人教版七年级数学上册121有理数
- 格式:ppt
- 大小:265.50 KB
- 文档页数:18
1.2有理数1.2.1有理数教学目标1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.4.体验分类是数学上的常用处理问题的方法。
教学重点重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.教学过程一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.说明:让学生感受分类的方法和原则,统一标准,不重不漏.三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?四、练习与小结练习:教材练习题.小结:谈一谈今天你的收获.五、作业习题1.2第1题教学反思本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
1.2.2数轴教学目标1.了解数轴的概念,知道数轴的三要素,会画数轴.2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.3.掌握数轴的概念,理解数轴上的点和有理数的对应关系;4.感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
新人教版七年级数学上册知识点汇总第一章有理数一、知识框架:本章主要介绍了有理数的相关概念和运算法则,包括正数与负数、有理数、数轴、相反数、绝对值、比大小、倒数、加法法则、加法运算律、减法法则、乘法法则和乘法运算律等。
二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数。
2.有理数:⑴凡能写成 p/q (p、q为整数,且p≠0)形式的数,都是有理数。
正整数、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数。
⑵有理数的分类:正有理数:正整数、正分数负有理数:负整数、负分数零:03.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为0,即a+b=0,则a、b互为相反数。
5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:a=|a| (a≥0)a=|a|或a=-a (a<0)绝对值的问题经常分类讨论。
6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数;⑵两个负数比较,绝对值大的反而小。
7.倒数:乘积为1的两个数互为倒数。
注意:0没有倒数;若a≠0,则a的倒数是1/a;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。
8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝值;⑶一个数与0相加,仍得这个数。
9.有理数加法的运算律:⑴加法的交换律:a+b=b+a;⑵加法的结合律:(a+b)+c=a+(b+c)。
10.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
新人教版初中数学七年级上册知识点汇总附典型练习题第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ; (3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.教学过程一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出一支温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A. B.C. D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出如图中所表示的数轴上的F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A.D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312. 解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( )A .5B .±5C .7D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.三、板书设计1.数轴(1)原点(2)正方向(3)单位长度2.数轴上的点与有理数间的关系(1)原点表示零(2)原点右边的点表示正数(3)原点左边的点表示负数教学反思数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.