煤炭低温干馏微波加热技术的研究进展
- 格式:pdf
- 大小:444.79 KB
- 文档页数:5
低阶煤热解气分质利用技术与展望摘要:由于我国低阶煤储存大,煤炭资源高效利用有利于保障我国能源安全,低阶煤热解可以有效获取高值化焦油、半焦及煤气。
可以将低阶煤分为三个过程来阐述热解原理。
通过分析煤阶、升温速率、气氛、温度、粒径等热解条件及处理方法对低阶煤热解反应特性的影响。
催化热解通过获取高品质热解产物,根据催化的特性和催化行为不同,了解低阶煤对催化热解的影响。
通过在对热解的现状和进展的基础上,对低阶煤的工艺极速进行总结,了解未来的研究方向,促进我国低阶煤热解技术的发展方向。
关键词:低阶煤;热解;下游产品;综合利用引言上世纪七十年代,世界出现能源危机促进了窝火低阶美热解技术的发展,同时研发出多种低阶煤热解技术和工艺。
我国低阶煤储量高于油气储量,因此国家加快低阶煤热解技术的研发,同时开发出许多新的热解工艺并且创立了许多示范项目。
中低温热解作为低阶煤的重要制作方法,受到越来越多的关注和重视。
前期主要以半焦生产为主,对半焦生产得到的焦油和煤气很少再进行加工利用,对热解产生的煤气直接排放或着燃烧。
不但造成了污染而且还造成了能源浪费,并未达到能源的高效利用。
本文通过分析热解气技术及特点,研究大量的国内热解气体应用及合成技术,了解未来大型煤炭分质的应用方向,进而解决低阶煤的利用价值,增加能源的有效利用。
1热解煤气性质不同的热解方法采取的工艺和热载体不同,中低温的热解煤气热值约为1200~1800 kcal/m 3,热解气由CO、H2、CH4、CO2、N2、C2~C5、和少量的H2S等组成。
当使用烟气加热时,煤气中的 N2和CO2含量较高。
当采用间接加热或纯煤加热时,热解得到的荒煤气中有效气体含量较高。
当热解气热值较低时,可以作为热解热源气、城市燃气,或者用于发电站。
当有效气体较高时,热解气可以用于生产如甲醇、二甲醚等其他类别的化工产品[1]。
2低阶煤热解影响因素2.1煤阶煤阶,是对低阶煤热解行为产生影响的重要因素,通过对热重红外联用技术可以探究不黏煤、褐煤和不同地区长焰煤的特性,不同低阶煤中羧基基团和脂肪链的含量直接影响热解过程中CO2和CH4释放。
微波干燥的工作原理及优化设计微波干燥是一种利用微波能量进行物料干燥的技术。
与传统的热风干燥相比,微波干燥具有速度快、效率高、质量好等优势。
本文将介绍微波干燥的工作原理,并探讨如何进行优化设计,以提高干燥效果和经济效益。
一、微波干燥的工作原理微波干燥是一种将微波能量直接传输到物料内部,以内部加热方式进行干燥的技术。
其工作原理可归纳为以下两个方面:1. 微波能量的传输和吸收当微波能量通过物料时,其传输会发生两种现象:穿透和吸收。
物料的吸收取决于物料的介电性能,即介电常数和介电损耗因子。
在微波场作用下,如果物料的介电损耗因子较大,即对微波能量的吸收较强,干燥效果会更好。
2. 热传导和传质微波干燥同时包括热传导和传质两个过程。
物料在微波辐射下产生的热量会通过传导传递到物料的内部,并通过传质作用将物料内的水分蒸发出来。
传质速率取决于物料表面的水分蒸发速率和物料内部的传质速率。
通过合理控制微波功率和传质条件,可以实现快速而均匀的干燥效果。
二、微波干燥的优化设计为了提高微波干燥的效果和经济效益,需要进行优化设计。
以下几个方面是值得考虑的:1. 微波功率和频率的选择微波功率和频率是微波干燥的重要参数。
合理选择微波功率可以实现快速干燥,但过高的功率会引起物料的热过量,导致干燥不均匀。
频率的选择也应根据物料的特性进行调整,以提高微波能量的吸收效果。
2. 干燥温度和时间的控制干燥温度和时间直接影响微波干燥的效果。
过高的温度会导致物料变质,而过长的干燥时间则会增加生产成本。
因此,需要根据物料的特性和需求来选择合适的温度和时间参数,以实现高效的干燥效果。
3. 微波干燥设备的设计微波干燥设备的设计也是优化的重要环节。
合理设计微波辐射系统和传质系统,可以实现微波能量的均匀传递和物料内部的快速传质。
同时,设备的结构设计应方便清洁和维护,提高生产效率和设备的使用寿命。
