嵌入式Linux驱动开发基础总结(上篇)
- 格式:doc
- 大小:26.50 KB
- 文档页数:6
获取更多权威电子书请登录ARM嵌入式系统开发综述ARM开发工程师入门宝典获取更多权威电子书请登录 前言嵌入式系统通常是以具体应用为中心,以处理器为核心且面向实际应用的软硬件系统,其硬件是整个嵌入式系统运行的基础和平台,提供了软件运行所需的物理平台和通信接口;而嵌入式系统的软件一般包括操作系统和应用软件,它们是整个系统的控制核心,提供人机交互的信息等。
所以,嵌入式系统的开发通常包括硬件和软件两部分的开发,硬件部分主要包括选择合适的MCU或者SOC 器件、存储器类型、通讯接口及I/O、电源及其他的辅助设备等;软件部分主要涉及OS porting和应用程序的开发等,与此同时,软件中断调试和实时调试、代码的优化、可移植性/可重用以及软件固化等也是嵌入式软件开发的关键。
嵌入式系统开发的每一个环节都可以独立地展开进行详细的阐述,而本文的出发点主要是为嵌入式开发的初学者者提供一个流程参考。
因为对于初学者在面对一个嵌入式开发项目的时候,往往面临着诸多困难,如选择什么样的开发平台?什么样的器件类型?在进行编译时怎样实现代码优化?开发工具该如何选择和使用?在进行程序调试时应该注意那些问题以及选择什么样的嵌入式OS 等等。
希望通过本文,能帮助初学者了解有关ARM嵌入式系统开发流程。
获取更多权威电子书请登录目录前言 (2)1 嵌入式开发平台 (4)1.1 ARM的开发平台: (4)1.2 器件选型 (7)2 工具选择 (11)3 编译和连接 (13)3.1 RVCT的优化级别与优化方向 (16)3.2 Multifile compilation (21)3.3调试 (22)4 操作系统 (23)4.1 哪里可以得到os 软件包 (Open Source and LinuxKernel) (25)4.2 安装镜像 (26)4.3 交叉编译 (26)总结 (27)获取更多权威电子书请登录 1 嵌入式开发平台通常嵌入式开发的平台主要包括基于SoC或MCU开发板,板上提供常用的外设、接口和其他功能模块,开发者一般根据自己的应用需要选择适合自己板级开发平台。
Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
嵌入式linux开发教程pdf嵌入式Linux开发是指在嵌入式系统中使用Linux操作系统进行开发的过程。
Linux作为一种开源操作系统,具有稳定性、可靠性和灵活性,因此在嵌入式系统中得到了广泛的应用。
嵌入式Linux开发教程通常包括以下内容:1. Linux系统概述:介绍Linux操作系统的发展历程和基本原理,包括内核、文件系统、设备驱动等方面的知识。
了解Linux系统的基本结构和工作原理对后续的开发工作至关重要。
2. 嵌入式开发环境搭建:通过搭建开发环境,包括交叉编译器、调试器、仿真器等工具的配置,使得开发者可以在本机上进行嵌入式系统的开发和调试。
同时,还需要了解各种常用的开发工具和调试技术,如Makefile的编写、GDB的使用等。
3. 嵌入式系统移植:嵌入式系统往往需要根据不同的硬件平台进行移植,以适应各种不同的硬件环境。
这个过程包括引导加载程序的配置、设备驱动的移植和内核参数的调整等。
移植成功后,就可以在目标硬件上运行Linux系统。
4. 应用程序开发:在嵌入式Linux系统上进行应用程序的开发。
这包括编写用户空间的应用程序,如传感器数据采集、数据处理、网络通信等功能。
还需要熟悉Linux系统提供的各种库函数和API,如pthread库、socket编程等。
5. 系统优化和性能调优:在开发过程中,经常需要对系统进行调优和优化,以提高系统的性能和稳定性。
这包括对内核的优化、内存管理的优化、性能分析和调试等。
只有深入了解和熟练掌握这些技术,才能使得嵌入式系统运行得更加高效和稳定。
嵌入式Linux开发教程PDF通常会结合理论和实践相结合的方式进行教学,通过实际的案例和实践操作,帮助开发者快速掌握嵌入式Linux开发的技术和方法。
同时还会介绍一些常见的开发板和硬件平台,以及开源项目等,帮助开发者在实际项目中应用所学的技术。
总之,嵌入式Linux开发教程PDF提供了系统而详细的指导,帮助开发者快速入门嵌入式Linux开发,掌握相关的技术和方法,以便更好地进行嵌入式系统的开发工作。
基于rk3568的linux驱动开发——gpio知识点-回复基于rk3568的Linux驱动开发——GPIO知识点GPIO(General Purpose Input/Output)是通用输入输出的意思,是嵌入式系统中的常用功能。
在rk3568芯片上,GPIO用于实现与外部设备的通信和控制,比如控制LED灯、键盘、电机等。
本文将介绍rk3568芯片上的GPIO控制器、GPIO驱动的开发以及GPIO 在Linux系统中的应用。
一、GPIO控制器在rk3568芯片中,GPIO控制器是用来控制GPIO端口的硬件模块。
每个GPIO控制器可以管理多个GPIO端口,每个GPIO端口可以被配置为输入或输出。
GPIO控制器通常包含寄存器用于配置和控制GPIO端口的功能,比如方向、电平等。
