微波合成反应
- 格式:ppt
- 大小:1.58 MB
- 文档页数:51
微波合成乙酰水杨酸及其反应动力学分析安从俊;徐帅;刘东【摘要】采用微波辐射法合成了乙酰水杨酸,考察了反应时间、辐射功率、pH 值、反应底物比(水杨酸与乙酸类衍生物的物质的量比)等因素对反应的影响,并研究了反应动力学。
确定最佳反应条件为:反应时间70 s、辐射功率450 W、pH 值5.4、反应底物比1∶2,推算了宏观动力学方程并计算得到表观反应活化能为75.60 kJ·mol-1。
%Acetylsalicylic acid was synthesized by microwave irradiation.The effect of several factors,such as reaction time,irradiation power,pH value and reactant ratio(molar ratio of salicylic acid to acetic acid deriva-tive)on reaction were investigated,and reaction kinetics was studied.The optimal conditions were obtained as follows:reaction time of 70 s,irradiation power of 450 W,pH value of 5.4,reactant ratio of 1∶2.The kinetics e-quation was obtained and Arrhenius activation energy was 75.60 kJ·mol-1 .【期刊名称】《化学与生物工程》【年(卷),期】2014(000)011【总页数】4页(P45-48)【关键词】乙酰水杨酸;微波合成;动力学【作者】安从俊;徐帅;刘东【作者单位】武汉大学化学与分子科学学院,湖北武汉 430072;武汉东湖学院,湖北武汉 430212;武汉工程大学国家新型反应器与绿色化学工艺重点实验室,湖北武汉 430073【正文语种】中文【中图分类】O622.5乙酰水杨酸是解热镇痛药复方阿司匹林(APC)的主要组成成分。
微波合成应用知识微波合成应用知识微波在合成化学上的应用代表着这个领域的一个重要突破。
它大幅度的改变了化学合成反应的执行和在科学界中人们对它的看法。
以下就微波反应的原理,和微波合成在具体实验中的注意事项进行阐述。
1.微波反应原理:在微波合成中,微波与反应混合物中的分子或离子直接偶合,通过偶极旋转或离子传导这两种方式将能量从微波传导到被加热物质,使得反应体系中能量快速增加。
一方面可以使能量更有效的作用于各种反应,使得反应速度更快,反应产率更高,反应更清洁。
另一方面微波直接将能量传递给反应物(转化为分子能),所以微波能够驱动某些在传统加热方式下不能发生的反应,为化学转换带来了全新的可能性。
2.什么是单模,多模微波单模微波:只用一种数学模型就可以表示的微波。
多模微波:需要用多种数学模型才能够表示的微波。
单模微波作为一种单一作用到反应物上的能量,可以使我们的反应更加精确,反应容易控制,有很好的反应重现性。
多模微波虽然不如单模微波可以精确的定量控制,但他具有较大微波反应腔体的特性也是非常重要的。
3.什么是环型聚焦微波CEM在DISCOVER系列的微波合成仪器中,采用了基于AFC (AUTO FOCUS COUPLING)环形聚焦自动耦合单模微波技术,一方面确保了单模微波反应得重现性特点,另一方面聚焦微波的设计使微波场能量密度达到900w/l比驻波微波场能力密度大3-4倍,比通常多模微波能量密度大了30多倍。
大能量的微波场能量提高了很多反应可能性。
在这里值得注意的是,我们在查以前参考文献的时候,一定要看清楚文献中使用的微波合成仪的类型。
然后使用适合的微波功率进行合成。
如果文献中没有提到仪器,那么我们在实验的时候就必须从较小的功率还是摸索。
(比如以20W的功率开始摸索)4.微波对于不同物质的作用不同物质具有不同的微波特性,通常来说:金属反射微波;石英、特氟隆等是吸收微波的能力非常弱,这些物质能被微波穿透;在通常的反应物中,除非极性溶剂吸收微波的能力很弱以外,其余的溶剂、底物、催化剂等都具有不同吸收微波的能力。
微波合成应用知识微波在合成化学上的应用代表着这个领域的一个重要突破。
它大幅度的改变了化学合成反应的执行和在科学界中人们对它的看法。
以下就微波反应的原理,和微波合成在具体实验中的注意事项进行阐述。
1.微波反应原理:在微波合成中,微波与反应混合物中的分子或离子直接偶合,通过偶极旋转或离子传导这两种方式将能量从微波传导到被加热物质,使得反应体系中能量快速增加。
一方面可以使能量更有效的作用于各种反应,使得反应速度更快,反应产率更高,反应更清洁。
另一方面微波直接将能量传递给反应物(转化为分子能),所以微波能够驱动某些在传统加热方式下不能发生的反应,为化学转换带来了全新的可能性。
2.什么是单模,多模微波单模微波:简单的说是只用一种数学模型就可以表示的微波。
多模微波:简单的说是需要用多种数学模型才能够表示的微波。
单模微波作为一种单一作用到反应物上的能量,可以使我们的反应更加精确,反应容易控制,有很好的反应重现性。
多模微波虽然不如单模微波可以精确的定量控制,但他具有较大微波反应腔体的特性也是非常重要的。