相交线◆回顾归纳1.两条直线互相垂直,•其中的一条直线叫做另一条直线的_______,•交点叫做________.2.过一点有且只有_______与已知直线_______.3.连结直线外一点与直线上各点的所有线段中,________最短.4.直线外一点到这条直线的________的长度,叫做点到直线的距离.5.如图1直线AB,CD与EF相交,构成_______个角,其中∠1与∠5是_______,∠3与∠5是______,∠4与∠5是_______.图1 图2 图3 图4◆课堂测控知识点一垂线垂线段1.如图2所示,CD⊥AB,则点D是_____,∠ADC=∠CDB=________.2.如图3所示,l1⊥l2,垂足为_____,∠1与∠2是一组_____的邻补角,∠1•与______是一对_______的对顶角.3.(经典题)如图4所示,l1⊥l2,图中与直线L1垂直的直线是()A.直线a B.直线L2 C.直线a,b D.直线a,b,c4.如图5所示,若∠ACB=90°,BC=8cm,•AC=•6cm,•则B•点到AC•边的距离为________.图5 图6 图7 图85.如图6所示,直线L外一点P到L的距离是________的长度.知识点二同位角内错角同旁内角6.如图7所示,图中的同位角有______对.7.如图8所示,下列说法不正确的是()A.∠1与∠B是同位角 B.∠1与∠4是内错角C.∠3与∠B是同旁内角 D.∠C与∠A不是同旁内角8.如图9所示,∠1与∠2是哪两条直线被另一条直线所截,构成的是什么角的关系?∠3与∠D呢?图9◆课后测控1.如图10所示,直线AB,CD交于点O,OE⊥AB且∠DOE=40°,则∠COE=_____.图10 图11 图122.如图11所示,AO⊥OB于点O,∠AOB:∠BOC=3:2,则∠AOC=_______.3.如图12所示,AB与CD交于点O,OE⊥CD,OF⊥AB,•∠BOD= 25 °,•则∠AOE=____,∠DOF=_____.4.(教材变式题)如图所示,图(1)中∠1<∠2,图(2)中∠1=∠2.试用刻度量一量比较两图中PC,PD的大小.5.如图所示,分别过P画AB的垂线.6.(原创题)如图,OA⊥OC,OB⊥OD,且∠AOD=3∠BOC,求∠BOC的度数.◆拓展创新7.(经典题)我国“十一五”规划其中一重要目标是,建设社会主义新农村,国家对农村公路建设投资近1000亿人民币.西部的某落后山村准备在河流M上架上一座桥梁,如图所示,桥建在何处才能使A,B两个村庄的之间修建路面最短?参考答案回顾归纳1.垂线,垂足 2.一条直线,垂直 3.垂线段4.垂线段 5.八,同位角,内错角,同旁内角课堂测控1.垂足,90° 2.O,相等,∠3,90°3.D(点拨:∵L1∥L2,a⊥L1,b⊥L1,c⊥L1)4.8cm(点拨:点到直线距离定义)5.PC的长(点拨:PE>PD>PC,PA>PB>PC)6.2(点拨:∠ADE与∠B,∠ADC与∠B)7.D(点拨:∠C与∠A是直线AB,BC被AC所截的同旁内角)8.AB,CD被AC所截,∠1与∠2是内错角关系;AC与CD被AD所截,∠3与∠D是同旁内角关系.课后测控1.140°(点拨:∠DOB=∠AOC=90°-40°=50°)2.150°(点拨:∠AOB=90°,3x=90°,x=30°,∠BOC=60°)3.65°,115°(点拨:∠AOC=∠BOD=25°,∠AOE=90°-∠AOC=90°-25°=65°)• 4.图(1)量得PC<PD,图(2)量得PC=PD.5.如图.6.∵∠BOD=90°,∠AOC=90°,∠BOD+∠AOC=180°∴∠AOD=180°-∠BOC,又∵∠AOD=3∠BOC∴3∠BOC=180°-∠BOC,∴∠BOC=45°解题技巧:本题扣住∠AOD=2×90°-∠BOC这一关键式子.7.如图所示.(1)将A向下平移河宽长度得A′;(2)连A′B交河岸于M;(3)过M作MN⊥a,交河岸b于N,MN即为架桥处;(4)连AN,则AN+MN+BM最短.3.1.2 等式的性质知能演练提升能力提升1.下列变形符合等式性质的是()A.如果2x-3=7,那么2x=7-3B.如果3x-2=x+1,那么3x-x=1-2C.如果-2x=5,那么x=-D.如果-x=1,那么x=-32.已知a-b-1=1,则2a-2b-3的值是()A.1B.2C.5D.73.如果式子5x-4的值与-互为倒数,那么x的值是()A.B.-C.D.-4.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的质量是一个香蕉的质量的()A.倍B.倍C.2倍D.3倍5.(1)如果-3(x+3)=6,那么x+3=,变形依据是.(2)如果3a+7b=4b-3,那么a+b=,变形依据是.6.若2a-b=5,a-2b=4,则a-b的值为.7.小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,解得方程的解x=-2,则原方程的解为.8.