一种改进的联合交互式多模型概率数据关联算法
- 格式:pdf
- 大小:301.37 KB
- 文档页数:5
基于IMM-MHT算法的杂波环境多机动目标跟踪邵俊伟;同伟;单奇【摘要】针对杂波环境下多机动目标的跟踪问题,提出将交互多模型(IMM)算法与多假设跟踪(MHT)算法结合,并运用Murty算法和假设树修剪方法进行假设生成和假设管理,提高IMM-MHT算法的实用性.仿真结果表明,IMM-MHT算法具有较高的正确关联率和较好的跟踪稳定性,且与只使用单模型的MHT算法相比,具有更好的跟踪精度.【期刊名称】《舰船电子对抗》【年(卷),期】2014(037)002【总页数】5页(P87-90,93)【关键词】数据关联;多假设跟踪;交互多模型【作者】邵俊伟;同伟;单奇【作者单位】中国电子科技集团公司第38研究所,合肥230088;陆军驻中电集团38所军事代表室,合肥230088;中国电子科技集团公司第38研究所,合肥230088【正文语种】中文【中图分类】TP957.510 引言随着战场环境的日趋复杂以及目标机动性能的日益提升,如何在杂波环境下跟踪机动目标正成为雷达数据处理系统要应对的关键问题之一。
传统数据关联算法,如最近邻[1](NN)、概率数据关联[2](PDA)、联合概率数据关联[3](JPDA)等,以当前扫描周期内的量测为基础进行数据关联,若某一扫描周期内的关联结果与真实情况有较大差别,则之后的跟踪过程常会发生错误,甚至丢失目标。
多假设跟踪[4](MHT)的关联结果不仅取决于当前扫描周期内的量测数据,而且还与历史量测信息有关。
对不能确定的关联,会形成多种逻辑假设,并用后续的量测数据来解决这种不确定性。
在理想条件下,MHT是最优的数据关联算法,可以有效地解决杂波环境下的数据关联问题。
但是,MHT算法所需的计算和存储资源会随着量测数和跟踪步数的增长呈指数增加,若要实际应用,还需要有效的假设管理技术。
对机动目标,以单一的运动模型来刻画其运动过程,往往和实际情况有偏差,最终会由于模型失配导致跟踪误差增大甚至跟踪失败。
实验一Clementine12.0数据挖掘分析方法与应用一、[实验目的]熟悉Clementine12.0进行数据挖掘的基本操作方法与流程,对实际的问题能熟练利用Clementine12.0开展数据挖掘分析工作。
二、[知识要点]1、数据挖掘概念;2、数据挖掘流程;3、Clementine12.0进行数据挖掘的基本操作方法。
三、[实验内容与要求]1、熟悉Clementine12.0操作界面;2、理解工作流的模型构建方法;3、安装、运行Clementine12.0软件;4、构建挖掘流。
四、[实验条件]Clementine12.0软件。
五、[实验步骤]1、主要数据挖掘模式分析;2、数据挖掘流程分析;3、Clementine12.0下载与安装;4、Clementine12.0功能分析;5、Clementine12.0决策分析实例。
六、[思考与练习]1、Clementine12.0软件进行数据挖掘的主要特点是什么?2、利用Clementine12.0构建一个关联挖掘流(购物篮分析)。
实验部分一、Clementine简述Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。
1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台,Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。
强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。
同那些仅仅着重于模型的外在表现而忽略了数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比,Clementine其功能强大的数据挖掘算法,使数据挖掘贯穿业务流程的始终,在缩短投资回报周期的同时极大提高了投资回报率。
为了解决各种商务问题,企业需要以不同的方式来处理各种类型迥异的数据,相异的任务类型和数据类型就要求有不同的分析技术。
信息融合技术发展与应用信息融合或数据融合是指为完成决策和估计任务而利用计算机技术对按时序获得的若干传感器的观测信息在一定准则下加以自动分析、综合的信息处理过程。
近十几年来,多传感器信息融合技术获得了广泛应用。
采用信息融合技术对多源战场感知信息进行目标检测、关联/相关、组合,以获得精确的目标状态和完整的目标属性/身份估计,以及高层次的战场态势估计与威胁估计,从而实现未来战争中陆、海、空、天、电磁频谱全维战场感知。
通过信息融合技术可以扩展战场感知的时间和空间的覆盖范围,变单源探测为网络探测;能改进对战场目标的探测能力,提高目标的发现概率和识别水平;能提高合成信息的精度和可信度,支持对重要战场目标的联合火力打击;能产生和维持一致的联合战场态势,支持联合作战决策和方案制定;能提高威胁判定的实时性和准确度,支持战场预警;能进行战场感知信息共享,提高战场信息使用效率;能科学配置和控制探测/侦察平台和传感器,充分利用战场空间感知资源。
