分解等几个方面。
通过这些作用,表面活性剂能够使得污垢更容易被清洗,提高清洗效果。
在日常生活中,我们可以根据不同的清洗需求选择适合的表面活性剂,以达到更好的清洗效果。
1.1 表面活性剂分子中具有亲水基与疏水基,能富集(吸附)于界面,使界面性质发生显著改变而表现出界面活性的物质称为表面活性剂。
常用的表面活性剂多为分子量为数百的低分子量化合物。
随着诸多热点领域,如强化采油(enhanced oil recovery)[1]、药物载体与控制释放、生物模拟、聚合物LB膜、医用高分子材料(抗凝血)以及乳液聚合等的深入研究,对表面活性剂的要求趋于多样化和高性能化。
而在众多的新型结构的表面活性剂中,具有表面活性的高分子化合物现已成为人们关注的焦点,对其进行的研究开发如火如荼。
1.2 高分子表面活性剂[1-3]一般来说,将分子量在数千以上且具有表面活性的物质称为高分子表面活性剂[4-9]。
最早使用的高分子表面活性剂有纤维素及其衍生物,以及作为胶体保护剂使用的天然海藻酸钠和各种淀粉。
1951年Strauss首次合成了高分子表面活性剂—聚十二烷基4-乙烯吡啶溴化物,并将其命名为聚皂(ploysoap);随后1954年美国Wyandotte公司报道了非离子型高分子表面活性剂聚氧乙烯聚氧丙烯嵌段共聚物的合成,并将其进行了工业化生产(商品名为Pluronics),其中分子量为8.1×103的Pluronic104在重量百分比浓度为0.1%时可使溶液的表面张力降至33.1Mn·m-1。
与低分子表面活性剂相比,高分子表面活性剂具有以下特点[5]:1) 具有较高的分子量,渗透能力差,可形成单分子胶束或多分子胶束;2) 溶液粘度高,成膜性好;3) 具有很好的分散、乳化、增稠、稳定以及絮凝等性能,起泡性差,常作消泡剂;4) 大多数高分子表面活性剂是低毒或无毒的,具有环境友好性;5) 降低表面张力和界面张力的能力较弱,且表面活性随分子量的升高急剧下降,当疏水基上引入氟烷基或硅烷基时其降低表面张力的能力显著增强。
在众多的高分子表面活性剂中,水溶性高分子表面活性剂由于具有水溶性近年来发展十分迅速。
乙醇胺热分解乙醇胺,也称为2-氨基乙醇,是一种彻底的溶剂。
它可作为化学反应的催化剂,也可以作为阴离子表面活性剂,是一种常见的工业化学品。
而乙醇胺热分解,是指在高温高压下,乙醇胺发生的一种反应,它在化工和材料科学中有着重要应用价值。
一、乙醇胺的结构和性质乙醇胺的化学式为C2H7NO,分子量为61.08g/mol。
它是无色油状液体,具有强烈的氨味。
在室温下,可以溶于水、醇类、醚类、醛类、酮类、甘油等溶剂,是一种优良的溶剂。
乙醇胺具有弱碱性,可以与酸发生反应,产生相应的盐类。
二、乙醇胺热分解的过程乙醇胺热分解是指在高温高压下,乙醇胺分解成乙烯和氨的反应。
其反应方程式为:C2H7NO → C2H4 + NH3乙醇胺分解的温度和压力与反应速率有关。
当温度和压力增大时,分解速率也会增加。
同时,还具有铁、铜等催化剂加速反应的作用。
三、乙醇胺热分解的应用乙醇胺热分解在化工和材料科学中有着重要应用价值。
其应用如下:1、生产乙烯和氨通过乙醇胺热分解可以生产乙烯和氨。
这是生产二乙烯醇、粘合剂、固化剂、涂料等化工产品的原料之一。
2、清洗和去除油脂和脂肪乙醇胺具有强烈的表面活性剂特性,可以用作清洗剂和去除油脂和脂肪的溶剂。
3、制备乙醛和甲醇乙醇胺热分解的乙烯可以用来制备乙醛,乙醛是一种重要的化工原料。
也可以用来制备甲醇,甲醇是一种清洁燃料。
四、乙醇胺热分解的安全问题乙醇胺热分解在操作过程中应注意安全。
高温高压下反应会产生大量氨气,应进行充分通风。
同时,反应设备要选择高质量的材料和结构,以确保反应过程安全稳定。
总之,乙醇胺热分解是一种重要的化学反应,具有广泛的应用价值。
对于在工业、材料科学等领域有需要的人来说,掌握乙醇胺热分解的反应条件、应用和安全性是非常必要的。