当前位置:文档之家› 人教中考数学压轴题专题旋转的经典综合题附详细答案

人教中考数学压轴题专题旋转的经典综合题附详细答案

人教中考数学压轴题专题旋转的经典综合题附详细答案
人教中考数学压轴题专题旋转的经典综合题附详细答案

一、旋转真题与模拟题分类汇编(难题易错题)

1.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为

(4,m)(5≤m≤7),反比例函数y=16

x

(x>0)的图象交边AB于点D.

(1)用m的代数式表示BD的长;

(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD

①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;

②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.

【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5

【解析】

【分析】

(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;

(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣1

2

(m﹣8)2+24,即可

得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】

解:(1)∵四边形OABC是矩形,

∴AB⊥x轴上,

∵点B(4,m),

∴点D的横坐标为4,

∵点D在反比例函数y=16

x

上,

∴D(4,4),

∴BD=m﹣4;

(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),

∴S矩形OABC=4m,

由(1)知,D(4,4),

∴S△PBD=1

2(m﹣4)(m﹣4)=

1

2

(m﹣4)2,

∴S=S矩形OABC﹣S△PBD=4m﹣1

2(m﹣4)2=﹣

1

2

(m﹣8)2+24,

∴抛物线的对称轴为m=8,

∵a<0,5≤m≤7,

∴m=7时,S取到最大值;

②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,

∴∠DGP=∠PFE=90°,

∴∠DPG+∠PDG=90°,

由旋转知,PD=PE,∠DPE=90°,

∴∠DPG+∠EPF=90°,

∴∠PDG=∠EPF,

∴△PDG≌△EPF(AAS),

∴DG=PF,

∵DG=AF=m﹣4,

∴P(m,m﹣4),

∵点P在反比例函数y=16

x

∴m(m﹣4)=16,

∴m=2+25或m=2﹣25(舍).

【点睛】

此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.

2.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.

(1)求证:△ABD≌△ACE;

(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、

DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;

(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出

△PMN周长的最小值与最大值.

【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.

【解析】

分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得

PM=1

2

CE,PM∥CE,PN=

1

2

BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所

以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以

∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得

∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,

PM=PN=1

2

BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM

最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.

详解:

(1)因为∠BAC=∠DAE=120°,

所以∠BAD=∠CAE,又AB=AC,AD=AE,

所以△ABD≌△ADE;

(2)△PMN是等边三角形.

理由:∵点P,M分别是CD,DE的中点,

∴PM=1

2

CE,PM∥CE,

∵点N,M分别是BC,DE的中点,

∴PN=1

2

BD,PN∥BD,

同(1)的方法可得BD=CE,

∴PM=PN,

∴△PMN是等腰三角形,

∵PM∥CE,∴∠DPM=∠DCE,

∵PN∥BD,∴∠PNC=∠DBC,

∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,

∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,

∴∠MPN=60°,

∴△PMN是等边三角形.

(3)由(2)知,△PMN是等边三角形,PM=PN=1

2 BD,

∴PM最大时,△PMN周长最大,

∴点D在AB上时,BD最小,PM最小,

∴BD=AB-AD=2,△PMN周长的最小值为3;

点D在BA延长线上时,BD最大,PM最大,

∴BD=AB+AD=10,△PMN周长的最大值为15.

故答案为△PMN周长的最小值为3,最大值为15

点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.

3.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.

(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;

(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;

(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.

【答案】(1)见解析(2)AD=BE+DE (3)8

【解析】

试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;

(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;

(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,

∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,

CE CF

ACF BCE

AC BC

=

?

?

∠=∠

?

?=

?

,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即

AD+BE=DE;

(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,

∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,

CE CF

ACF BCE

AC BC

=

?

?

∠=∠

?

?=

?

,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即

AD=BE+DE;

故答案为:AD=BE+DE.

(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,

∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD

=

1

12

+

×6=2,∴AE=AD+DE=2+6=8.

点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.

4.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.

(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;

(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;

(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

【答案】(1)△FGH是等边三角形;(2)61

2

;(3)△FGH的周长最大值为

3

2

(a+b),最小值为3

2

(a﹣b).

【解析】

试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、

(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;

(3)首先证明△GFH的周长=3GF=3

2

BD,求出BD的最大值和最小值即可解决问题;

试题解析:解:(1)结论:△FGH是等边三角形.理由如下:

如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.

∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,

∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=1

2

BD,GF∥BD,

∵DF=EF,DH=HC,∴FH=1

2

EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,

∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.

易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF =2221-=3,在Rt △ABF 中,BF =22AB AF - =6,∴BD =CE =BF ﹣DF =61-,∴FH =12EC =612

-. (3)存在.理由如下.

由(1)可知,△GFH 是等边三角形,GF =

12

BD ,∴△GFH 的周长=3GF =3

2BD ,在△ABD

中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为

3

2

(a +b ),最小值为3

2

(a ﹣b ).

点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.

