当前位置:文档之家› 空间数据质量及精度分析

空间数据质量及精度分析

空间数据质量及精度分析
空间数据质量及精度分析

空间数据质量特性与质量控制.

空间数据质量特性与质量控制 范志坚1,2,方源敏1,汪虹2 (1.昆明理工大学国土资源工程学院昆明 650093;2.云南省基础地理信息中心昆明 650034) 摘要:本文主要讨论空间数据质量特性、质量控制所涉及的内容。结合笔者最近从事空间数 据库建库的具体实践和工作体会,探讨从位置精度、属性精度、时间精度、数据完整性和逻辑一致性等方面对数据质量进行全面控制,最终建成一个质量可靠的空间数据库。 关键词:地理信息系统;空间数据库;空间数据;质量特性;质量控制 Quality characteristic and Quality control of Spatial data Fan Zhi-jian1,2,Fang Yuan-min1,Wang-Hong2 (1.Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China;2.Yunnan Provincial Geomatics center,Kunming 650034,China) Abstract:This paper mainly talks over contents which are involved with quality characteristic and quality control of spatial data.Integrating with concrete practice and work experience which the writer has recently been engaged in establishing spatial database,a very comprehensive control of data quality should be discussed from aspects of positional accuracy、attribute accuracy、temporal accuracy、data compression、as well as logic conformance and so on.Finally,a dependable spatial database should be set up. Key words:GIS;spatial database;spatial data;quality characteristic;quality control 0 引言 空间数据库是随着地理信息系统(GIS)的开发和应用而发展起来的数据库新技术,它是地理信息系统的重要组成部份,是地理信息系统应用部份的前题和基础。空间数据库为此建立了如实体、关系、数据独立性、完整性、数据操作、资源共享等一系列基本概念。以空间数据存储和操作为对象的空间数据库,把被管理的数据从一维推向了二维、三维甚至更高维。空间数据库是一种应用于空间数据处理与信息分析领域的具有工程性质的数据库,它所管理的对象主要是空间实体。在空间数据库中,空间数据质量的好坏,直接影响到空间数据库的经济效益和社会效益。 要得到高质量的空间数据,最重要的是在空间数据生产和使用过程中进行质量管理和质量控制。通过质量管理和质量控制,可以分析影响产品质量的原因,进而提高空间数据的质量。空间数据的质量是空间数据库生存和发展的保障,缺少质量指标的空间数据将无法得到用户的信任,且直接影响到地理信息系统应用、分析、决策的正确性和可靠性。由此可知,空间数据质量是空间数据库的生

空间数据质量在GIS中的影响

地理信息系统(GIS)的基础是空间数据,空间数据的核心是质量,空间数据的生产与质量控制是一个相互作用的过程,生产数据是为了应用,而数据质量是一个关系到数据可靠性和系统可靠性的重要问题。随着数据质量在建设数字地球、进行矿产预测的计算机模拟中发挥着越来越重要的作用,但如果空间数据的质量及其精度未能引起足够的重视,由这些空间数据进行重新运算和组合产生的空间数据就不是最终需要的结果,可能导致最终决策错误。要提高空间数据的质量,减小空间数据误差,就要对空间数据误差产生和扩散的所有过程和环节进行控制。在数据采集时对元数据进行跟踪,采取相应的措施提高数据质量。以地图数字化为例,对纸质地图进行数字化前应对其进行校正或配准,选用精度比较高的数字化仪和扫描仪提高栅格数据的精度等;根据空间数据质量评价的标准还应制定相应的细则来提高数据质量;对采集和处理空间数据人员进行岗前培训等也都能减小误差的传播。 1 GIS 空间数据质量控制研究现状 GIS 空间数据的质量优劣直接影响着GIS应用中分析结果的可靠程度及应用的真正实现,也影响着GIS产业的健康发展。因此,近年来国内外越来越关注GIS数据的精度和质量控制的研究。GIS数据的质量控制问题涉及面很广,包括数据质量的衡量标准、表示方法,数据误差的来源和性质,评价方法和控制方法及相关政策等。如政府部门积极制定法规保障数据质量;将数据作为产品,采用管理产品质量的方法管理数据质量;数据质量的教育、培训与咨询;初步形成了地理数据质量的系列国际标准,如ISO 19100系列标准中地理信息质量标准;方法上,主要成果和结论,包括直线不确定性模型的改进、曲线不确定性模型的建立;将平差理论引入GIS数据误差处理和质量控制,并提出了实用方法;对GIS 数字化误差的性质、分布进行了深入研究;从抽样检验的理论出发,探讨了GIS 产品的质量控制技术和方法。 2 空间数据质量的概念 2.1空间数据的质量 空间数据是有关空间位臵、专题特征以及时间信息的符号记录,而数据质量是空间数据在表达这3个基本要素时所能达到的准确性、一致性、完整性以及它们三者之间统一性的程度。由于现实世界的复杂性、模糊性以及人类认识和表达能力的局限性,空间数据在表达上不可能完全达到真值,只能在一定程度上接近真值。用户根据需要对空间数据的处理也会导致出现一定的质量问题。所以空间数据的误差产生于各种数据源及空间数据的输入和处理过程中。 2.2与空间数据质量相关的几个概念 2.2.1误差(Error)反映了数据与真实值或公认的真值之间的差异,它是一种常用的数据准确性的表达方式。