二、GPIO驱动的开发GPIO驱动是用于控制和管理GPIO功能的软件模块。
在Linux内核中,GPIO驱动通过sysfs接口暴露给用户空间,以便用户可以通过文件系统访问和控制GPIO端口。
以下是GPIO驱动的开发过程:1. 确定GPIO控制器和GPIO端口:首先需要确定要使用的GPIO控制器和GPIO端口。
在rk3568芯片手册中可以找到相应的信息。
2. 创建GPIO设备:在Linux内核中,GPIO驱动是通过GPIO子系统来管理的。
首先需要在设备树中添加GPIO设备描述,并分配一个唯一的GPIO号码。
3. 注册GPIO设备:在驱动的初始化函数中,需要调用相应的函数注册GPIO设备,以便系统能够识别和管理该设备。
4. 设置GPIO模式和方向:通过调用GPIO控制器的寄存器,可以设置GPIO端口的模式和方向。
例如,可以将GPIO端口配置为输入模式或输出模式。
5. 读取和写入GPIO值:读取GPIO值可以通过读取GPIO控制器的寄存器来实现,写入GPIO值可以通过写入GPIO控制器的寄存器来实现。
例如,可以将GPIO端口的电平设置为高或低。
嵌入式实验报告:学号:学院:日期:实验一熟悉嵌入式系统开发环境一、实验目的熟悉Linux 开发环境,学会基于S3C2410 的Linux 开发环境的配置和使用。
使用Linux的armv4l-unknown-linux-gcc 编译,使用基于NFS 方式的下载调试,了解嵌入式开发的基本过程。
二、实验容本次实验使用Redhat Linux 9.0 操作系统环境,安装ARM-Linux 的开发库及编译器。
创建一个新目录,并在其中编写hello.c 和Makefile 文件。
学习在Linux 下的编程和编译过程,以及ARM 开发板的使用和开发环境的设置。
下载已经编译好的文件到目标开发板上运行。
三、实验设备及工具硬件::UP-TECH S2410/P270 DVP 嵌入式实验平台、PC 机Pentium 500 以上, 硬盘10G 以上。
软件:PC 机操作系统REDHAT LINUX 9.0+超级终端(或X-shell)+AMR-LINUX 开发环境。
四、实验步骤1、建立工作目录[rootlocalhost root]# mkdir hello[rootlocalhost root]# cd hello2、编写程序源代码我们可以是用下面的命令来编写hello.c的源代码,进入hello目录使用vi命令来编辑代码:[rootlocalhost hello]# vi hello.c按“i”或者“a”进入编辑模式,将上面的代码录入进去,完成后按Esc 键进入命令状态,再用命令“:wq!”保存并退出。
这样我们便在当前目录下建立了一个名为hello.c的文件。
hello.c源程序:#include <stdio.h>int main() {char name[20];scanf(“%s”,name);printf(“hello %s”,name);return 0;}3、编写Makefile要使上面的hello.c程序能够运行,我们必须要编写一个Makefile文件,Makefile文件定义了一系列的规则,它指明了哪些文件需要编译,哪些文件需要先编译,哪些文件需要重新编译等等更为复杂的命令。
基于rk3568的linux驱动开发——gpio知识点基于rk3568的Linux驱动开发——GPIO知识点一、引言GPIO(General Purpose Input/Output)通用输入/输出,是现代计算机系统中的一种常用接口,它可以根据需要配置为输入或输出。
通过GPIO 接口,我们可以与各种外设进行通信,如LED灯、按键、传感器等。
在基于Linux系统的嵌入式设备上开发驱动程序时,熟悉GPIO的使用是非常重要的一环。
本文将以RK3568芯片为例,详细介绍GPIO的相关知识点和在Linux驱动开发中的应用。
二、GPIO概述GPIO是系统中的一个基本的硬件资源,它可以通过软件的方式对其进行配置和控制。
在嵌入式设备中,通常将一部分GPIO引脚连接到外部可编程电路,以实现与外部设备的交互。
在Linux中,GPIO是以字符设备的形式存在,对应的设备驱动为"gpiolib"。
三、GPIO的驱动开发流程1. 导入头文件在驱动程序中,首先需要导入与GPIO相关的头文件。
对于基于RK3568芯片的开发,需要导入头文件"gpiolib.h"。
2. 分配GPIO资源在驱动程序中,需要使用到GPIO资源,如GPIO所在的GPIO Bank和GPIO Index等。
在RK3568芯片中,GPIO资源的分配是通过设备树(Device Tree)来进行的。
在设备树文件中,可以定义GPIO Bank和GPIO Index等信息,以及对应的GPIO方向(输入或输出)、电平(高电平或低电平)等属性。
在驱动程序中,可以通过设备树接口(Device Tree API)来获取这些GPIO资源。
3. GPIO的配置与控制在驱动程序中,首先要进行GPIO的初始化与配置。
可以通过函数"gpiod_get()"来打开指定的GPIO,并判断其是否有效。
