第八章 基于数学形态学的图像处理.
- 格式:doc
- 大小:1.75 MB
- 文档页数:35
第8章 知识要点图像分割是图像检索、识别和图像理解的基本前提步骤。
本章主要介绍图像分割的基本原理和主要方法。
图像分割算法一般是基于灰度值的两个基本特性之一:不连续性和相似性。
基于灰度值的不连续性的应用是根据灰度的不连续变化来分割图像,比如基于边缘提取的分割法,先提取区域边界,再确定边界限定的区域。
基于灰度值的相似性的主要应用是根据事先制定的相似性准则将图像分割为相似的区域,比如阈值分割和区域生长。
8.1 本章知识结构8.2 知识要点1. 图像分割在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。
这些部分常称为目标或前景(其它部分称为背景),它们一般对应图像中特定的、具有独特性质的区域。
为了检索、辨识和分析目标,需要将它们分离提取出来,在此基础上才有可能对目标进一步利用。
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。
图像分割是由图像处理过渡到图像分析的关键步骤。
一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等,能将原始图像转化为更抽象更紧凑的形式,所以使得更高层的图像分析和理解成为可能。
图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域中,并涉及各种类型的图像。
图像分割在基于内容的图像检索和压缩、工业自动化、在线产品检验、遥感图像、医学图像、保安监视、军事、体育、农业工程等方面都有广泛的应用。
例如:在基于内容的图像检索和面向对象的图像压缩中,将图像分割成不同的对象区域等;在遥感图像中,合成孔径雷达图像中目标的分割,遥感云图中不同云系和背景分布的分割等;在医学应用中,脑部图像分割成灰质、白质、脑脊髓等脑组织和其它脑组织区域等;在交通图像分析中,把车辆目标从背景中分割出来等。
在各种图像应用中,只要需要对图像目标进行提取、测量等,就都离不开图像分割。
图像分割的准确性将直接影响后续任务的有效性,因此图像分割具有十分重要的意义。
数字图像处理中的形态学(摘自某文献,因为贴图的数目有限制,后面的公式图片没有能够上,电脑重装后文档已经找不到了,囧)一引言数学形态学是一门建立在集论基础上的学科,是几何形态学分析和描述的有力工具。
数学形态学的历史可回溯到19世纪。
1964年法国的Matheron和Serra在积分几何的研究成果上,将数学形态学引入图像处理领域,并研制了基于数学形态学的图像处理系统。
1982年出版的专著《Image Analysis and Mathematical Morphology》是数学形态学发展的重要里程碑,表明数学形态学在理论上趋于完备及应用上不断深入。
数学形态学蓬勃发展,由于其并行快速,易于硬件实现,已引起了人们的广泛关注。
目前,数学形态学已在计算机视觉、信号处理与图像分析、模式识别、计算方法与数据处理等方面得到了极为广泛的应用。
数学形态学可以用来解决抑制噪声、特征提取、边缘检测、图像分割、形状识别、纹理分析、图像恢复与重建、图像压缩等图像处理问题。
该文将主要对数学形态学的基本理论及其在图像处理中的应用进行综述。
二数学形态学的定义和分类数学形态学是以形态结构元素为基础对图像进行分析的数学工具。
它的基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。
数学形态学的应用可以简化图像数据,保持它们基本的形状特征,并除去不相干的结构。
数学形态学的基本运算有4个:膨胀、腐蚀、开启和闭合。
它们在二值图像中和灰度图像中各有特点。
基于这些基本运算还可以推导和组合成各种数学形态学实用算法。
(1)二值形态学数学形态学中二值图像的形态变换是一种针对集合的处理过程。
其形态算子的实质是表达物体或形状的集合与结构元素间的相互作用,结构元素的形状就决定了这种运算所提取的信号的形状信息。
形态学图像处理是在图像中移动一个结构元素,然后将结构元素与下面的二值图像进行交、并等集合运算。
基本的形态运算是腐蚀和膨胀。