1 国外信息融合技术的发展美国国防部三军实验室理事联席会(JDL)的对信息融合技术的定义为:信息融合是一个对从单个和多个信息源获取的数据和信息进行关联、相关和综合,以获得精确的位置和身份估计,以及对态势和威胁及其重要程度进行全面及时评估的信息处理过程;该过程是对其估计、评估和额外信息源需求评价的一个持续精练(refinement)过程,同时也是信息处理过程不断自我修正的一个过程,以获得结果的改善。
后来,JDL将该定义修正为:信息融合是指对单个和多个传感器的信息和数据进行多层次、多方面的处理,包括:自动检测、关联、相关、估计和组合。
信息融合技术自1973年初次提出以后,经历了20世纪80年代初、90年代初和90年代末三次研究热潮。
各个领域的研究者们都对信息融合技术在所研究领域的应用展开了研究,取得了一大批研究成果,并总结出了行之有效的工程实现方法。
美国在该项技术的研究方面一直处于世界领先地位,1973年,在美国国防部资助开发的声纳信号理解系统中首次提出了数据融合技术,1988年,美国国防部把数据融合技术列为90年代重点研究开发的20项关键技术之一。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
飞行状态敏感的关联门调节算法赵菡; 诸葛晶晶; 林家骏【期刊名称】《《华东理工大学学报(自然科学版)》》【年(卷),期】2019(045)005【总页数】6页(P795-800)【关键词】飞行状态敏感; 关联门调节; 机动目标跟踪【作者】赵菡; 诸葛晶晶; 林家骏【作者单位】华东理工大学信息科学与工程学院上海 200237【正文语种】中文【中图分类】TP391杂波环境下机动目标跟踪的难点在于解决量测来源和目标运动状态的不确定性。
关联门用来判断量测点迹是否来自于目标的决策门限,为实际工程应用提供了一个有效工具[1-2]。
恰当的关联门设置有助于减少错误的数据关联,提高跟踪精度;相反,不恰当的关联门设置会造成失跟、误跟等问题,因此自适应关联门设计方法相继被提出。
文献[3]提出的自适应关联门设计方法在一定程度上缓解了目标丢失的问题,但该方法通过修正新息协方差调整关联门大小,不够直观,且调整是基于目标已经发生最高水平机动的假设,有可能引入过多杂波。
文献[4]在调整波门大小的同时考虑了波门中心的调整,但该方法基于已知目标机动能力的假设,在实际工程应用中存在局限性。
文献[5]提出的扩大关联门的方法降低了失跟率,但在扩大关联门的同时引入了更多的虚假量测,使得跟踪精度下降,运算量增大。
综观现有的自适应关联门设计方法,其总体设计思路为跟踪误差较大时扩大关联门。
这种方法存在两个缺陷:(1)采用较大的跟踪误差为触发条件,属于补救性调整,调整的实时性较差;(2)调整过程中未见对误差根源的分析,忽视了因关联门过大而引入过多杂波、影响调整准确性的情况。
文献[6]提出了动态误差变化率能够预示目标机动水平的变化。
本文综合考虑了目标的飞行状态和误差动态变化率,在跟踪误差尚可容忍的范围内,分析误差产生的根源,并在此基础上对关联门进行调整,包括正向扩大和反向缩小。
仿真结果表明,本文算法有效地避免了传统自适应关联门的缺陷,降低了目标丢失率,提高了跟踪精度。
1 数据融合定义1.1 数据融合的定义数据融合是面对不同级别,不同层次的对数据的处理流程,它的功能主要表现在将来自相异数据源的信息自动地做预处理,关联,预测更新和整合等相关处理。
为了正规化管理数据融合中的专属词汇,美国国家安全部专门成立了一个特别的行动组织团体进行这项工作,从而实现了对数据融合的研究目的,定义和它的相关功能的预研究目的。
随后数据融合的相关定义又被华尔兹和利纳斯进行了改进和补充。
简而言之,人类本身就好比是一个天然的数据融合系统,我们的鼻子,嘴巴,耳朵,四肢以及眼睛就好比是一个个传感器,它们将各自获取的“数据”先进行“预处理” ,也就是靠各自单一的感官去感觉,最后反馈给大脑这个中央处理器,大脑再对这些多源的“数据”进行处理,滤波和估计。
数据融合的定义基本上体现了数据融合的三个关键功能:(1) 由于每个层级表示信息处理的不同级别,因此数据融合是在若干个层级上对空间分布的信息源进行操作的;(2) 数据融合的本质其实就是对锁定的目标进行观测,追踪,状态预测和整合;(3) 在数据融合操作完毕后会得到的高关联正确率的状态估计以及实时的威胁判断,这些处理结果将成为用户有价值的先验知识,从而使决策者做出正确的操作。
由数据融合的定义也可以看出,数据融合的过程是依托不同的层次来逐步完成的,一般主要由四层来共同完成。
第一层主要是把各个传感器上获取的观测数据进行预处理,包括时间空间校对,坐标系变换等等; 第二层主要是评估低层上得到的数据信息的态势,包括对现阶段态势的判断和未来时间的态势预测; 第三层是面向整体态势的一种评估,其中有对总体态势的把握以及威胁级别的估计等等一系列。
第四层主要是制定相关的补充计划。
1.2 数据融合模型在不同的应用范围,数据融合有不同的理论模型。
在我们这个特定的数据融 合系统中,通过用户在态势模拟服务器端自定义的起始点属性, 传感器参数,配 置信息来仿真传感器获取的局部航迹数据, 并且保存在后台的理论航迹数据库中, 然后分别传送到相应的终端节点,进行局部航迹的时间校对,空间校对等数据预 处理过程,然后生成局部的态势信息。