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

空间数据分析模型

第7 章空间数据分析模型 7.1 空间数据 按照空间数据的维数划分,空间数据有四种基本类型:点数据、线数据、面数据和体数据。 点是零维的。从理论上讲,点数据可以是以单独地物目标的抽象表达,也可以是地理单元的抽象表达。这类点数据种类很多,如水深点、高程点、道路交叉点、一座城市、一个区域。 线数据是一维的。某些地物可能具有一定宽度,例如道路或河流,但其路线和相对长度是主要特征,也可以把它抽象为线。其他的线数据,有不可见的行政区划界,水陆分界的岸线,或物质运输或思想传播的路线等。 面数据是二维的,指的是某种类型的地理实体或现象的区域范围。国家、气候类型和植被特征等,均属于面数据之列。 真实的地物通常是三维的,体数据更能表现出地理实体的特征。一般而言,体数据被想象为从某一基准展开的向上下延伸的数,如相对于海水面的陆地或水域。在理论上,体数据可以是相当抽象的,如地理上的密度系指单位面积上某种现象的许多单元分布。 在实际工作中常常根据研究的需要,将同一数据置于不同类别中。例如,北京市可以看作一个点(区别于天津),或者看作一个面(特殊行政区,区别于相邻地区),或者看作包括了人口的“体”。 7.2 空间数据分析 空间数据分析涉及到空间数据的各个方面,与此有关的内容至少包括四个领域。 1)空间数据处理。空间数据处理的概念常出现在地理信息系统中,通常指的是空间分析。就涉及的内容而言,空间数据处理更多的偏重于空间位置及其关系的分析和管理。 2)空间数据分析。空间数据分析是描述性和探索性的,通过对大量的复杂数据的处理来实现。在各种空间分析中,空间数据分析是重要的组成部分。空间数据分析更多的偏重于具有空间信息的属性数据的分析。 3)空间统计分析。使用统计方法解释空间数据,分析数据在统计上是否是“典型”的,或“期望”的。与统计学类似,空间统计分析与空间数据分析的内容往往是交叉的。 4)空间模型。空间模型涉及到模型构建和空间预测。在人文地理中,模型用来预测不同地方的人流和物流,以便进行区位的优化。在自然地理学中,模型可能是模拟自然过程的空间分异与随时间的变化过程。空间数据分析和空间统计分析是建立空间模型的基础。 7.3 空间数据分析的一些基本问题 空间数据不仅有其空间的定位特性,而且具有空间关系的连接属性。这些属性主要表现为空间自相关特点和与之相伴随的可变区域单位问题、尺度和边界效应。传统的统计学方法在对数据进行处理时有一些基本的假设,大多都要求“样本是随机的”,但空间数据可能不一定能满足有关假设,因此,空间数据的分析就有其特殊性(David,2003)。

空间数据分析

空间数据分析报告 —使用Moran's I统计法实现空间自相关的测度1、实验目的 (1)理解空间自相关的概念和测度方法。 (2)熟悉ArcGIS的基本操作,用Moran's I统计法实现空间自相关的测度。2、实验原理 2.1空间自相关 空间自相关的概念来自于时间序列的自相关,所描述的是在空间域中位置S 上的变量与其邻近位置Sj上同一变量的相关性。对于任何空间变量(属性)Z,空间自相关测度的是Z的近邻值对于Z相似或不相似的程度。如果紧邻位置上相互间的数值接近,我们说空间模式表现出的是正空间自相关;如果相互间的数值不接近,我们说空间模式表现出的是负空间自相关。 2.2空间随机性 如果任意位置上观测的属性值不依赖于近邻位置上的属性值,我们说空间过程是随机的。 Hanning则从完全独立性的角度提出更为严格的定义,对于连续空间变量Y,若下式成立,则是空间独立的: 式中,n为研究区域中面积单元的数量。若变量时类型数据,则空间独立性的定义改写成 式中,a,b是变量的两个可能的类型,i≠j。 2.3Moran's I统计 Moran's I统计量是基于邻近面积单元上变量值的比较。如果研究区域中邻近面积单元具有相似的值,统计指示正的空间自相关;若邻近面积单元具有不相似的值,则表示可能存在强的负空间相关。