4. 过程监控和控制通过实时监测干燥过程中的物料温度、湿度和微波功率等参数,可以及时调整微波干燥设备的工作状态,实现高效的控制。
微波加热技术在化学反应中的应用微波加热技术是一种高效、快速、节能的加热方式,经常被应用于化学反应的研究和工业生产中。
传统的加热方式如火焰、电炉等,加热速度较慢,耗电和耗时都较高,而微波加热技术则可以在短时间内提高反应速率和产率,并且对反应条件有较高的控制能力。
1. 微波加热技术的原理微波是一种电磁波,其波长在0.1-100cm之间。
当微波加热介质时,其分子会对微波场产生极化,使得介质内部的分子振动并互相摩擦,从而转化为热能。
微波加热方法的优点是能够直接作用于物料分子,因此加热速度很快,加热均匀性好,并且能够精确地控制反应温度和反应时间,因此被广泛应用于化学反应中。
2. 微波加热技术在有机合成中的应用在有机合成中,一些反应需要高温和高压条件下才能完成,这种条件会导致反应物分解或生成不必要的副产物。
而微波加热则能够在较低的温度和压力下促进反应的进行,提高产率和选择性。
微波合成方法已经被用于许多有机物的合成,例如:2.1 反应物的无溶剂合成传统有机合成使用有机溶剂,会生成溶液中的溶剂垢和废弃物,造成设备的污染和废弃物的增加。
因此,无溶剂有机合成更加环保和经济。
利用微波加热,无溶剂的有机反应可以在少量的催化剂下快速完成。
2.2 化合物的无水合成许多化学反应需要水分或水溶性化合物作为催化剂或反应物。
然而,水溶性化合物不容易纯化,因此无水合成更加优选。
微波加热可以使得反应物迅速脱水、脱卤或脱氨等,实现无水合成。
2.3 新型有机化合物合成利用微波合成反应可以快速合成具有新结构或新性质的有机化合物,例如具有药物活性或光学性质的有机化合物。
3. 微波加热技术在配位化学中的应用配位化学是指各种金属离子与配体之间的化学反应。
由于金属离子比有机化合物无机分子更加复杂多变,因此需要严格的反应条件和加热方式才能完成反应。
而微波加热具有很好的选择性和控制能力,因此被应用在金属配位化学中。
3.1 催化反应的合成微波加热可以快速控制催化反应的温度和时间,从而在合成过程中达到良好的效果。
第49卷第9期 当 代 化 工 Vol.49,No.9 2020年9月 Contemporary Chemical Industry September,2020基金项目: 中国石油化工集团公司科技项目,项目号:141903。
收稿日期: 2020-07-21物质介电特性对微波加热影响研究进展吴斯侃,宋永一,王鑫,张彪,赵丽萍,王博(中国石油化工股份有限公司 大连石油化工研究院,大连 116041)摘 要:微波作为一种重要的快速加热手段,近年来在化工行业领域得到广泛重视。
由于微波加热原理有别于传统加热具有特殊性,因此探究其影响因素对于改进微波加热工艺意义重大。
介电特性是分子中束缚电荷对外加电场的响应特性,对于微波加热影响十分关键。
纵观物质介电特性对微波加热影响的相关研究,分别从含水量、堆积密度等物性参数角度出发,探索并总结物质介电特性影响微波加热的核心关键点。
最后列举目前国内外基于介电特性所优化的微波加热工艺构想,为今后该技术在面向工业化应用的道路上拓宽新思路。
关 键 词:微波;热解;介电特性;含水量;堆积密度;优化中图分类号:TM 25 文献标识码: A 文章编号: 1671-0460(2020)09-1987-05Research Progress in Influence of Dielectric Propertiesof Materials on Microwave HeatingWU Si-kan, SONG Yong-yi, WANG Xin, ZHANG Biao, ZHAO Li-ping, WANG Bo(Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian 116041, China)Abstract : Microwave, as an important method of flash heating, has received extensive attention in the