将等式5a-3b=4a-3b变形,过程如下:因为5a-3b=4a-3b,所以5a=4a(第一步),所以5=4(第二步).上述过程中,第一步的依据是,第二步得出错误的结论,其原因.9.已知等式(a-2)x2+ax+1=0是关于x的一元一次方程,求这个方程的解.★10.某旅客携带了30 kg的行李从南京禄口国际机场乘飞机去天津.按民航的规定,旅客最多可免费携带20 kg的行李,超重部分每千克按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,求他的飞机票价格是多少元.创新应用★11.能不能由(a+3)x=b-1得到等式x=?为什么?反之,能不能由x=得到(a+3)x=b-1?为什么?参考答案知能演练·提升能力提升1.D2.A等式a-b-1=1的两边都加1,得a-b=2,两边再同乘2,得2a-2b=4,所以2a-2b-3=4-3=1.3.D由题意可列出方程5x-4=-6,根据等式的性质,得x=-.4.B5.(1)-2等式的性质2(2)-1等式的性质1和等式的性质2(1)根据等式的性质2,等式两边都除以-3,得x+3=-2.(2)先根据等式的性质1,等式两边都减去4b,得3a+3b=-3.再根据等式的性质2,等式两边同除以3,得a+b=-1.6.3将两等式左右两边分别相加,得2a-b+a-2b=9,即3a-3b=9,等式两边同时除以3,得a-b=3.7.x=2把x=-2代入5a+x=13,得a=3.所以原方程5a-x=13为15-x=13,根据等式的性质,得x=2.8.等式的性质1等式的两边同除以了一个可能等于0的数a9.解因为(a-2)x2+ax+1=0是关于x的一元一次方程,所以a-2=0,即a=2.所以原方程变为2x+1=0,根据等式的性质,得x=-.10.解设他的飞机票价格是x元.由题意,得(30-20)×1.5%x=120,即0.15x=120.根据等式的性质,得x=800.答:他的飞机票价格是800元.创新应用11.解不能由(a+3)x=b-1得到x=,因为当a=-3时,a+3=0,而0不能为除数,即不符合等式的性质2的规定.由x=可以得到(a+3)x=b-1,因为x=是已知条件,已知条件中已经隐含着条件a+3≠0,等式的两边乘同一个数,等式仍成立.11。
人教版七年级数学上册 《1.2 有理数》同步练习题(无答案)人教七上《1.2 有理数》同步练习一.选择题(共 12 小题) 1.下列结论中正确的是( ) A .0 是最小的数 B .0℃表示没有温度C .小学学过的数前面添上“﹣”,就是负数D .0 既不是正数,也不是负数 2.下列四句话中,错误的是( ) A .存在最大的负整数 B .不存在最小的有理数 C .若|a |=﹣a ,则 a <0D .若|a |=a ,则 a ≥03.如图,数轴上的 A 、B 、C 三点所表示的数分别为 a 、b 、c ,其中 AB =BC ,如果点 A 到原点的距离最大,点 B 到原点的距离最小,那么该数轴的原点 O 的位置应该在( )A .点 A 的左边B .点 A 与点 B 之间C .点 B 与点 C 之间D .点 C 的右边4.下列数轴画得正确的是哪个( )A .B .C .D .5.下列说法正确的是( ) 1A .﹣5 是 的相反数5 4 5B . 与 互为相反数5 4C .0 的相反数是 0D .互为相反数的两个数必定一个是正数,一个是负数 6.化简﹣(﹣5)的结果是( )8.如图,点A 所表示的有理数的绝对值是()A.﹣1 B.1 C.±1 D.以上都不对9.下列说法中,正确的有()(1)绝对值相等的两个数必相同或互为相反数(2)正数和零的绝对值等于它本身(3)只有负数的绝对值是它的相反数(4)一个数的绝对值必为正.A.1 个B.2 个C.3 个D.4 个10.在数轴上点A 表示的数是2,到A 点的距离是4 个单位长度的点表示的数是()A.6 B.﹣2 C.6 或﹣2 D.4 或﹣411.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数D.所有的有理数都可以用数轴上的点表示出来12.下列说法正确的是()A.两个不同的有理数可以对应数轴上同一个点B.数轴上的点只能表示整数C.任何有理数的绝对值一定不是负数D.互为相反数的两个数一定不相等二.填空题(共15 小题)13.有理数中.是整数而不是正数的数是;是整数而不是负数的数是.14.分数有,.15.两个负数较大的数所对应的点离原点较.16.如图,数a 在数轴上表示的点与原点间的距离是.17.如果a 的相反数是﹣3,那么a=.18.不同的两个数称互为相反数,零的相反数为.19.一个数 a 与原点的距离叫做该数的.20.﹣|− 6|=, 7 ﹣(− 6)=, 7﹣|+ 1|=,3﹣(+ 1)= , 3 1+|﹣( )| ,2+(− 1)=.2 21.