设研究区域中存在n 个面积单元,第i 个单位上的观测值记为y i ,观测变量在n 个单位中的均值记为y ,则Moran's I 定义为 ∑∑∑∑∑======n i n j ij n i n j ij n i W W n I 11 11j i 1 2i ) y -)(y y -(y )y -(y 式中,等号右边第二项∑∑==n 1i n 1j j i ij )y -)(y y -(y W 类似于方差,是最重要的项,事 实上这是一个协方差,邻接矩阵W 和) y -)(y y -(y j i 的乘积相当于规定)y -)(y y -(y j i 对邻接的单元进行计算,于是I 值的大小决定于i 和j 单元中的变量值对于均值的偏离符号,若在相邻的位置上,y i 和y j 是同号的,则I 为正;y i 和y j 是异号的, 则I 为负。在形式上Moran's I 与协变异图 {}{}u ?-)Z(s u ?-)Z(s N(h)1(h)C ?j i ∑=相联系。 Moran's I 指数的变化范围为(-1,1)。如果空间过程是不相关的,则I 的期望接近于0,当I 取负值时,一般表示负自相关,I 取正值,则表示正的自相关。用I 指数推断空间模式还必须与随机模式中的I 指数作比较。 通过使用Moran's I 工具,会返回Moran's I Index 值以及Z Score 值。如果Z score 值小于-1.96获大于1.96,那么返回的统计结果就是可采信值。如果Z score 为正且大于1.96,则分布为聚集的;如果Z score 为负且小于-1.96,则分布为离散的;其他情况可以看作随机分布。 3、实验准备 3.1实验环境 本实验在Windows 7的操作系统环境中进行,使用ArcGis 9.3软件。 3.2实验数据 此次实习提供的数据为以湖北省为目标区域的bount.dbf 文件。.dbf 数据中包括第一产业增加值,第二产业增加值万元,小学在校学生数,医院、卫生院床位数,乡村人口万人,油料产量,城乡居民储蓄存款余额,棉花产量,地方财政一般预算收入,年末总人口(万人),粮食产量,普通中学在校生数,肉类总产量,规模以上工业总产值现价(万元)等属性,作为分析的对象。

空间分析实习报告

空间分析实习报告 学院遥感信息工程学院班级 学号 姓名 日期

一、实习内容简介 1.实验目的: (1)通过实习了解ArcGIS的发展,以及10.1系列软件的构成体系 (2)熟练掌握ArcMap的基本操作及应用 (3)了解及应用ArcGIS的分析功能模块ArcToolbox (4)加深对地理信息系统的了解 2.实验内容: 首先是对ArcGIS有初步的了解。了解ArcGIS的发展,以及10.1系列软件的构成体系,了解桌面产品部分ArcMap、ArcCatalog和ArcToolbox的相关基础知识。 实习一是栅格数据空间分析,ArcGIS软件的Spatial Analyst模块提供了强大的空间分析工具,可以帮助用户解决各种空间分析问题。利用老师所给的数据可以创建数据(如山体阴影),识别数据集之间的空间关系,确定适宜地址,最后寻找一个区域的最佳路径。 实习二是矢量数据空间分析,ArcToolbox软件中的Analysis Tools和Network Analyst Tools提供了强大的矢量数据处理与分析工具,可以帮助用户解决各种空间分析问题。利用老师所给的数据可以通过缓冲区分析得到矢量面数据,通过与其它矢量数据的叠置分析、临近分析来辅助选址决策过程;可以构建道路平面网络模型,进而通过网络分析探索最优路径,从而服务于公交选线、智能导航等领域。 实习三是三维空间分析,学会用ArcCatalog查找、预览三维数据;在ArcScene中添加数据;查看数据的三维属性;从二维要素与表面中创建新的三维要素;从点数据源中创建新的栅格表面;从现有要素数据中创建TIN表面。 实习四是空间数据统计分析,利用地统计分析模块,你可以根据一个点要素层中已测定采样点、栅格层或者利用多边形质心,轻而易举地生成一个连续表面。这些采样点的值可以是海拔高度、地下水位的深度或者污染值的浓度等。当与ArcMap一起使用时,地统计分析模块提供了一整套创建表面的工具,这些表面能够用来可视化、分析及理解各种空间现象。 实习五是空间分析建模,空间分析建模就是运用GIS空间分析方法建立数学模型的过程。按照建模的目的,可分为以特征为主的描述模型(descriptive model)和提供辅助决策信息和解决方案为目的的过程模型(process model)两类。本次实习主要是通过使用ArcGIS的模型生成器(Model Builder)来建立模型,从而处理涉及到许多步骤的空间分析问题。 二、实习成果及分析 实习一: 练习1:显示和浏览空间数据。利用ArcMap和空间分析模块显示和浏览数据。添加和显示各类空间数据集、在地图上高亮显示数值、查询指定位置的属性值、分析一张直方图和创建一幅山体阴影图。

