当前位置:文档之家› 热膨胀系数

热膨胀系数

热膨胀系数
热膨胀系数

CTE是我们在印制电路板中常用的词汇。但我们中又有多少人真的知道CTE是什么,以及CTE开始如何影响电路板的呢?

CTE是指热膨胀系数。它描述了一个PCB受热或冷却时膨胀的一个百分率。世界上每一种材料都会随着温度的变化而膨胀或收缩,例如,你的房子实际上夏天比冬天的时候要大几英寸。

几种材料是反增长的,即温度上升时它们收缩。但是大多数都是受热后有一个小幅度的膨胀。膨胀是以每摄氏度每百万分之几来描述的。(ppm/C)。

一个PCB每百万横向或纵向膨胀14。这表示如果一块PCB长1百万英寸的话,温度每升高一度,它膨胀14英寸。

一块典型的FR-4层压板的CTE是14到17ppm/C。这很好,直到我们考虑到我们焊接到PCB上的大型硅芯片的CTE是6ppm/C。膨胀率差异足够了——尤其是在更大的BGA封装上——当PCB和芯片加热,PCB会比芯片封装膨胀更剧烈,使焊点从芯片上脱落。

因此,我们以PCB的角度讨论CTE,制造商经常使用低CTE的材料。但是CTE是如何影响电路板以及我们对它们的设计和制造方法的呢?

当选择层压板时,我们关注规格字母:Tg,Dk和DF,仅举几例。都是重要的,相互影响。当我们为了降低CTE 选择层压板是,我们会发现所有的FR-4型号的CTE值都差不多,而且大部分要是用在大型硅封装上的话都太高(14ppm/C)。这意味着我们需要寻找一个不同的方法来控制CTE,通过为金属、Kevlar和Aramid核心设计接头。

这三个低CTE的材料经常被采用在FR-4外层上,来制造低CTE电路板。金属芯用铜-不胀钢-铜(CIC)和铜-钼-铜(CMC)来做,通常为6mil厚。在外层金属上的铜使我们可以在普通fr-4半固化片和核心上进行层压。两种使用最广泛的金属核心是CIC和CMC,它们的CTE值分别为8ppm/C和6ppm/C。金属芯用于锚固FR-4外层,整体CTE值分别是12ppm/C和9ppm/C。

同样,我们可以用Kevlar Thermount或一个Aramid层压作为核心材料;它们的低CTE值为7到8ppm/C,和标准FR-4外层配合使用后的CTE值为12ppm/C。在多层生产中,低CTE层压核心代替典型的FR-4核心。有趣的是,CTE实际Kevlar纤维具有负热膨胀系数,采用环氧树脂将它们粘合在一起产生一个正热膨胀系数。

使用低CTE层压,最昂贵的是金属核心,因为Kevlar和Aramid纤维层压。过去,Arlon Kevlar Thermount 是很难获得的,但是新的生产增加了它的产量。所有的低CTE核心都很难钻孔和生产,但这是唯一达到大型硅封装要求的6-9CTE的方法。

除了控制CTE,金属核心PCB还可以用于改善高功率热转换。请记住,金属膨胀需要比FR-4层大得多的能力;金属核心控制CTE,比Kevlar可以改变更多的FR-4层。

在以后的专栏中,我们还将讨论的杨氏模量,那是衡量使一块层压板膨胀的力的大小

线膨胀系数测量的讲义

金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。 一.实验目的 学习测量金属线膨胀系数的一种方法。 二.实验仪器 金属线膨胀系数测量实验装置、YJ-RZ-4A数字智能化热学综合实验仪、 游标卡尺、千分表、待测金属杆(铜杆、铁杆) 金属线膨胀系数测量的实验装置如图1所示 内有加热引线和温度传感器引线 图1 YJ-RZ-4A数字智能化热学综合实验仪面板如图2所示 图2 三.实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?T近似成正比,与原长L亦成正比,即

?L = T L ?α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量?L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为: α = ) (12T T L L -? (2) 其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-?C 。 测线胀系数的主要问题是如何测伸长量?L 。而?L 是很微小的,如当L ≈250mm,温度变化12T T -≈100℃,金属的a 数量级为10 5 -1)(-?C 时,可估算出?L ≈0.25mm 。对于这么 微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 千分表是一种通过齿轮的多极增速作用,把一微小的位移,转换为读数圆盘上指针的读数变化的微小长度测量工具,它的传动原理如图3所示,结构如图4所示, 千分表在使用前,都需要进行调零,调零方法是:在测头无伸缩时,松开“调零固定旋钮”,旋转表壳,使主表盘的零刻度对准主指针,然后固定“调零固定旋钮”。调零好后,毫米指针与主指针都应该对准相应的0刻度。 千分表的读数方法:本实验中使用的千分表,其测量范围是0-1mm 。当测杆伸缩0.1mm 时,主指针转动一周,且毫米指针转动一小格,而表盘被分成了100个小格,所以主指针可以精确到0.1mm 的1/100,即0.001mm ,可以估读到0.0001mm 。即: 千分表读数=毫米表盘读数+ ?1000 1 主表盘读数 (单位:mm ) (毫米表盘读数不需要估读,主表盘读数需要估读) 例如:图5中千分表读数为:0.2+ ?1000 1 59.8=0.2598 mm