field of chemical industry in recent years. Because the principle of microwave heating is different from that of conventional heating, it is significant to explore its affecting factors to improve the heating process. Dielectric properties are the response characteristics of the bound charge to the applied electric field in the molecule. In this paper, the research on the influence of dielectric properties on microwave heating was summarized, and the key points from physical parameters were determined,such as moisture content and bulk density. Finally, optimization ideas of microwave heating based on dielectric properties was listed, which would broaden the way of industrial application in the future. Key words : Microwave; Pyrolysis; Dielectric properties; Moisture content; Bulk density; Optimization微波加热是一种可利用的高效清洁加热技术,由于其加热原理[1]不同于传统热传导,具有高效、快速、选择性强等特点,因此广泛应用于人们的生产生活中[2-4]。
国内低阶煤最新热解提质梯级利用技术发展概述简述了近年几种最新低阶煤提质梯级利用技术,并总结了各自的技术特点,同时提出开展和建设低阶煤分质转化项目建议。
标签:低阶煤;热解提质;梯级利用;概述1 低阶煤提质利用背景低阶煤的煤化程度较低,包括长焰煤、不黏煤、弱黏煤、褐煤等煤种,其资源储量丰富,占我国已探明煤炭储量的50%以上,主要特征为挥发分高、含水量高、发热量低、易燃易碎、不适宜长距离运输,褐煤在这方面尤其突出,应用受到很大限制。
国家“十三五”规划纲要中,将“煤炭清洁高效利用”列为九项重大工程之一,特别是将“低阶煤中低温热解分质转化”列为国家“十三五”时期“能源发展重大工程”和“能源关键技术装备”。
低阶煤分质梯级利用思路就是通过一个相对简单的中低温加热,常压生产,实现煤炭的分质,得到气(煤气)、液(焦油)、固(半焦)三相物质,这是目前能耗、物耗最低的煤炭转化方式。
目前,我国已开发了很多热解工艺,如煤炭科学研究总院的多段回转炉(MRF)热解技术[1],大连理工大学研究开发的DG工艺[2],浙江大学的多联产技术[3],中国科学院过程工程研究所“煤拔头”工艺[4],大唐华银电力股份有限公司低阶煤低温热解改质利用技术(LCC)[5]等。
笔者现将近年来新开发研制的几种低温热解技术作一简要概括并总结其技术特点,为尽早实现低阶煤综合利用的工业化,促进能源结构合理调整和产业结构升级转型,产生积极的促进作用。
2 近年低阶煤主要热解提质技术概况2.1 低阶煤旋转床低温干馏制油、制气分质利用技术该技术由河南龙成集团有限公司开发,解决了梯级供热智能控温、高温旋转动态密封两大煤干馏技术难题,并在世界范围内率先实现了规模化、工业化稳定运行,为低阶煤分质梯级利用开辟出一条新路子。
2011年10月,30万吨/年装置正式运营;2014年3月,1000万吨/年试生产,其单套装置处理能力达100吨/小时,洁净煤、煤焦油、煤气产率分别为71.53%、11.05%、9.87%。
低阶煤热解工艺优化及反应历程研究摘要:国内已探明的煤炭资源储量中,低阶烟煤占煤炭资源储量的33%左右,其中长焰煤占低阶烟煤的1/3以上。