上机七 空间数据的准确度和质量

上机七空间数据的准确度和质量 一、目的与任务 1. 熟悉并掌握ArcGIS环境下基本编辑工具的使用。 2. 熟悉并掌握利用拓扑规则进行数据编辑的基本操作。 二、实验准备 1. 人员组织:以班为单位由教师进行操作上的讲解演示。 2. 仪器资料:计算机、多媒体、已安装的ArcGIS软件、上机实验指导书。 3. 数据:包含扫描的土壤界线的TIFF文件hoytmtn.tif,rect_hoytmtn.tif,spot-pan.bil和road.shp。 三、内容与方法 本章有4个习作。习作1用基本编辑工具对Shapefile文件进行编辑。习作2运用地图拓扑和集聚容差对两个Shapefile的数字化错误进行修正。习作3和4运用拓扑规则:习作3修正悬挂弧段,习作4修正轮廓边界线。 习作1:编辑一个Shapefile文件 所需数据:editmap2.shp和editmap3.shp。 习作1包括三个基本操作:合并多边形、分割多边形和整形多边形边界。你将对editmap2.shp进行编辑,而editmap3.shp用来说明编辑后的editmap2.shp 有何变化。 1.启动ArcCatalog连接到chap7数据。启动ArcMap,重命名数据帧为Task1。 将editmap2.shp和editmap3.shp添加到Task1。以editmap3.shp为参照编辑

editmap2.shp(二者用不同的外框表示)。在editmap2.shp的快捷菜单中选择Properties,在Symbology标签中,将symbol改为Hollow,将Outline Color 设为黑色。在Labels标签,勾选label features in this layer,并选择LANDED_ID为标识字段。然后在目录表中,单击editmap3.shp的符号,选择为Hollow,Outline Color设为红色。右击editmap2,指向Selection(选择),单击Make This The Only Selectable Layer(将此图层设为唯一可选图层)。 2.检查编辑工具条是否被选中。单击Editor下拉箭头,选择Start Editing。 editmap2高亮显示在Create Features窗口。关闭窗口。第一步,合并编号为74和75的多边形:单击Editor Toolbar上的Edit工具,在75号多边形内单击左键,按下Shift键,单击74号多边形。两个多边形以青色高亮显示。单击Editor下拉箭头,选择Merge(合并)。在出现的对话框中,选择最上面的一个要素,单击OK。多边形74、75合并成一个多边形,标记为75。 3.第二个操作是分割71好多边形。放大图层至多边形71包含在视窗中。单 击Edit工具,用它单击多边形内部选中71号多边形。单击Editor Toolbar 上的Cut Polygon工具(裁剪面工具)。要分割多边形时,分割线必须横穿多边形边界。在你准备开始绘制分割线之处,单击鼠标左键,单击组成分割线的每一个节点,在终节点双击鼠标。多边形71被分成两部分,每个多边形都标记为71。 4.第三个操作,是把73号多边形的矩形南边向下拉伸,以改变其形状。因 为多边形73和59有公共边界,需要使用地图拓扑修改边界。单击Editor

实验4-1 GIS空间分析(空间分析基本操作)

实验4-1、空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、 栅格重分类(Raster Reclassify)、 栅格计算-查询符合条件的栅格(Raster Calculator)、 面积制表(Tabulate Area)、 分区统计(Zonal Statistic)、 缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、 栅格单元统计(Cell Statistic)、 邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分 。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS 所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。 空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同, 空间分析的步骤会有所不同。通常,所有 的空间分析都涉及以下的基本步骤,具体 在某个分析中,可以作相应的变化。 空间分析的基本步骤: a) 确定问题并建立分析的目标和要满足 的条件 b) 针对空间问题选择合适的分析工具 c) 准备空间操作中要用到的数据。 d) 定制一个分析计划然后执行分析操作。 e) 显示并评价分析结果

空间统计分析实验报告

空间统计分析实验报告 一、空间点格局的识别 1、平均最邻近分析 平均最邻近距离指点间最邻近距离均值。该分析方法通过比较计算最邻近点对的平均距离与随机分布模式中最邻近点对的平均距离,来判断其空间格局,分析结果如图1所示。 图1 平均最邻近分析结果图最邻近比率小于1,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0

