当前位置:文档之家› 函数与动点综合问题(函数)压轴题(含解析)

函数与动点综合问题(函数)压轴题(含解析)

函数与动点综合问题(函数)压轴题(含解析)
函数与动点综合问题(函数)压轴题(含解析)

2019-2020全国各地中考数学压轴大题函数综合

函数与动点综合问题

1.(2019?丹东)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于

点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.

(1)求此抛物线的解析式.

(2)求点N的坐标.

(3)过点A的直线与抛物线交于点F,当tan∠F AC=时,求点F的坐标.

(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t (0≤t≤),请直接写出S与t的函数关系式.

解:(1)直线y=﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),

则c=2,抛物线表达式为:y=﹣x2+bx+2,

将点C坐标代入上式并解得:b=,

故抛物线的表达式为:y=﹣x2+x+2…①;

(2)抛物线的对称轴为:x=,

点N的横坐标为:+=5,

故点N的坐标为(5,﹣3);

(3)∵tan∠ACO==tan∠F AC=,

即∠ACO=∠F AC,

①当点F在直线AC下方时,

设直线AF交x轴于点R,

∵∠ACO=∠F AC,则AR=CR,

设点R(r,0),则r2+4=(r﹣4)2,解得:r=,

即点R的坐标为:(,0),

将点R、A的坐标代入一次函数表达式:y=mx+n得:,

解得:,

故直线AR的表达式为:y=﹣x+2…②,

联立①②并解得:x=,故点F(,﹣);

②当点F在直线AC的上方时,

∵∠ACO=∠F′AC,∴AF′∥x轴,

则点F′(3,2);

综上,点F的坐标为:(3,2)或(,﹣);

(4)如图2,设∠ACO=α,则tanα==,则sinα=,cosα=;

①当0≤t≤时(左侧图),

设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,

则∠DST=∠ACO=α,过点T作TL⊥KH,

则LT=HH′=t,∠LTD=∠ACO=α,

则DT====t,DS=,

S=S△DST=DT×DS=t2;

②当<t≤时(右侧图),

同理可得:S=S梯形DGS′T′=×DG×(GS′+DT′)=3+(+﹣)=t﹣;

③当<t≤时,

同理可得:S=t+;

综上,S=.

2.(2019?葫芦岛)如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,

C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P 不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;

(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;

(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.

解:(1)直线y=﹣x+4中,当x=0时,y=4 ∴C(0,4)

当y=﹣x+4=0时,解得:x=4

∴B(4,0)

∵抛物线y=﹣x2+bx+c经过B,C两点

∴解得:

∴抛物线解析式为y=﹣x2+3x+4

(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC

∴∠OBC=∠OCB=45°

∵ME⊥x轴于点E,PB t

∴∠BEP=90°

∴Rt△BEP中,sin∠PBE

∴BE=PE PB=t

∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t ∵点M在抛物线上

∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t

∴MP=y M﹣y P=﹣t2+4t

∵PN⊥y轴于点N

∴∠PNO=∠NOE=∠PEO=90°

∴四边形ONPE是矩形

∴NC=OC﹣ON=4﹣t

∵MP∥CN

∴△MPQ∽△NCQ

解得:t1,t2=4(点P不与点C重合,故舍去)

∴t的值为

(3)∵∠PEB=90°,BE=PE

∴∠BPE=∠PBE=45°

∴∠MPD=∠BPE=45°

①若MD=MP,则∠MDP=∠MPD=45°

∴∠DMP=90°,即DM∥x轴,与题意矛盾

②若DM=DP,则∠DMP=∠MPD=45°

∵∠AEM=90°

∴AE=ME

∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4

∴A(﹣1,0)

∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t

∴AE=4﹣t﹣(﹣1)=5﹣t

∴5﹣t=﹣t2+5t

解得:t1=1,t2=5(0<t<4,舍去)

③若MP=DP,则∠PMD=∠PDM

如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G ∴∠CFD=∠PMD=∠PDM=∠CDF

∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m

∴解得:

∴直线AM:y=tx+t

∴F(0,t)

∴CF=OC﹣OF=4﹣t

∵tx+t=﹣x+4,解得:x

∴DG=x D

∵∠CGD=90°,∠DCG=45°

∴CD DG

∴4﹣t

解得:t 1

综上所述,当△PDM是等腰三角形时,t=1或t1.