5.如图①,在

ABCD 中,AB =10cm ,BC =4cm ,∠BCD =120°,CE 平分∠BCD 交AB 于点E .

点P 从A 点出发,沿AB 方向以1cm/s 的速度运动,连接CP ,将△PCE 绕点C 逆时针旋转60°,使CE 与CB 重合,得到△QCB ,连接PQ . (1)求证:△PCQ 是等边三角形;

(2)如图②,当点P 在线段EB 上运动时,△PBQ 的周长是否存在最小值?若存在,求 出△PBQ 周长的最小值;若不存在,请说明理由;

(3)如图③,当点P 在射线AM 上运动时,是否存在以点P 、B 、Q 为顶点的直角三角形?

若存在,求出此时t 的值;若不存在,请说明理由.

(1) (2)

(3)

【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.

【解析】

分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;

(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;

(3)根据点的移动的距离,分类讨论求解即可.

详解:(1)∵旋转

∴△PCE≌△QCB

∴CP=CQ,∠PCE =∠QCB,

∵∠BCD=120°,CE平分∠BCD,

∴∠PCQ=60°,

∴∠PCE +∠QCE=∠QCB+∠QCE=60°,

∴△PCQ为等边三角形.

(2)存在

∵CE平分∠BCD,

∴∠BCE=60 ,

∵在平行四边形ABCD 中,

∴AB∥CD

∴∠ABC=180°﹣120°=60°

∴△BCE为等边三角形

∴BE=CB=4

∵旋转

∴△PCE≌△QCB

∴EP=BQ,

∴C△PBQ=PB+BQ+PQ

=PB+EP+PQ

=BE+PQ

=4+CP

∴CP⊥AB时,△PBQ周长最小

当CP⊥AB时,CP=BCsin60°=3

∴△PBQ周长最小为4+23

(3)①当点B与点P重合时,P,B,Q不能构成三角形

②当0≤t<6时,由旋转可知,

∠CPE=∠CQB,

∠CPQ=∠CPB+∠BPQ=60°

则:∠BPQ+∠CQB=60°,

又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°

∴∠CBQ=180°—60°—60°=60°

∴∠QBP=60°,∠BPQ<60°,

所以∠PQB可能为直角

由(1)知,△PCQ为等边三角形,

∴∠PBQ=60°,∠CQB=30°

∵∠CQB=∠CPB

∴∠CPB=30°

∵∠CEB=60°,

∴∠ACP=∠APC=30°

∴PA=CA=4,

所以AP=AE-EP=6-4=2

÷=s

所以t=212

③当6<t<10时,由∠PBQ=120°>90°,所以不存在

④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°

∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,

而∠BPC>0°,

∴∠BPQ>60°

∴∠BPQ=90°,从而∠BCP=30°,

∴BP=BC=4

所以AP=14cm

所以t=14s

综上所述:t为2s或者14s时,符合题意。

点睛:此题主要考查了旋转图形变化的应用,结合平行四边形、等边三角形、全等三角形的判定与性质,进行解答即可,注意分类讨论思想的应用,比较困难.

6.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:

(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.

【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.

【解析】

【分析】

(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;

(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;

(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.

【详解】

(1)∵a=b=3,且∠ACB=60°,

∴△ABC是等边三角形,

∴OC=,

∴CD=3;

(2)3;

(3)以点D为中心,将△DBC逆时针旋转60°,

则点B落在点A,点C落在点E.连接AE,CE,

∴CD=ED,∠CDE=60°,AE=CB=a,

∴△CDE为等边三角形,

∴CE=CD.

当点E、A、C不在一条直线上时,

有CD=CE<AE+AC=a+b;

当点E、A、C在一条直线上时,

CD有最大值,CD=CE=a+b;

只有当∠ACB=120°时,∠CAE=180°,

即A、C、E在一条直线上,此时AE最大

∴∠ACB=120°,

因此当∠ACB=120°时,CD有最大值是a+b.

【点睛】

本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,

是解题的关键.

7.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO 并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.

(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.

(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,

0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】

试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;

(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.

四边形OANM

②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S

=S△OCT-S△MN T,进而得出答案.

四边形OCMN

试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.

如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,

可以得出当P是MN的中点时S四边形MOFG=S△MON.

∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.

∴当点P是MN的中点时S△MON最小.

(2)分两种情况:

①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.

延长OC、AB交于点D,易知AD = 6,S△OAD=18 .

由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.

由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)

∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.

∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.

∴.

② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.

延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .

则T点的坐标为(9,0).

∴S△OCT=×9×=.

由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.

过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.

从而 NP1=P1M1,MM1=2PP1=4.

∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.

∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.

综上所述:截得四边形面积的最大值为10.

考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.

8.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.

思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.

①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;

②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;

③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.

【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是

PC=PE,PC⊥PE,见解析;③PC21033

.

【解析】

【分析】

(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB =CD,即可解题.

(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.

②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .

③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2

=10+

求出2211022

PC EC +==

【详解】

(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,

BP CP

APB DPC B C =??

∠=∠??∠=∠?

, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.