计算结果共有5个参数,平均观测距离,预期平均距离,最邻近比率,Z 得分,P值。 P值就是概率值,它表示观测到的空间模式是由某随机过程创建而成的概率,P 值越小,也就是观测到的空间模式是随机空间模式的可能性越小,也就是我们越可以拒绝开始的零假设。最邻近比率值表示要素是否有聚集分布的趋势,对于趋势如何,要根据Z值和P值来判断。 本实验中的最邻近比率小于1 ,聚集分布,Z值为-7.007176,P值为0,即这种情况是随机分布的概率为0,该结果说明省详细居民点的分布是聚集分布的,不存在随机分布。 2、多距离空间聚类分析 基于Ripley's K 函数的多距离空间聚类分析工具是另外一种分析事件点数据的空间模式的方法。该方法不同于此工具集中其他方法(空间自相关和热点分析)的特征是可汇总一定距离围的空间相关性(要素聚类或要素扩散)。 本实验中第一次将距离段数设为10,距离增量设为1,第二次将距离段数设为5,距离增量同样为1,得到如图2和图3所示的结果。 从图中可以看出,小于3千米的距离,观测值大于预测值,居民点聚集,大于3千米,观测值小于预测值,居民点离散。且聚集具有统计意义上的聚集,离散并未具有统计意义上的显著性。 图2 K函数聚类分析结果1

空间数据与数据质量

第四章空间数据与数据质量 空间数据是对现实世界对象(地理特征)的空间信息和专题属性信息描述,它具有诸如数据量巨大,结构复杂多样、操作是计算密集型的,具有自相关性等特征。空间数据是地理信息系统不可缺少的组成部分,其质量在很大程度上影响和制约着地理信息系统的可用性,为地理信息系统用户提供满足质量要求的空间数据是地理信息系统建设的关键任务之一。 4.1空间数据 4.1.1空间数据的来源 地理信息系统的数据源是指建立地理信息系统数据库所需要的各种类型数据的来源。地理信息系统的数据源是多种多样的,并随系统功能的不同而不同,通常包括以下几种: (1)地图数据:各种类型的地图是GIS最主要的数据源,因为地图是地理数据的传统描述形式,是具有共同参考坐标系统的点、线、面的二维平面形式的表示,内容丰富,图上实体间的空间关系直观,而且实体的类别或属性可以用各种不同的符号加以识别和表示。 (2)遥感数据:遥感数据是GIS中一个极其重要的信息源。通过遥感影象可以快速、准确地获得大面积的、综合的各种专题信息,航天遥感影象还可以取得周期性的资料,这些都为GIS提供了丰富的信息。 (3)测量数据:测量数据主要指使用大地测量、GPS、城市测量、摄影测量和其他一些测量方法直接量测所得到的测量对象的空间位置信息。各种实测数据特别是一些GPS点位数据、地籍测量数据常常是GIS的一个很准确和很现势的资料。(4)国民经济的各种统计数据常常也是GIS的数据源。如人口数量、人口构成、国民生产总值等等。各种文字报告和立法文件在一些管理类的GIS系统中,有很大的应用,如在城市规划管理信息系统中,各种城市管理法规及规划报告在规划管理工作中起着很大的作用。 4.1.2空间数据的基本特征 地理数据一般具有三个基本特征:属性特征(非定位数据),描述空间对象的特性,即是什么,如对象的类别、等级、名称、数量等。空间特征(定位数据):描述空间对象的地理位置以及相互关系,又称几何特征和拓扑特征,前者用经纬度、坐标表示,后者如交通学院与电力学院相邻等。时间特征(时间尺度):指现象或物体随时间的变化,其变化的周期有超短期的、短期的、中期的、长期的