3.(2019?辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛

物线y=﹣x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.

(1)求抛物线解析式;

(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?

(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.

解:(1)将点C、E的坐标代入二次函数表达式得:,解得:,

故抛物线的解析式为:y=﹣x2+2x+3,

则点A(1,4);

(2)将点A、C的坐标代入一次函数表达式并解得:

直线AC的表达式为:y=﹣2x+6,

点P(1,4﹣t),则点D(,4﹣t),设点Q(,4),

S△ACQ DQ×BC t2+t,

∵0,故S△ACQ有最大值,当t=2时,其最大值为1;

(3)设点P(1,m),点M(x,y),

①当EC是菱形一条边时,

当点M在点P右方时,

点E向右平移3个单位、向下平移3个单位得到C,

则点P向右平移3个单位、向下平移3个单位得到M,

则1+3=x,m﹣3=y,

而MP=EP得:1+(m﹣3)2=(x﹣1)2+(y﹣m)2,

解得:y=m﹣3,

故点M(4,);

当点M在点P左方时,

同理可得:点M(﹣2,3);

②当EC是菱形一对角线时,

则EC中点即为PM中点,

则x+1=3,y+m=3,

而PE=PC,即1+(m﹣3)2=4+m2,

解得:m=1,

故x=2,y=3﹣m=3﹣1=2,

故点M(2,2);

综上,点M(4,)或(﹣2,3)或M(2,2).

4.(2019?烟台)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,

过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y(x>0)经过点D,连接MD,BD.

(1)求抛物线的表达式;

(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;

(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)

解:(1)C(0,3)

∵CD⊥y,

∴D点纵坐标是3,

∵D在y上,

∴D(2,3),

将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,

∴a=﹣1,b=2,

∴y=﹣x2+2x+3;

(2)M(1,4),B(3,0),

作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,

则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;

∴M'(﹣1,4),D'(2,﹣3),

∴M'D'直线的解析式为y x

∴N(,0),F(0,);

(3)设P(0,t),N(r,t),

作△PBD的外接圆N,当⊙N与y轴相切时此时圆心N到BD的距离最小,圆心角∠DNB最大,则,∠BPD 的度数最大;

∴PN=ND,

∴r,

∴t2﹣6t﹣4r+13=0,

易求BD的中点为(,),

直线BD的解析式为y=﹣3x+9,

∴BD的中垂线解析式y x,

N在中垂线上,∴t r,

∴t2﹣18t+21=0,

∴t=9+2或t=9﹣2,

∵圆N与y轴相切,

∴圆心N在D点下方,

∴0<t<3,

∴t=9﹣2.

5.(2019?桂林)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣2,0)和B(1,0),与y轴交于点C.

(1)求抛物线的表达式;

(2)作射线AC,将射线AC绕点A顺时针旋转90°交抛物线于另一点D,在射线AD上是否存在一点H,使△CHB的周长最小.若存在,求出点H的坐标;若不存在,请说明理由;

(3)在(2)的条件下,点Q为抛物线的顶点,点P为射线AD上的一个动点,且点P的横坐标为t,过点P作x轴的垂线l,垂足为E,点P从点A出发沿AD方向运动,直线l随之运动,当﹣2<t<1时,直线l将四边形ABCQ分割成左右两部分,设在直线l左侧部分的面积为S,求S关于t的函数表达式.

解:(1)抛物线与x轴交于点A(﹣2,0)和B(1,0)

∴交点式为y=﹣(x+2)(x﹣1)=﹣(x2+x﹣2)

∴抛物线的表示式为y=﹣x2﹣x+2

(2)在射线AD上存在一点H,使△CHB的周长最小.

