光学成像系统的频谱分析 PPT课件
- 格式:ppt
- 大小:3.12 MB
- 文档页数:26
第四章 光学成像系统的空间变换特性与频率特性透镜作为光学系统的基本光学元件之一,在光学成像系统起着成像补偿像差及调整倍率等作用,在光学信息处理中具有位相变换和傅里叶变换作用。
光学成像系统是一种最基本的光学信息处理系统,它将输入图像信息从物面传播到输出面,输出图像信息由光学系统的传递特性决定。
光学系统是线性系统,一定条件下为空间不变线性系统,既可在空域中,也可在频域中分析它的成橡规律和特性。
这两种描述是完全等价的。
对于相干和非相干系统,可分别给出本征函数,把输入信息分解为本征函数的频率分量,考察这些分量在系统传递过程中衰减、相移等变化,研究系统空间频率特性即传递函数。
这是一种全面评价光学系统传递信息能力的方法,也是评价其成像质量的方法。
与传统方法如星点法、分辨法相比,OTF 法能全面反映光学系统成像能力,有明显的优越性。
现有计算机及高性能光电测试技术,使得OTF 的计算和测量日趋完善。
同时OIS 的频谱分析作为光学信息处理技术的理论基础,对光学信息处理技术的应用起着极其重要的作用。
本章首先首先研究透镜的位相变换性质,然后讨论透镜的傅里叶变换性质,分分析透镜孔径对傅里叶变换的影响,然后讨论光学成像系统的频率特性。
4.1 透镜的相位变换性质通常在衍射屏后面的自由空间观察夫琅禾费衍射时,要借助于透镜实现近距离的观察夫琅禾费衍射图。
单色平面波垂直照射衍射屏,在夫琅禾费近似下,观察平面上的场分布等于衍射孔径上场分布(屏函数)的傅立叶变换,透镜之所以可实现傅立叶变换,这是因为透镜具有相位变换作用。
现研究一个无像差的薄透镜的成像,如图 4.1.1所示,轴上点源S 和透镜的距离为p ,不考虑透镜的孔径造成的衍射影响,由于是薄透镜,这里认为入射光线经过透镜,出射光线在P 2面上的高度同在P 1上高度相等。
从几何光学观点看,成像过程是点物S 成点像S ’;从波面变换的观点看,透镜将发散球面波变换成会聚球面波。
为了研究透镜的变换作用,引入透镜的复振幅透过率t(x,y),定义为()()()11t x,y U x,y /U x,y '=,其中()()11U x,y ,U x,y '分别是P 1 和P 2面上的复振幅分布,傍轴条件下,显然,S 单色点光源发出的球面波在P 1上的光场U 1(x,y)为22()21(,)k jx y jkp pU x y Ae e+= (A 为常数) (4.1.1)上式表明:P 1上的振幅分布是均匀的,只有位相的变化。
第四章 光学成像系统的空间变换特性与频率特性透镜作为光学系统的基本光学元件之一,在光学成像系统起着成像补偿像差及调整倍率等作用,在光学信息处理中具有位相变换和傅里叶变换作用。
光学成像系统是一种最基本的光学信息处理系统,它将输入图像信息从物面传播到输出面,输出图像信息由光学系统的传递特性决定。
光学系统是线性系统,一定条件下为空间不变线性系统,既可在空域中,也可在频域中分析它的成橡规律和特性。
这两种描述是完全等价的。
对于相干和非相干系统,可分别给出本征函数,把输入信息分解为本征函数的频率分量,考察这些分量在系统传递过程中衰减、相移等变化,研究系统空间频率特性即传递函数。
这是一种全面评价光学系统传递信息能力的方法,也是评价其成像质量的方法。
与传统方法如星点法、分辨法相比,OTF 法能全面反映光学系统成像能力,有明显的优越性。
现有计算机及高性能光电测试技术,使得OTF 的计算和测量日趋完善。
同时OIS 的频谱分析作为光学信息处理技术的理论基础,对光学信息处理技术的应用起着极其重要的作用。
本章首先首先研究透镜的位相变换性质,然后讨论透镜的傅里叶变换性质,分分析透镜孔径对傅里叶变换的影响,然后讨论光学成像系统的频率特性。
4.1 透镜的相位变换性质通常在衍射屏后面的自由空间观察夫琅禾费衍射时,要借助于透镜实现近距离的观察夫琅禾费衍射图。
单色平面波垂直照射衍射屏,在夫琅禾费近似下,观察平面上的场分布等于衍射孔径上场分布(屏函数)的傅立叶变换,透镜之所以可实现傅立叶变换,这是因为透镜具有相位变换作用。
现研究一个无像差的薄透镜的成像,如图 4.1.1所示,轴上点源S 和透镜的距离为p ,不考虑透镜的孔径造成的衍射影响,由于是薄透镜,这里认为入射光线经过透镜,出射光线在P 2面上的高度同在P 1上高度相等。
从几何光学观点看,成像过程是点物S 成点像S ’;从波面变换的观点看,透镜将发散球面波变换成会聚球面波。
为了研究透镜的变换作用,引入透镜的复振幅透过率t(x,y),定义为()()()11t x,y U x,y /U x,y '=,其中()()11U x,y ,U x,y '分别是P 1 和P 2面上的复振幅分布,傍轴条件下,显然,S 单色点光源发出的球面波在P 1上的光场U 1(x,y)为22()21(,)k jx y jkp pU x y Ae e+= (A 为常数) (4.1.1)上式表明:P 1上的振幅分布是均匀的,只有位相的变化。