3.什么是环型聚焦微波CEM在DISCOVER系列的微波合成仪器中,采用了基于AFC(AUTO FOCUS COUPLING)环形聚焦自动耦合单模微波技术,一方面确保了单模微波反应得重现性特点,另一方面聚焦微波的设计使微波场能量密度达到900w/l比驻波微波场能力密度大3-4倍,比通常多模微波能量密度大了30多倍。
大能量的微波场能量提高了很多反应可能性。
在这里值得注意的是,我们在查以前参考文献的时候,一定要看清楚文献中使用的微波合成仪的类型。
然后使用适合的微波功率进行合成。
如果文献中没有提到仪器,那么我们在实验的时候就必须从较小的功率还是摸索。
(比如以20W的功率开始摸索)4.微波对于不同物质的作用不同物质具有不同的微波特性,通常来说:金属反射微波;石英、特氟隆等是吸收微波的能力非常弱,这些物质能被微波穿透;在通常的反应物中,除非极性溶剂吸收微波的能力很弱以外,其余的溶剂、底物、催化剂等都具有不同吸收微波的能力。
Journal of Microwave Chemistry 微波化学, 2018, 2(3), 70-78Published Online September 2018 in Hans. /journal/mchttps:///10.12677/mc.2018.23011Organic Synthesis Reactions Catalysed with Microwave IrradiationMing Liu1, Wenxiang Hu2*1College of Life Sciences, Capital Normal University, Beijing2Jingdong Xianghu Microwave Chemistry Union Laboratory, Beijing Excalibur Space Military Academy ofMedical Sciences, BeijingReceived: Oct. 11th, 2018; accepted: Oct. 30th, 2018; published: Nov. 6th, 2018AbstractThe recent developments of application of microwave heating method in organic reactions were reviewed. They are widely used in esterification reaction, synthetic ether reaction, nucleophilic displacements reaction, saponification reaction, condensation reaction, asymmetric ring reaction, ring-opening reaction, coupling reaction, and synthetic heterocyclic compound reaction, etc.KeywordsMicrowave Irradiation, Organic Synthesis, Microwave Synthesis微波催化有机合成化学反应刘明1,胡文祥2*1首都师范大学,生命科学学院,北京2北京神剑天军医学科学院,京东祥鹄微波化学联合实验室,北京收稿日期:2018年10月11日;录用日期:2018年10月30日;发布日期:2018年11月6日摘要微波有机合成化学是一门颇具特色的有机化学分支,具有反应迅速、产率高、选择性好等优点。
微波合成技术及其应用随着科技的进步和工业化的发展,我们的生活变得越来越方便。
众所周知,原材料的提取和化学合成是化工工业最基本的生产过程。
然而,传统的化学合成方法往往需要高温高压下进行,这不仅对环境造成了不良影响,也对人体健康带来了潜在危害。
为了解决这些问题,科学家们开始研究新型的化学合成方法,并且微波合成技术应运而生。
微波合成技术是一种利用微波辐射加热反应体系进行化学反应的方法。
相比传统的化学合成方法,微波合成技术具有许多优点。
首先,微波加热是所谓的“选择性加热”,这意味着只有反应物被加热,而反应溶剂则不会被加热。
这种“选择性加热”可以大大减少反应所需的时间和溶剂的用量。
其次,微波加热可以使反应体系在较低的温度下完成,这对于那些需要高温高压进行的反应来说,可以大大减少能量的消耗和对环境的负面影响。
最后,微波合成技术还可以提高反应的产率和选择性,因为微波辐射可以促进反应体系中的分子运动和转化。
微波合成技术的应用范围非常广泛。
我们可以把它应用于有机合成、无机合成、高分子合成等领域。
在有机合成中,微波合成技术可以用来合成槽菜素、异噁唑等一系列的药物分子。
在无机合成中,微波合成技术可以用来合成金属氧化物纳米颗粒、金属有机骨架材料等材料。
在高分子合成中,微波合成技术可以用来制备聚合物和共聚物。
所有这些应用都受益于微波合成技术的高效和可行性。
除了以上的应用之外,微波合成技术也可以在生物领域中起到重要的作用。
例如,微波合成技术可以用来制备DNA探针和核酸荧光探针。
微波辐射可以促进DNA合成方案的耦合反应,从而使DNA探针和核酸荧光探针得到更高的效率和更高的产率。
另一方面,微波合成技术也可以用于制备微纳米器件,例如微晶振、微波滤波器、微波天线等传感器。
尽管微波合成技术存在一些潜在的限制,例如反应器的选择、选择性加热的问题、微波的局部渗透等等,但是随着这项技术的不断发展和完善,微波合成技术还是日益成为一种重要的化学合成手段。