GIS空间分析复习提纲及答案

空间分析复习提纲 一、基本概念(要求:基本掌握其原理及含义,能做名词解释) 1、空间分析:是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取和传输空间信息。 2、空间数据模型:以计算机能够接受和处理的数据形式,为了反映空间实体的某些结构特性和行为功能,按一定的方案建立起来的数据逻辑组织方式,是对现实世界的抽象表达。分为概念模型、逻辑模型、物理模型。 3、叠置分析:是指在同一地区、同一比例尺、同一数学基础、不同信息表达的两组或多组专题要素的图形或数据文件进行叠加,根据各类要素与多边形边界的交点或多边形属性建立多重属性组合的新图层,并对那些结构和属性上既互相重叠,又互相联系的多种现象要素进行综合分析和评价;或者对反映不同时期同一地理现象的多边形图形进行多时相系列分析,从而深入揭示各种现象要素的内在联系及其发展规律的一种空间分析方法。 4、网络分析:网络分析是通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,对网络结构及其资源等的优化问题进行研究的一种空间分析方法。 5、缓冲区分析:即根据分析对象的点、线、面实体,自动建立它们周围一定距离的带状区,用以识别这些实体或主体对邻近对象的辐射范围或影响度,以便为某项分析或决策提供依据。其中包括点缓冲区、线缓冲区、面缓冲区等。 6、最佳路径分析:也称最优路径分析,以最短路径分析为主,一直是计算机科学、运筹学、交通工程学、地理信息科学等学科的研究热点。这里“最佳”包含很多含义,不仅指一般地理意义上的距离最短,还可以是成本最少、耗费时间最短、资源流量(容量)最大、线路利用率最高等标准。 7、空间插值:空间插值是指在为采样点估计一个变量值的过程,常用于将离散点的测量数据转换为连续的数据曲面,它包括内插和外推两种算法。,前者是通过已知点的数据计算同一区域内其他未知点的数据,后者则是通过已知区域的数据,求未知区域的数据。 8、空间量算:即空间量测与计算,是指对GIS数据库中各种空间目标的基本参数进行量算与分析,如空间目标的位置、距离、周长、面积、体积、曲率、空间形态以及空间分布等,空间量算是GIS获取地理空间信息的基本手段,所获得的基本空间参数是进行复杂空间分析、模拟与决策制定的基础。 9、克里金插值法:克里金插值法是空间统计分析方法的重要内容之一,它是建立在半变异函数理论分析基础上,对有限区域内的区域变化量取值进行无偏最优估计的一种方法,不仅考虑了待估点与参估点之间的空间相关性,还考虑了各参估点间的空间相关性,根据样本空间位置不同、样本间相关程度的不同,对每个参估点赋予不同的权,进行滑动加权平均,以估计待估点的属性值。 二、分析类(要求:重点掌握其原理及含义,能结合本专业研究方向做比较详细的阐述) 1、空间数据模型的分类? 答:分为三类: ①场模型:用于表述二维或三维空间中被看作是连续变化的现象; ②要素模型:有时也称对象模型,用于描述各种空间地物; ③网络模型:一种某一数据记录可与任意其他多个数据记录建立联系的有向图结构的数据模型,可 以模拟现实世界中的各种网络。

空间数据分析-什么是空间统计

空间统计简介 1.空间统计经典案例 最早应用空间统计分析思想可以追溯150多年前一次重大的公共卫生事件,1854年英国伦敦霍乱大流行。在这次事件中,John Snow博士利用基于地图的空间分析原理,将死亡病例标注在伦敦地图上,同时还将水井的信息也标注在地图上,通过相关分析,最后将污染源锁定在城中心的一个水井的抽水机上。在他的建议下市政府将该抽水机停用,此后霍乱大幅度下降,并得到有效的控制。John Snow利用空间分析思想控制疫情这件事具有重要的里程碑意义,它被看成了空间统计分析和流行病学两个学科的共同起源;但是此后相当长的一段时间内由于缺乏刻画数据的空间相关性和异质性的方法,人们在分析空间属性的数据时,往往把所涉及的数据自身空间效应作为噪声或者误差来处理,这种缺乏对空间自相关和异质性的刻画,限制了以地图为基础的空间属性数据在公共卫生领域中应用的深入研究。直到1950年Moran首次提出空间自相关测度来研究二维或更高维空间随机分布的现象,1951年南非学者Krige提出了空间统计学萌芽思想,后经法国数学家Matheron完善,于1963年和1967年提出了地统计学和克里金技术。1973年, Cliff和Ord发表了空间自相关(Spatial Autocorrelation)的分析方法,1981年出版了Spatial Process:Model and Application专著,形成了空间统计理论体系,以及Getis’G和Lisa提出的空间异质性的局部统计使空间统计理论日趋成熟[1][2]。近年来随着空间分析技术以及空间分析软件(如GIS、Geoda、SaTScan、Winbugs等)的迅速发展,与疾病分布有关的空间统计分析也得以较快发展。 2.什么是空间统计 空间统计具有明显的多学科交叉特征,其显著特点是思想多源、方法多样、技术复杂,并随着相关学科如计算机软硬件技术的发展而发展。空间统计分析是以地理实体为研究对象,以空间统计模型为工具,以地理实体空间相关性和空间变异性为出发点,来分析地理对象空间格局、空间关系、时空变化规律,进而揭示其成因的一门新科学。经典统计学与空间统计学的区别与联系归纳如表错误!文档中没有指定样式的文字。-1。 表错误!文档中没有指定样式的文字。-1经典统计学与空间统计学的区别与联 系