如图1,延长CA到C',使AC'=AC,连接BC',BC'与AD交点即为满足条件的点H ∵x=0时,y=﹣x2﹣x+2=2

∴C(0,2)

∴OA=OC=2

∴∠CAO=45°,直线AC解析式为y=x+2

∵射线AC绕点A顺时针旋转90°得射线AD

∴∠CAD=90°

∴∠OAD=∠CAD﹣∠CAO=45°

∴直线AD解析式为y=﹣x﹣2

∵AC'=AC,AD⊥CC'

∴C'(﹣4,﹣2),AD垂直平分CC'

∴CH=C'H

∴当C'、H、B在同一直线上时,C△CHB=CH+BH+BC=C'H+BH+BC=BC'+BC最小设直线BC'解析式为y=kx+a

∴解得:

∴直线BC':y=x﹣

∵解得:

∴点H坐标为(﹣,﹣)

(3)∵y=﹣x2﹣x+2=﹣(x+)2+

∴抛物线顶点Q(﹣,)

①当﹣2<t≤﹣时,如图2,直线l与线段AQ相交于点F

设直线AQ解析式为y=mx+n

∴解得:

∴直线AQ:y=x+3

∵点P横坐标为t,PF⊥x轴于点E

∴F(t,t+3)

∴AE=t﹣(﹣2)=t+2,FE=t+3

∴S=S△AEF=AE?EF=(t+2)(t+3)=t2+3t+3

②当﹣<t≤0时,如图3,直线l与线段QC相交于点G,过点Q作QM⊥x轴于M ∴AM=﹣﹣(﹣2)=,QM=

∴S△AQM=AM?QM=

设直线CQ解析式为y=qx+2

把点Q代入:﹣q+2=,解得:q=﹣

∴直线CQ:y=﹣x+2

∴G(t,﹣t+2)

∴EM=t﹣(﹣)=t+,GE=﹣t+2

∴S梯形MEGQ=(QM+GE)?ME=(﹣t+2)(t+)=﹣t2+2t+

∴S=S△AQM+S梯形MEGQ=+(﹣t2+2t+)=﹣t2+2t+

③当0<t<1时,如图4,直线l与线段BC相交于点N

设直线BC解析式为y=rx+2

把点B代入:r+2=0,解得:r=﹣2

∴直线BC:y=﹣2x+2

∴N(t,﹣2t+2)

∴BE=1﹣t,NE=﹣2t+2

∴S△BEN=BE?NE=(1﹣t)(﹣2t+2)=t2﹣2t+1

∵S梯形MOCQ=(QM+CO)?OM=×(+2)×=,S△BOC=BO?CO=×1×2=1

∴S=S△AQM+S梯形MOCQ+S△BOC﹣S△BEN=++1﹣(t2﹣2t+1)=﹣t2+2t+

综上所述,S=

6.(2019?天门)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B

(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q 从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);

(2)当PQ=3时,求t的值;

(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.

解:(1)过点P作PE⊥BC于点E,如图1所示.

当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6),∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,

∴PQ2=PE2+EQ2=62+|8﹣5t|2=25t2﹣80t+100,

∴y=25t2﹣80t+100(0≤t≤4).

故答案为:y=25t2﹣80t+100(0≤t≤4).

(2)当PQ=3时,25t2﹣80t+100=(3)2,

整理,得:5t2﹣16t+11=0,

解得:t1=1,t2=.

(3)经过点D的双曲线y=(k≠0)的k值不变.

连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.

∵OC=6,BC=8,

∴OB==10.

∵BQ∥OP,

∴△BDQ∽△ODP,

∴===,

∴OD=6.

∵CB∥OA,

∴∠DOF=∠OBC.

在Rt△OBC中,sin∠OBC===,cos∠OBC===,

∴OF=OD?cos∠OBC=6×=,DF=OD?sin∠OBC=6×=,

∴点D的坐标为(,),

∴经过点D的双曲线y=(k≠0)的k值为×=.

7.(2019?黄冈)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)

四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).