但低阶烟煤水分含量高,容易风化和氧化,因此不便于长距离运输,并且输出成本较高,适于就近转化利用,生产高附加值、易储存运输的产品如煤气、兰炭等。
低阶煤热解提质技术,可以将质量差、用途窄的低阶煤经转化得到用途广泛的多种产品,实现了煤的清洁高效利用。
基于此,本文主要对低阶煤热解工艺优化及反应历程进行分析探讨。
关键词:低阶煤;热解工艺优化;反应历程1、前言国内早在90年代就积极推广清洁煤技术,其中最重要的是低阶煤热解提质技术。
与其他煤转化技术相比较,低阶煤热解技术从表面上看仅仅是一个热加工工程。
在常压下就能得到煤气和焦油,不需要加氢,也不需要加氧。
低阶煤经过热解提质,能较大地提高了资源利用效率,极大减少了有毒物质的排放,而且有利于后续的转化,有着光明的前景。
2、低阶煤热解提质的工作原理及影响因素低阶煤热解是在隔绝空气(或非氧化气氛)条件下,把低阶煤升温至一定温度,发生热解反应,制得半焦、煤焦油和煤气3种产品的工艺过程。
反应过程十分复杂,会发生物理和化学变化。
首先脱掉分子中的侧链和活泼性的基团,然后煤中的氢元素转移到小分子中,或可以通过分子碎片周围的原子重排,析出挥发产品(焦油和煤气等)。
残留下来的半焦固定碳中有自由基的存在,会发生缩聚反应,最终形成煤气和焦炭等。
2.1低阶煤热解提质的工作原理煤化程度比较低的低阶煤典型热解过程一般可以分成三个部分。
2.1.1干燥阶段(<200℃)在此阶段,并没有发生化学变化,而是发生了简单的物理变化。
在温度<100℃时,主要是脱水,低阶煤得到了干燥;当温度处于100~200℃,主要是脱气,析出煤的封闭空隙以及煤吸附的二氧化碳、氮气等。
2.1.2热解阶段(200~600℃)这一阶段是热解的主反应阶段,主要发生解聚和分解反应。
低阶煤在升至200℃以上后,开始分解,发生脱羧基反应。
【煤炭热解技术概述】煤炭热强度煤炭热解技术概述煤的热解也称为煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,煤在不同的温度下发生一系列的物理变化和化学反应的复杂过程。
煤热解的结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,尤其是低阶煤热解能得到高产率的焦油和煤气。
焦油经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油所不能完全替代的化工原料。
煤气是使用方便的燃料,可成为天然气的代用品,另外还可用于化工合成。
半焦既是优质的无烟燃料,也是优质的铁合金用焦、气化原料、吸附材料。
用热解的方法生产洁净或改质的燃料,既可减少燃煤造成的环境污染,又能充分利用煤中所含的较高经济价值的化合物,具有保护环境、节能和合理利用煤资源的广泛意义。
热解工艺分类:煤热解工艺按照不同的工艺特征有多种分类方法。
按气氛分为惰性气氛热解(不加催化剂),加氢热解和催化加氢热解。
按热解温度分为低温热解即温和热解(500~650℃)、中温热解(650~800℃)、高温热解(900~1000℃)和超高温热解(>1200℃)。
按加热速度分为慢速(3~5℃/min)、中速(5~100℃/s)、快速(500~105℃/s)热解和闪裂解(>106℃/s)。
按加热方式分为外热式、内热式和内外并热式热解。
根据热载体的类型分为固体热载体、气体热载体和固-气热载体热解。
根据煤料在反应器内的密集程度分为密相床和稀相床两类。
依固体物料的运行状态分为固定床、流化床、气流床,滚动床。
依反应器内压强分为常压和加压两类。
煤热解工艺的选择取决于对产品的要求,并综合考虑煤质特点、设备制造、工艺控制技术水平以及最终的经济效益。
慢速热解如煤的炼焦过程,其热解目的是获得最大产率的固体产品-焦炭;而中速、快速和闪速热解包括加氢热解的主要目的是获得最大产率的挥发产品-焦油或煤气等化工原料,从而达到通过煤的热解将煤定向转化的目的。
下表列出了目标产品与一般所相应采用的热解温度、加热速度、加热方式和挥发物的导出及冷却速率等工艺条件。