常用金属热膨胀系数部分汇总11

常用金属或合金的线胀系数 金属或合金温度T/℃线胀系数α /10E-6/℃ 金属或合金温度T/℃ 线胀系数α /10E-6/℃ 铝及铝合金 碳钢20-10010.6-12.2 106020-10020-30020-20011.3-13.0 110020-10020-40020-30012.1-13.5 201120-10020-60020-40012.9-13.9 201420-1002320-60013.5-14.3 202420-10022.820-70014.7-15.0 221820-10022.3 铬钢20-10011.2 300320-10023.220-20011.8 403220-10019.420-30012.4 500520-10023.820-40013 505020-10023.820-60013.6 505220-10023.8 铸铁20-1008.7-11.1 505620-10024.120-2008.5-11.6 508320-10023.420-30010.1-12.2 508620-10023.920-40011.5-12.7 515420-10023.920-60012.9-13.2 545620-10023.920-100017.6 606120-10023.4 1020-10011.53 606320-10023.420-20012.61 610120-1002320-30013 707520-10023.220-40013铜及铜合金20-50014.18纯铜2016.520-60014.6 磷脱氧铜20-30017.7 1520-10011.75 无氧铜20-30017.720-20012.41普通黄铜20-30020.320-30013.45低铅黄铜20-30020.220-40013.6中铅黄铜20-30020.320-50013.85高铅黄铜20-30020.320-60013.9 超高铅黄铜20-30020.5 2020-10011.16 铝青铜20-30016.420-20012.12铍青铜20-30017.8

热膨胀系数讲义

热膨胀系数的测定 物体因温度改变而发生的膨胀现象叫“热膨胀”。一般而言,固体在各方向上膨胀规律相同。因此可以用固体在一个方向上的线膨胀规律来表征它的体膨胀。线膨胀系数是反映物质材料特征的物理量,在工程结构的设计、机械和仪器的制造以及在材料的加工中都应充分考虑,本实验用光杠杆放大法测量长度的微小变化,学会不同测长方法并研究其对测量精度的影响。 一、实验目的 1.测定铜管在一定温度区域内的平均线膨胀系数 2.用光杠杆方法测量微小长度的变化 3.用图解法求在温度为零时的原长及线膨胀系数 二、实验仪器 线膨胀仪、待测金属棒(约50cm,铜质)、卷尺(1mm)、游标卡尺(0.02mm,20.00cm)、温度计(1℃),光杠杆一套。 三、实验原理 1.光杠杆 1.标尺 2.望远镜 3.平面镜 4.光杠杆臂 5.铜管 将光杠杆和镜尺组按实验要求放置好,使望远镜和平面镜的法线在同一水平面上,当铜管长度发生微小变化△L时,小镜便以刀口为轴转动一角度θ,当θ很小时:θ≈tgθ=△L/d (1)

其中d是支脚尖刀刀口的垂直距离(也叫光杠杆的臂长)。根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角。 又 tg2θ≈2θ=△S/D (2) 其中D为镜面到标尺的距离,△S为从望远镜中观察到的标尺移动的距离。 由(1)、(2)式得到: △L/d=△S/(2D)(3) 即△L =d△S/(2D) 2.线膨胀系数 当固体温度升高时,固体内微粒间距离(它们的平衡位置间的距离)增大,结果发生固体的热膨胀现象,因热膨胀所造成的长度的增加,称为线膨胀。设温度为t0℃时长度为L0的金属杆,当温度升至t℃时,其长度为L,则: L= L0×[1+α(t- t0)] (4) 其中α称为线膨胀系数,其数值因材质的不同而不同,这反映了不同的物质有不同的热性质。严格的说,同一材料的线膨胀系数,因温度不同也有些改变,但改变很小。所以通常用平均线膨胀系数: α=△L/[ L0 (t- t0)] (5) 其中△L是温度从t0升至t时金属杆所增加的长度。线膨胀系数α在数值上等于:当温度升高一度时,金属杆每单位原长的伸长量。 但由于固体的线膨胀系数很小,所以△L不能用通常的米尺或游标尺来测量,在实验中,我们借助光杠杆的方法来测量,由光杠杆原理可知