(完整word版)GIS空间分析与建模期末复习总结

空间分析与建模复习 名词解释: 空间分析:采用逻辑运算、数理统计和代数运算等数学方法,对空间目标的位置、形态、分布及空间关系进行描述、分析和建模,以提取和挖掘地理空间目标的隐含信息为 目标,并进一步辅助地理问题求解的空间决策支持技术。 空间数据结构:是对空间数据的合理组织,是适合于计算机系统存储、管理和处理地图图形的逻辑结构,是地理实体的空间排列方式和相互关系的抽象描述与表达。 空间量测:对GIS数据库中各种空间目标的基本参数进行量算与分析, 元数据:描述数据及其环境的数据。 空间元数据:关于地理空间数据和相关信息的描述性信息。 空间尺度:数据表达的空间范围的相对大小以及地理系统中各部分规模的大小 尺度转换:信息在不同层次水平尺度范围之间的变化,将某一尺度上所获得的信息和知识扩展或收缩到其他尺度上,从而实现不同尺度之间辨别、推断、预测或演绎的跨越。 地图投影:将地球椭球面上的点映射到平面上的方法,称为地图投影。 地图代数:作用于不同数据层面上的基于数学运算的叠加运算 重分类:将属性数据的类别合并或转换成新类,即对原来数据中的多种属性类型按照一定的原则进行重新分类 滤波运算:通过一移动的窗口,对整个栅格数据进行过滤处理,将窗口最中央的像元的新值定义为窗口中像元值的加权平均值 邻近度:是定性描述空间目标距离关系的重要物理量之一,表示地理空间中两个目标地物距离相近的程度。缓冲区分析、泰森多边形分析。 缓冲区:是指为了识别某一地理实体或空间物体对其周围地物的影响度而在其周围建立的具有一定宽度的带状区域。 缓冲区分析:对一组或一类地物按缓冲的距离条件,建立缓冲区多边形,然后将这一图层与需要进行缓冲区分析的图层进行叠加分析,得到所需结果的一种空间分析方法 泰森多边形:所有点连成三角形,作三角形各边的垂直平分线,每个点周围的若干垂直平分线便围成的一个多边形 网络分析:是通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,对网络结构及其资源等的优化问题进行研究的一种空间分析方法。(理论基础:计算机图论和运筹学) 自相关:空间统计分析所研究的区域中的所有的值都是非独立的,相互之间存在相关性。在空间和时间范畴内,这种相关性被称为自相关。

数据质量的检查与控制

数据质量检查与质量控制 要想清楚并深层次的了解数据质量检查与质量控制的原理,首先应该知道数据质量的基本概念以及数据误差的来源。因为在某些情况下,数据质量问题在很大程度上可以看作是数据误差问题。下面我就详细的为大家介绍数据质量的基本概念和误差来源及其分析,并就其误差,我们再结合相应的检查方法进行精度分析的探讨。 一、数据质量的基本概念 1、准确性(Accuracy) 即一个记录值(测量或观察值)与它的真实值之间的接近程度。这个概念是相当抽象的,似乎人们已经知道存在这样的事实。在实际中,测量的知识可能依赖于测量的类型和比例尺。一般而言,单个的观察或测量的准确性的估价仅仅是通过与可获得的最准确的测量或公认的分类进行比较。空间数据的准确性经常是根据所指的位置、拓扑或非空间属性来分类的。它可用误差(Error)来衡量。 2、精度(Precision) 即对现象描述的详细程度。如对同样的两点,精度低的数据并不一定准确度也低。精度要求测量能以最好的准确性来记录,但是这可能误导提供了较大的精度,因为超出一个测量仪器的已知准确度的数字在效率上是冗于的。因此,如果手工操作的数字化板所返回的坐标不可能依赖于比0.1mm还要准确的一个“真正的”数值,那么就不存在任何的点,在十分之一的地方是以mm表示的。 3、空间分辨率(Spatial Resolution) 分辨率是两个可测量数值之间最小的可辩识的差异。那么空间分辨率可以看作记录变化的最小距离。在一张用肉眼可读的地图上,假设一条线用来记录一个边界,分辨率通常由最小线的宽度来确定。地图上的线很少以小于0.1mm的宽度来画。在一个图形扫描仪中最细的物理分辨率从理论上讲是由设施的像元之间的分离来确定的。在一个激光打印机上这是一英寸的300分之一,而且在高质量的激光扫描仪上,这会细化十倍。如果没有放大,最细的激光扫描仪的线是看不到的,尽管这依赖于背景颜色的对照。因此,在人的视觉分辨率和设备物理分辨率之间存在着一个差异。一个相似的区别可以存在于两个最小距离之间,即当人操作者操作数字化仪时所区别的最小距离和数字化仪硬件可以不断地报告的最小距离。 4、比例尺(Scale) 比例尺是地图上一个记录的距离和它所表现的“真实世界的”距离之间的一个比例。地图的比例尺将决定地图上一条线的宽度所表现的地面的距离。例如,在一个1:10000比例尺的地图上,一条0.5mm宽度的线对应着5m的地面距离。如果这是线的最小的宽度,那么就不可能表示小于5m的现象。 5、误差(Error) 定义出一个所记录的测量和它的事实之间的准确性以后,很明显对于大多数目的而言,它的数值是不准确的。误差研究包括:位置误差,即点的位置的误差、线的位置的误差和多边形的位置的误差;属性误差;位置和属性误差之间的关系。