(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE , ∴FC =EC , 又∵∠ACB =90°,

∴△EFC 是等腰直角三角形, ∵EP =FP , ∴PC =PE ,PC ⊥PE .

②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF , 同①理,可知△FBP ≌△EDP (SAS ), ∴BF =DE ,PE =PF =1

2

EF , ∵DE =AE , ∴BF =AE ,

∵当α=90°时,∠EAC =90°, ∴ED ∥AC ,EA ∥BC

∵FB ∥AC ,∠FBC =90, ∴∠CBF =∠CAE , 在△FBC 和△EAC 中,

BF AE CBE CAE BC AC =??

∠=∠??=?

, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°, ∴∠FCE =90°,

∴△FCE 是等腰直角三角形, ∵EP =FP , ∴CP ⊥EP ,CP =EP =

1

2

EF . ③如解图3,作

BF

DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,

当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),

同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =2

2

CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1, ∴HE =

12,AH =3, 又∵AC =AB =3, ∴CH =3+

3

2

, ∴EC 2=CH 2+HE 2=1033+ ∴PC 2=

211033

22

EC +=

【点睛】

本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.

9.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将

绕点逆时针方向旋转得到,连接.

(1)求证:是等边三角形;

(2)当时,的周长是否存在最小值?若存在,求出的最小周长;

若不存在,请说明理由.

(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.

【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.

【解析】

试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.

试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,

∴∠DCE=60°,DC=EC,

∴△CDE是等边三角形;

(2)存在,当6<t<10时,

由旋转的性质得,BE=AD,

∴C△DBE=BE+DB+DE=AB+DE=4+DE,

由(1)知,△CDE是等边三角形,

∴DE=CD,

∴C△DBE=CD+4,

由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,

此时,CD=2cm,

∴△BDE的最小周长=CD+4=2+4;

(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,

∴当点D与点B重合时,不符合题意,

②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,

∴∠BED=90°,

由(1)可知,△CDE是等边三角形,

∴∠DEB=60°,

∴∠CEB=30°,

∵∠CEB=∠CDA,

∴∠CDA=30°,

∵∠CAB=60°,

∴∠ACD=∠ADC=30°,

∴DA=CA=4,

∴OD=OA﹣DA=6﹣4=2,

∴t=2÷1=2s;

③当6<t<10s时,由∠DBE=120°>90°,

∴此时不存在;

④当t>10s时,由旋转的性质可知,∠DBE=60°,

又由(1)知∠CDE=60°,

∴∠BDE=∠CDE+∠BDC=60°+∠BDC,

而∠BDC>0°,

∴∠BDE>60°,

∴只能∠BDE=90°,

从而∠BCD=30°,

∴BD=BC=4,

∴OD=14cm,

∴t=14÷1=14s,

综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.

10.如图1,O为直线AB上一点,OC为射线,∠AOC=40°,将一个三角板的直角顶点放在点O处,一边OD在射线OA上,另一边OE与OC都在直线AB的上方.

(1)将三角板绕点O顺时针旋转,若OD恰好平分∠AOC(如图2),试说明OE平分

∠BOC;

(2)将三角板绕点O在直线AB上方顺时针旋转,当OD落在∠BOC内部,且∠COD=

1

∠BOE时,求∠AOE的度数:

3

(3)将图1中的三角板和射线OC同时绕点O,分别以每秒6°和每秒2°的速度顺时针旋转一周,求第几秒时,OD恰好与OC在同一条直线上?

【答案】(1)证明见解析;(2)142.5°;(3)第10秒或第55秒时.

【解析】

【分析】

(1)由角平分线的性质及同角的余角相等,可得答案;

(2)设∠COD=α,则∠BOE=3α,由题意得关于α的方程,求解即可;

(3)分两种情况考虑:当OD与OC重合时;当OD与OC的反向延长线重合时.

【详解】

解:(1)∵OD恰好平分∠AOC

∴∠AOD=∠COD

∵∠DOE=90°

∴∠AOD+∠BOE=90°,∠COD+∠COE=90°

∴∠BOE=∠COE

∴OE平分∠BOC.

(2)设∠COD=α,则∠BOE=3α,当OD在∠BOC的内部时,

∠AOD=∠AOC+∠COD=40°+α

∵∠AOD+∠BOE=180°﹣90°=90°

∴40°+α+3α=90°

∴α=12.5°

∴∠AOE=180°﹣3α=142.5°

∴∠AOE的度数为142.5°.

(3)设第t秒时,OD与OC恰好在同一条直线上,则∠AOD=6t,∠AOC=2t+40°;

当OD与OC重合时,6t﹣2t=40°

∴t=10(秒);

当OD与OC的反向延长线重合时,6t﹣2t=180°+40°

∴t=55(秒)

∴第10秒或第55秒时,OD恰好与OC在同一条直线上.

【点睛】

本题主要考查角平分线的性质、余角的性质,角度的计算,进行分类讨论不漏解是关键.

相关主题
文本预览
相关文档 最新文档