如果成功打开GPIO,则可以使用函数"gpiod_direction_output()"或"gpiod_direction_input()"来设置GPIO的方向,分别作为输出或输入。
嵌入式开发中的底层驱动设计嵌入式系统是指在各种电子设备中嵌入的一种计算机系统。
底层驱动在嵌入式系统中起着至关重要的作用,它们负责控制硬件设备,并将上层应用程序和操作系统之间的交互转化为硬件的具体操作。
因此,底层驱动的设计和实现对于嵌入式系统的性能和稳定性至关重要。
一、底层驱动的概念和作用底层驱动是指嵌入式系统中与硬件设备直接交互的软件模块。
它们负责将上层应用程序的指令转化为硬件能够理解和执行的操作,如控制硬件设备的开关、传输数据等。
底层驱动的设计和实现需要充分了解硬件设备的特性和工作原理,以保证正确、高效地控制硬件设备。
底层驱动的作用主要有以下几个方面:1. 提供硬件设备的抽象接口:底层驱动将硬件设备的底层操作封装成一系列接口,供上层应用程序调用。
这样,上层应用程序无需关心硬件设备的具体细节,只需调用相应的接口即可实现所需功能。
2. 实现硬件设备的控制:底层驱动负责向硬件设备发送控制指令,控制硬件设备的开关、工作模式等。
通过底层驱动,上层应用程序可以间接地控制硬件设备,实现特定的功能。
3. 处理硬件的中断和异常:嵌入式系统中的硬件设备常常会产生中断和异常,底层驱动需要及时捕获并处理这些中断和异常,以保证系统的正常运行。
4. 提供性能优化和特定功能支持:底层驱动可以通过优化算法和技术,提高硬件设备的性能和响应速度。
同时,底层驱动还可以为特定应用场景提供特定的功能支持,满足不同的需求。
二、底层驱动设计的原则在进行底层驱动设计时,需要遵循以下原则:1. 合理的抽象层次:底层驱动应该提供合理的抽象层次,将硬件设备的底层操作进行封装,使得上层应用程序可以方便地调用。
同时,底层驱动应该尽量隐藏底层硬件的具体细节,以提高代码的可维护性和可移植性。
2. 高效的数据传输:底层驱动在向硬件设备传输数据时,应该选择高效的数据传输方式,以提高系统的性能。
例如,对于需要频繁读写的数据,可以使用DMA(直接内存访问)方式进行传输,减少CPU 的负担。
linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。
本文将介绍在Linux上进行新驱动开发的步骤。
第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。
驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。
接口包括设备文件、系统调用、ioctl等。
根据驱动类型和接口的不同,驱动开发的流程也有所不同。
第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。
Linux内核由许多模块组成,每个模块都有自己的功能。
API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。
第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。
驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。
在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。
第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。
编译内核模块需要使用内核源码中的Makefile文件。
编译完成后,会生成一个.ko文件,这个文件就是内核模块。
第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。
可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。
在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。
第六步:调试和测试驱动开发完成后,需要进行调试和测试。
可以使用printk函数输出调试信息,在/var/log/messages文件中查看。
测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。
Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。
只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。
linux中编译驱动的方法
在Linux中编译驱动的方法通常涉及以下步骤:
1. 编写驱动代码:首先,您需要编写适用于Linux内核的驱动代码。
这通常是在内核源代码树之外编写的。
驱动代码通常以C语言编写,并遵循内核编程约定。
2. 获取内核源代码:为了编译驱动,您需要获得Linux内核的源代码。
您可以从Linux官方网站或镜像站点下载内核源代码。
3. 配置内核:在编译驱动之前,您需要配置内核以包含您的驱动。
这可以通过运行`make menuconfig`命令来完成。