实验四 空间数据查询与分析(ArcGIS)

实验四空间数据查询与分析 一、实习目的 1.掌握空间数据查询与分析的原理与方法。 2.掌握空间数据查询与分析的内容与技术。 3.结合实际,掌握利用叠加、缓冲和网络分析方法解决地学空间分析问题的 能力。 二、实验准备 预备知识 空间数据的查询与分析是GIS的基本操作功能,数据探查包含属性数据查询,空间数据查询,地理可视化。空间数据分析包括矢量数据分析,如缓冲、叠加、地图操作等;栅格数据分析,如局域、领域等分析;地形制图和分析;空间插值;基于区域的分析;网络分析等。空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分。空间数据是指以地球 表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。有两种基本方法来表示空间数据:一是栅格表达;一是矢量表达。两种数据格式间可以进行转换。 实验数据 Data4数据或学生自己准备于该实验相关的数据 三、实验内容及步骤 本实验方法是学生自主实验,实习手册只简绍涉及到空间查询与分析部分软件的操作,具体试验内容采取学生自问自答的方式进行,即学生根据所学知识,自己设计有关空间查询与分析的实际问题,并通过实验来回答问题。要求至少列举一个空间缓冲分析的案例,一个网络分析的案例,然后通过实验来分析解决。 1、空间查询 1)利用图形查询属性 直接点击图形查询属性(Identify)

选取Identify 工具。用这个工具点取要素(点、线、面状)时,弹出Identify Result(查询结果)对话框,显示该要素的属性值。如下图: 2)框选图形查询属性(Select feature) ●然后点击工具栏上的Select feature图标点取想要选择的要素,被选 择的要素颜色改变,在快捷菜单上选择Open Attribute Table ,可以看到属性表被选择的要素的属性记录也改变了颜色。如下图: ●可以按住shift键,对地图上的多个目标要素进行选择, ●可以对工具栏的的下拉菜单或在图形区右击显示的菜单上选

空间统计学

Statistics for spatial data; Noel A.C. Cressie, Wiley& Sons,1991 空间统计学 0 引言 0.1定义 空间统计学由于许多学科的需求发展迅速。 空间统计学涉及的领域:生物学、空间经济学、遥感科学、图像处理、环境与地球科学( 大地测量、地球物理、空间物理、大气科学等等)、生态学、地理学、流行病学、农业经济学、林学及其它学科 空间过程或随机场定义: {}(),Z s s =∈Z S (1) 式中S 是空间位置s 的集合,可以是预先确定的,也可以随机的,2d d ?=S R 是二维欧 氏空间;()Z s 取值于状态空E 。 空时过程:如考虑时间,则 {} (,),,(,)d Z s t s s t + =∈∈?Z S R R 式中S 是空间位置s 的集合,可以是预先确定的,也可以随机的;t + ∈R ;()Z s 取值于状态空E 。 注意:上述为标量值过程,但也可扩展为向量过程。 0.2 空间数据类型 0.2.1 连续型地学统计数据(Geostatistical data ) 此时, 2d d ?=S R 是连续欧氏子空间,即连续点的集合,随机场{} (),Z s s ∈S 在实值空间E 上的n 个固定位置n s s s ,,,21 取值。如图为连续型空间数据

(a )降雨量分布图;(b) 土壤孔穴分布图。(符号大小正比于属性变量值) Geostatistical (spatial) data is usually processed by the geostatistical method that has been set out in considerable detail since Krige published his important paper. In summary, this method consists of an exploratory spatial data analysis, positing a model of (non-stationary) mean plus ( intrinsically stationary) error, non-parametrically estimating variogram or covariogram, fitting a valid model to the estimate, and kriging ( predicting )unobserved parts from the available data. This last step yields not only a predictor, but a mean squared prediction error. 0.2.2 离散型格网数据(Lattice data ) 此时, 2d d ?=S R 是固定的离散空间点,非随机点集合,随机场{}(),Z s s ∈S 在 2d d ?=S R 的空间点采样。空间点可以是给定邻接图关系、表示成网状的地理区域, 如图2-a 。()Z s 是在s 观测的某种感兴趣的值状态空间可以是、也可以不是实值的,比如GDP 、工业产值、农业产值、房产价格;在遥感图像分析领域,空间点就是规则的像元(pixel)集合图2-b 。 Goals for these types of data includes constructing and analyzing explicative models, quantifying spatial correlations, classification, segmentation, prediction and image restoration

相关主题
文本预览
相关文档 最新文档