在数+8.3、﹣4、﹣18.18、− 1、0、90.1、− 34、﹣|﹣24|中,不是负数, 是53非正整数.22.若 A 表示整数,B 表示分数,C 表示正整数,D 表示零,E 表示负整数,F 表示正分数, G 表示负分数,用 A ,B ,C ,D ,E ,F ,G 填空.然后将下列各数填入相应的大括号内: 13.− 3,0,1.25,﹣35,﹣0.33 722 , ,+5,﹣600.723.如图,点 A ,B ,C 为数轴上的 3 点,请回答下列问题:(1)将点 A 向右平移 3 个单位长度后,点表示的数最小;(2)将点 C 向左平移 6 个单位长度后,点 A 表示的数比点 C 表示的数小 ;24.化简:1(1)﹣[﹣(﹣3 )]=4 (2)﹣|+(﹣6)|=.25.已知|a |<2 且 a 为整数,|b |=3,则 a +b 的最小值是.26.在数轴|6|表示的意义是表示6 的点与原点之间的距离,式子|6﹣2|在数轴上的意义表示6 的点与表示2 的点之间的距离.类似的,式子|a﹣4|在数轴上的意义是.27.数轴上表示﹣5 的点与表示2 的点的距离是个单位长度.三.解答题(共5 小题)28.比较下列各组数的大小.(2)﹣2.8 和﹣3.7.29.已知4﹣m 与﹣1 互为相反数,求m 的值.32.数轴上两点A、B,其中A 到原点2 个单位,B 到原点4 个单位,借助数轴:画图求线段AB 的长度是多少?。
人教版2020年七年级数学上册1.2.1《有理数》课后练习1.下列说法中正确的是( )A .正数和负数统称为有理数B .0既不是整数,又不是分数C .0是最小的正数D .整数和分数统称为有理数2.把下列各数填入相应的括号内:11,-,6.5,-8,3,0,1,-1,-3.14.2312(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)正整数集合:{ …};(5)负整数集合:{ …};(6)分数集合:{ …};(7)正分数集合:{ …};(8)负分数集合:{ …};(9)有理数集合:{ …}.3.下列语句正确的是( )A .一个有理数不是正数就是负数B .一个有理数不是整数就是分数C .有理数就是整数D .有理数就是自然数和负数的统称4.下列说法中正确的是( )A .在有理数中,0的意义仅表示没有B .非正有理数即为负有理数C .正有理数和负有理数组成有理数集合D .0是自然数5.在0,,-,-8,+10,+19,+3,-3.4中,整数的个数是( )1215A .6B .5C .4D .36.下列各数中,既是分数又是负数的是( )A .-3.1B .-13C .0D .2.47.在0,1,,-2,-3.5这五个数中,是非负整数的有( )227A .0个B .1个C .2个D .3个8.在数-12,71,1.234…,0,-3.14,34%,-0.67,,0.,中,22713·· π2非负有理数有9.如图是数学果园里的一棵“有理数”知识树,请仔细辨别分类,把各类数填在它所属的横线上.10.在下表适当的空格里打“√”号.有理数整数分数正整数负分数非负整数2-3.14-15811.如图,把-,6,-6.5,0,-,3,-7,210,0.0,-43,-5%填入相应的集13712133· 合内.12.在如图所示的方格中,填入相应的数字,使它符合下列语句的要求:(1)5的正上方是一个负整数;(2)5的左上方是一个正分数;(3)一个既不是正数也不是负数的数在5的正下方;(4)5的左边是一个负分数;(5)剩下的四格请分别填上正数和负数使方格中正数与负数的个数相同.13.如图①,大、中、小三个圆圈分别表示有理数集合、整数集合、自然数集合,把这三个圆圈如图②所示叠放在一起,形成大圆环A 和小圆环B ,则小圆环B 表示的是负整数集合.请你把-20,0,3.14,-,5填入图②相应的位置中,并写出大圆环A 所表示集合227的名称.14.把下列各数填入相应的集合内:-,0.618,-3.14,260,-2001,,-1,-53%,0.1367参考答案1.D2.解:(1)正数集合:;{11,6.5,312,1,…}(2)负数集合:;{-23,-8,-1,-3.14,…}(3)整数集合:;{11,-8,0,1,-1,…}(4)正整数集合:;{11,1,…}(5)负整数集合:;{-8,-1,…}(6)分数集合:;{-23,6.5,312,-3.14,…}(7)正分数集合:;{6.5,312,…}(8)负分数集合:;{-23,-3.14,…}(9)有理数集合:{11,-,6.5,-8,3,0,1,-1,-3.14,…}.23123.B 4 D5.B 6.A 7.C 8.B 9.解:整数:0,2018,-2;分数:-,-3.14,;正整数:2018;负整数:-2;正3417分数:;负分数:-,-3.14.173410.解:如下表所示:有理数整数分数正整数负分数非负整数2√√√√-3.14√√√0√√√-158√√√11.解:如图所示:12.解:答案不唯一,示例:13.解:大圆环A表示的集合是分数集合.14.。