(1)求经过A、C、D三点的抛物线的解析式;

(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;

(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF 与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;

(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.

解:(1)设函数解析式为y=ax2+bx+c,

将点A(﹣2,2),C(0,2),D(2,0)代入解析式可得

∴,

∴y=﹣﹣x+2;

(2)∵△P AM≌△PBM,

∴P A=PB,MA=MB,

∴点P为AB的垂直平分线与抛物线的交点,

∵AB=2,

∴点P的纵坐标是1,

∴1=﹣﹣x+2,

∴x=﹣1+或x=﹣1﹣,

∴P(﹣1﹣,1)或P(﹣1+,1);

(3)CM=t﹣2,MG=CM=2t﹣4,

MD=4﹣(BC+CM)=4﹣(2+t﹣2)=4﹣t,

MF=MD=4﹣t,

∴BF=4﹣4+t=t,

∴S=(GM+BF)×MF=(2t﹣4+t)×(4﹣t)=﹣+8t﹣8=﹣(t﹣)2+;当t=时,S最大值为;

(4)设点Q(m,0),直线BC的解析式y=﹣x+2,

直线AQ的解析式y=﹣(x+2)+2,

∴K(0,),H(,),

∴OK2=,OH2=+,HK2=+,

①当OK=OH时,=+,

∴m2﹣4m﹣8=0,

∴m=2+2或m=2﹣2;

②当OH=HK时,+=+,

∴m2﹣8=0,

∴m=2或m=﹣2;

③当OK=HK时,=+,不成立;

综上所述:Q(2+2,0)或Q(2﹣2,0)或Q(2,0)或Q(﹣2,0);

8.(2019?巴中)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经

过B、C两点的直线为y=x+n.

①求抛物线的解析式.

②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以

每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.

③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC

于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.

解:①∵点B、C在直线为y=x+n上,

∴B(﹣n,0)、C(0,n),

∵点A(1,0)在抛物线上,

∴,

∴a=﹣1,b=6,

∴抛物线解析式:y=﹣x2+6x﹣5;

②由题意,得,

PB=4﹣t,BE=2t,

由①知,∠OBC=45°,

∴点P到BC的高h为BP sin45°=(4﹣t),

∴S△PBE=BE?h==,

当t=2时,△PBE的面积最大,最大值为2;

③由①知,BC所在直线为:y=x﹣5,

∴点A到直线BC的距离d=2,

过点N作x轴的垂线交直线BC于点P,交x轴于点H.

设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),

易证△PQN为等腰直角三角形,即NQ=PQ=2,

∴PN=4,

Ⅰ.NH+HP=4,

∴﹣m2+6m﹣5﹣(m﹣5)=4

解得m1=1,m2=4,

∵点A、M、N、Q为顶点的四边形是平行四边形,

∴m=4;

Ⅱ.NH+HP=4,

∴m﹣5﹣(﹣m2+6m﹣5)=4

解得m1=,m2=,

∵点A、M、N、Q为顶点的四边形是平行四边形,

m>5,

∴m=,

Ⅲ.NH﹣HP=4,

∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,

解得m1=,m2=,

∵点A、M、N、Q为顶点的四边形是平行四边形,

m<0,

∴m=,

综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.

2020年中考复习之提高篇——二次函数压轴题(包含答案)

2020年中考复习之提高篇——二次函数压轴题(含答案) 1.(2019抚顺)(12分)如图1,在平面直角坐标系中,一次函数334 y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ?和ACE ?相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点 (不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.