在配置菜单中,您可以选择要编译的驱动以及相关的内核选项。
4. 编译驱动:一旦您配置了内核并选择了要编译的驱动,您可以使用`make`命令来编译驱动。
这将在内核源代码目录下生成可执行文件或模块文件。
5. 加载和测试驱动:一旦驱动被编译,您可以将其加载到Linux 内核中以进行测试。
您可以使用`insmod`命令将模块加载到内核,然后使用`dmesg`命令检查内核日志以查看驱动是否正确加载。
这些是基本的步骤,但具体的步骤可能会因您的环境和需求而有所不同。
在编译和加载驱动时,请确保您具有适当的权限和知识,因为这可能需要管理员权限,并且错误的操作可能会导致系统不稳定或损坏。
1、嵌入式系统的特点:(1).嵌入式系统的个性化很强,软件系统和硬件在不同的应用中均有差异;(2).由通用计算机系统发展而来,根据应用对软硬件进行裁剪;(3).高的可靠性,强的实用性;(4).高的耗电量直接影响系统的成本及电源寿命;2、什么是嵌入式系统?嵌入式系统是以应用为中心,以计算机技术为基础,采用可剪裁硬件,适用于对功能,可靠性,成本,体积,功耗等有严格要求的专用计算机系统。
3、采用RISC架构的ARM微处理器一般具有如下特点:(1).体积小、功耗低、成本低、性能高;(2).支持Thumb(16位)/ARM(3位)双指令集,能很好地兼容8位/16位器件;(3).大量使用寄存器,指令执行速度快;(4).大多数数据操作都在寄存器中完成;(5).寻址方式灵活简单,执行效率高;(6).采用固定长度的指令格式;4、嵌入式系统开发流程:选择嵌入式处理器(硬件平台)---选择嵌入式操作系统(软件平台)-----开发嵌入式应用软件-----测试通过---(是)---系统测试-----开发结束5、嵌入式系统软件设计流程:代码编程(C/汇编源程序)-----交叉编译(OBJ文件)-----交叉函数库----交叉链接(系统映像文件)---(重定向与下载)---目标板----调试;6、ARM9E处理器有独立的指令缓存(ICACHE)和数据缓存(DCACHE);7、ARM9系列处理器共有37个寄存器,其中31个属于通用寄存器,6个为ARM处理器;8、ARM总共有7种不同的处理器模式,分别是:用户模式,快速中断模式,外部中断模式,管理模式,数据访问中止模式,未定义指令中止模式,系统模式9、R13一般作为栈指针SP;R14被称为连接寄存器LR,作用:一是在通过BL或者BLX指令调用子程序时存放当前子程序的返回地址;二是在发生异常时用来保存该模式基于PC的返回地址;R15是程序计数器PC,用来保存处理器取值的地址;10、流水线技术的工作原理:ARM7采用的是3级流水线:FETCH/DECODE/EXECUTE.此时在EXECUTE阶段要完成大量的工作,包括寄存器和存储器的读写操作、移位操作、ALU 操作等,这导致在执行阶段往往需要多个时钟周期,从而成为系统性能的瓶颈。
嵌入式Linux驱动开发基础总结(上篇)
1, linux驱动一般分为3大类:
*字符设备*块设备*网络设备
2, 开发环境构建:
*交叉工具链构建*NFS和tftp服务器安装
3, 驱动开发中设计到的硬件:
*数字电路知识*ARM硬件知识*熟练使用万用表和示波器*看懂芯片手册和原理图
4, linux内核源代码目录结构:
*arch/: arch子目录包括了所有和体系结构相关的核心代码。
它的每一个子目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。
*block/: 部分块设备驱动程序;*crypto: 常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验算法;*documentation/: 文档目录,没有内核代码,只是一套有用的文档;*drivers/: 放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如,/block 下为块设备驱动程序,比如ide(ide.c)。
如果你希望查看所有可能包含文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的device_setup()。
*fs/: 所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持一个文件系统, 例如fat和ext2;*include/: include子目录包括编译核心所需要的大部分头文件。
与平台无关的头文件在include/linux子目录下,与intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录;*init/: 这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的好的起点之一;*ipc/: 这个目录包含核心的进程间通讯的代码;*kernel/: 主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/i386/kernel下;*lib/: 放置核心的库代码;*mm/:这个目录包括所有独立于cpu 体系结构的内存管理代码,如页式存储。