煤的分质分级利用研究摘要:在我国能源生产和消费结构中,煤炭一直占据着主导地位,为国民经济持续高速发展提供了可靠的能源资源保障。
但同时也导致了日益严重的环境问题。
所谓的分级分质利用,就是依据煤自身的特点进行开发相关产品或清洁能源,使其资源、效益最大化。
实现煤炭清洁高效利用,切实推动我国能源生产革命、煤炭供给改革、煤炭行业转型升级的重要有效途径。
关键词:低阶煤;分质分级;节能减排前言目前,煤炭仍是我国的主体能源,虽然我国煤炭资源丰富,但资源禀赋条件差,低阶煤储量很大。
对低阶煤的利用也提出越来越高的要求,低阶煤清洁高效、分质分级利用的呼声越来越高。
低阶煤的开采利用是一个全周期的过程,不仅涉及煤炭行业本身,还涉及下游电力、化工等各个耗煤行业。
低阶煤清洁高效、分质分级的概念应贯穿从开采到终端产品利用的整个过程。
前端加工过程越到位,分质分级越细化,低阶煤的利用过程越高效,对环境造成的影响及环保治理所付出的代价也越小。
因此,实现低阶煤的清洁、高效利用,对满足我国快速增长的能源需求及实现节能减排目标具有重要意义。
1低阶煤分质利用概述低阶煤分质利用,是根据煤炭自身的组成及性质,首先采用中低温热解技术将其转化为气体(煤气)、液体(煤焦油)和固体(洁净煤),再根据各类热解产物的物化性质进行区别利用,梯级延伸加工,生产大宗化工原料和各类精细化学品,最终实现对低阶煤转化利用全过程的“分质转化、梯级利用”。
其中,煤气既可作为制氢、天然气及化工生产的原料,也可脱硫脱氮后直接燃烧发电;煤焦油可提取苯、酚、吡啶等精细化工产品,或加氢制取柴油、石脑油等清洁液体燃料;脱除了轻质组分及杂质的洁净煤,不仅热值更高,而且更加清洁,既可用作建材、工业窑炉及工业锅炉等领域的原料和燃料,也是民用领域的清洁燃烧。
因此,煤分质利用具有资源利用充分、能量转化率高、过程排碳少、经济效益好等特点,是煤炭清洁高效利用的最佳途径之一。
2低阶煤的分质、分级2.1煤种的分类、分级就像烟煤一样,低阶煤仍是一个较为广泛的概念,其涵盖的煤种包括长焰煤、不黏煤、弱黏煤、褐煤等多个煤种。
新型干燥技术的研究与应用干燥技术是化工、食品、医药、环保等领域中非常重要的工序,目的是将物质中的水分蒸发掉,使其达到所需的含水量。
传统的干燥技术一般采用热风干燥和真空干燥等方式,但这些方式存在能源消耗高、环境污染大、产品质量不稳定等弊端。
因此,研究新型干燥技术并将其应用于实际生产中是提高生产效率、降低能耗和污染、提升产品质量的关键之一。
1. 新型干燥技术的研究现状目前,新型干燥技术主要包括微波干燥、超声波干燥、红外干燥、真空波干燥和流化床干燥等。
这些技术相对于传统的干燥技术,具有以下优点:(1)微波干燥微波干燥是利用微波辐射将物质中的水分加热并蒸发,具有高效、快速、能耗低等优点。
此外,微波干燥能够使产品保持天然色泽、营养成分和味道,并且能够保持产品的形态。
微波干燥已广泛应用于食品、木材、陶瓷、药物等行业中。
(2)超声波干燥超声波干燥利用超声波的作用将水分分子振动,从而加速水分的蒸发,具有干燥速度快、干燥温度低、能耗低、产品品质稳定等优点。
超声波干燥已广泛应用于食品、纺织、印染等行业中。
(3)红外干燥红外干燥是利用红外线的能量将物质中的水分加热并蒸发,能够快速地干燥物质,并且不会对物质产生不良影响。
红外干燥已广泛应用于食品、医药、塑料、印刷等行业中。
(4)真空波干燥真空波干燥是利用真空的作用将物质中的水分蒸发出去,具有干燥速度快、品质稳定、不破坏物料等优点。
真空波干燥已应用于大批量化工产品、食品、医药等行业中。
(5)流化床干燥流化床干燥是通过将湿物料注入热流体中,使得物料在流体中不断起伏流动,从而加速水分的蒸发。
它具有干燥速度快、能耗低、处理量大、操作简便等优点。
流化床干燥已广泛应用于冶金、化工、材料、食品等行业中。
2. 新型干燥技术的应用前景新型干燥技术具有较高的技术含量和广阔的应用前景。
它们可以提高生产效率、降低能耗和污染、提升产品质量、改善生产环境等,满足人们对于高质量和绿色生产的需求。
在农产品、食品、药品等行业中,新型干燥技术可以帮助企业把握市场机遇,推出更具有品质和安全保障的产品,同时也可以降低生产成本。