2(2019沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点. (1)求直线DE和抛物线的表达式; (2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF面积是7时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2√2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

3(2018年辽宁本溪).如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF 沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

中考数学二次函数-经典压轴题及答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E 113 +113 + 3)点Q的坐 标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1?x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=1 2 CD=CE.利 用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛 物线的解析式联立,得出方程组 223 33 y x x y x ?=-- ? =-+ ? ,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1?x2=﹣(m+1),

中考数学中二次函数压轴题分类总结

中考数学中二次函数压 轴题分类总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

二次函数的压轴题分类复习 一、抛物线关于三角形面积问题 例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-). (1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ??=4 5 ,若存在,求出P 点的坐标;若不存在,请说明理由; (3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围. 练习: 1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标; (2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求?BON 的面积的最大值,并求 出此时点N 的坐标; 2. 如图,已知抛物线42 12++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作 正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. y x O B N A M E F B y

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

中考数学二次函数压轴题(含答案)

2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

二次函数压轴题(含答案)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

二次函数压轴题解题技巧

图1 图 2 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2 -2x -8=0的两个根. (1)求这条抛物线的解析式;(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2 +bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

中考数学二次函数-经典压轴题及详细答案

-X 二次函数真题与模拟题分类汇编(难题易错题) 1.已知二次函数y = α√-2αχ + 3的最大值为4,且该抛物线与A 轴的交点为C ,顶点为 D ? (1) 求该二次函数的解析式及点C , D 的坐标: (2) 点P(ΛO)是X 轴上的动点, ① 求IPC - PDl 的最大值及对应的点P 的坐标: ② 设0(0,2/)是y 轴上的动点,若线段PQ 与函数y = a ?x ?1 -2a ?x ?+3的图像只有一个 公共 点,求f 的取值范围. 【答案】(i) y = -χ2+2x + 3, C 点坐标为(0,3),顶点D 的坐标为(1,4); (2)①最 _ 3 7 大值是J∑, P 的坐标为(一 3,0),②,的取值范围为U_3或才Qv3或心?? 2 2 【解析】 【分析】 孕=1,计算对称轴,即顶点坐标为(1, 4),再将两点代 2a 入列二元一次方程组求出解析式: (2)根据三角形的三边关系:可知P 、C 、D 三点共线时IPC-PDl 取得最大值,求出直线CD 与X 轴的交点坐标,就是此时点P 的坐标; —χ-+ 2Λ"+3, X n 0, , ,此函数是两个二次函数 —XJ — 2x + 3, X < 0. 的一部分,分三种情况进行计算:①当线段PQ 过点(0, 3 ),即点Q 与点C 重合时,两 图象有一个公共点,当线段PQ 过点(3, 0),即点P 与点(3, 0)重合时,两函数有两 个公共点,写出t 的取值:②线段PQ 与当函数y=a∣x∣2-2a∣×∣+c (x>0)时有一个公共点 时,求t 的值:③当线段PQ 过点 (-3, 0),即点P 与点(-3, 0)重合时,线段PQ 与当 函数y=a∣x∣2-2a∣x∣+c (×<0)时也有一个公共 点,则当t 冬3时,都满足条件;综合以上结 论,得出t 的取值. 【详解】 —2a (I) VX= ???y = ax'-ax+3的对称轴为X = 1? T y = ax 2 -ax + 3人最大值为4, ???抛物线过点(1,4). 得 a-2a+3 = 4, 解得a = -l. ???该二次函数的解析式为y = —X? + 2x + 3. C 点坐标为(0,3),顶点 D 的坐标为(1,4). (2) ①.? IPC-PDI≤CD, (1)先利用对称轴公式X= (3)先把函数中的绝对值化去,可知y = <

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

中考二次函数压轴试题分类汇编及答案(1)

中考二次函数压轴题分类汇编 一.极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用 二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x 1=﹣4,x 2 =2, ∴A(﹣4,0),S △ABC =ABOC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S △PBE =(2﹣x)2.

中考数学二次函数压轴题精编(含答案)

(2010湖北咸宁)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点, 与反比例函数k y x =的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .( 把你认为正确结论的序号都填上) (2010江苏徐州)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函 数y= x m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x m <0的解集(直接写出答案). 1. (2009遂宁)把二次函数34 12+--=x x y 用配方法化成()k h x a y +-=2 的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 2. (2009嘉兴)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ ) 3. (2009烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函 数a b c y x ++= 在同一坐标系内的图象大致为( ) 4. (2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( ) O y x 1 -1A x y O 1 -1 B x y O 1 -1 C x y O 1 -1 D 1- 1 O x y (第11题图) y x O y x O B . C . y x O A . y x O D . A B O x y (第21题) 2 1 2 3 -3 -1 -2 1 3 -3 -1 -2 y x D C A B O F E (第16题)

二次函数压轴题(经典版)

2016年10月26日二次函数压轴2 一.解答题(共30小题) 1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点. (1)求抛物线的解析式; (2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由. 2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的函数关系式及顶点D的坐标; (2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值. 3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E. (1)求抛物线的解析式; (2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标; (3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.

4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内 交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C. (1)求△AOD的面积; (2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标; (3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标. 5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2, 与y轴交于点C. (1)求抛物线L2的解析式; (2)判断△ABC的形状,并说明理由; (3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

中考数学二次函数-经典压轴题含详细答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H . (1)求该抛物线的解析式; (2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值; (3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式; ②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由. 【答案】(1)2 y x 2x 3=--+. (2)3210. (3)①2S m 4m 3=---. ②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】 (1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可. (2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可. (3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】 解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-. 又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称,

二次函数压轴题总结精华

二次函数常见压轴 y=x2-2x-3(以下几种分类的函数解析式就是这个) 和最小,差最大在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标 在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标 y B O C D A x 求面积最大连接AC,在第四象限找一点P,使得?ACP面积最大,求出P坐标 y 讨论直角三角连接AC,在对称轴上找一点P,使得?ACP为直角三角形,求出P坐标 或者在抛物线上求点△P,使ACP是以AC为直角边的直角三角形. B O C y D A x 讨论等腰三角连接AC,在对称轴上找一点P,使得?ACP B O A x 为等腰三角形,求出P坐标 C y D 讨论平行四边形1、点E在抛物线的对称轴上,点F 在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标B O A x C D

的 和最小差最大 如图所示,在平面直角坐标系 xOy 中,正方形 OABC 的边长为 2cm ,点 A 、C 分别在 y 轴的负半轴和 x 轴的正半 轴上,抛物线 y =ax 2+b x +c 经过点 A 、B 和 D (4, 2 3 ) . (1)求抛物线的解析式. (2)如果点 P 由点 A 出发沿 AB 边以 2cm /s 的速度向点 B 运动,同 时点 Q 由点 B 出发沿 BC 边以 1cm /s 的速度向点 C 运动 ,当其中一点到达终点时,另一点也随之停止运动. 设 S =PQ 2(cm 2) ①试求出 S 与运动时间 t 之间的函数关系式,并写出 t 的取值范围; ②当 S 取 5 4 时,在抛物线上是否存在点 R ,使得以 P 、B 、 (第 22 题) Q 、R 为顶点的四边形是平行四边形? 如果存在,求出 R 点的坐标; 如果不存在,请说明理由. (3)在抛物线的对称轴上求点 M ,使得 M 到 D 、A 的距离之差最大,求出点 M 的坐标. 如图 13,抛物线 y=ax 2+bx +c(a≠0) 顶点为(1,4),交 x 轴于 A 、B ,交 y 轴于 D ,其中 B 点的坐标为(3,0) (1)求抛物线的解析式 (2)如图 14,过点 A 的直线与抛物线交于点 E ,交 y 轴于点 F ,其中 E 点的横坐标为 2,若直线 PQ 为抛物线 的对称轴,点 G 为 PQ 上一动点,则 x 轴上是否存在一点 H ,使 D 、G 、F 、H 四点围成的四边形周长最小.若存 在,求出这个最小值及 G 、H 的坐标;若不存在,请说明理由. (3)如图 15,抛物线上是否存在一点 T ,过点 T 作 x 的垂线,垂足为 M ,过点 M 作直线 M N ∥BD ,交线段 AD 于点 N ,连接 △M D ,使 DNM ∽△BMD ,若存在,求出点 T 的坐标;若不存在,说明理由.

相关主题
文本预览
相关文档 最新文档