金属线膨胀系数测量实验讲义

金属线膨胀系数测量实验讲义 (FB 7 1 2型金属线膨胀系数测定仪) 浙江大学物理实验中心杭州精科仪器有限公司 金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩’’的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。 【实验目的】 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 【实验仪器】 FB712型金属线膨胀系数测量仪实验装置,如图1、图2所示 图1金属线膨胀系数测定仪测试架结构示意图

图2 FB7 12型金属线膨胀系数测定仪面板 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量△L 与其温度的增加量△t 近似成正比,与原长L 亦成正比,即: △L=α· L ·△t (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量初始杆长L 、受热后温度从t1升高到t2时的伸长量△t 和受热前后的温度升高量△t (△t =t 2-t1),则该材料在(t1,t2)温度区域的线胀系数为: t L L ?*?= α (2) 其物理意义是固体材料在(t1,t2)温度区域内,温度每升高1℃时材料的相对伸长量,其单位为(℃)-1 测量线胀系数的主要问题是如何测伸长量△L 。我们先粗估算一下△L 的大小,若L=250mm ,温度变化t2一t1≈100℃,金属的α数量级为×10-5(℃)-1,估算△L=α· L ·△t ≈0.25mm 。

实验讲义十五 材料线膨胀系数的测定——示差法

实验十五材料线膨胀系数的测定——示差法概述 物体的体积或长度随温度的升高而增大的现象称为热膨胀。热膨胀系数是材料的主要 物理性质之一,它是衡量材料的热稳定性好坏的一个重要指标。 在实际应用中,当两种不同的材料彼此焊接或熔接时,选择材料的热膨胀系数显得尤为重要,如玻璃仪器、陶瓷制品的焊接加工,都要求二种材料具备相近的膨胀系数。在电真空工业和仪器制造工业中广泛地将非金属材料(玻璃、陶瓷)与各种金属焊接,也要求两者有相适应的热膨胀系数;如果选择材料的膨胀系数相差比较大,焊接时由于膨胀的速度不同,在焊接处产生应力,降低了材料的机械强度和气密性,严重时会导致焊接处脱落、炸裂、漏气或漏油。如果层状物由两种材料迭置连接而成,则温度变化时,由于两种材料膨胀值不同,若仍连接在一起,体系中要采用一中间膨胀值,从而使一种材料中产生压应力而另一种材料中产生大小相等的张应力,恰当地利用这个特性,可以增加制品的强度。因此,测定材料的热膨胀系数具有重要的意义。 目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光干涉法、重量温度计法等。在所有这些方法中,以示差法具有广泛的实用意义。国内外示差法所采用的测试仪器很多,有分立式膨胀仪(如weiss立式膨胀仪)和卧式膨胀仪(如HTV型、UBD型、RPZ―1型晶体管式自动热膨胀仪)两种。有工厂的定型产品,也有自制的石英膨胀计。些外,双线法在生产中也是—种快速测量法。本实验采用示差法。 一、实验目的 1.了解测定材料的膨胀曲线对生产的指导意义; 2.掌握示差法测定热膨胀系数的原理和方法,以及测试要点; 3.利用材料的热膨胀曲线,确定玻璃材料的特征温度。 二、实验原理 一般的普通材料,通常所说膨胀系数是指线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为厘米╱厘米·度。 假设物体原来的长度为L ,温度升高后长度的增加量为?L,它们之间存在如下关系: ?L╱L =α1?t (1) 式中,α1称为线膨胀系数,也就是温度每升高1℃时,物体的相对伸长。 当物体的温度从T 1上升到T 2 时,其体积也从V 1 变化为V 2 ,则该物体在T 1 至T 2 的温度范围 内,温度每上升一个单位,单位体积物体的平均增长量为

金属的热膨胀系数

铜17、7X10^-6/.C 无氧铜18、6X10^-8/。C ?铝23X10^-6/。C?铁12X10^—6/.C?普通碳钢、马氏体不锈钢得热膨胀系数为1、01, 奥氏体不锈钢为1、6,单位计不住了,但有个简单得说法告诉:?普通碳钢1米1度1丝,即1米得钢温度升高1℃放大0。01mm,而?不锈钢为0.016mm。? 钢筋与混凝土具有相近得温度线膨胀系数(钢筋得温度线膨胀系数为1、2×10^(-5)/℃,t混凝土得温度线膨胀系数为1、0×10^(—5)~1、5×10^(-5)/℃), 钢质材得膨胀系数为:1、2*10^-5/℃ 长度方向增加:100mm*1、2*10^—5*(250-20)=0。276mm?宽度方向增加:200mm*1、2*10^-5*(250-20)=0。552mm △Ⅰ=a(to-t1)? a不锈钢线膨胀系数 材料温度范围?20 20-100 20-200 20-300 20-400 20-600 铝(合金) 22、0-24、0 23、4—24、8 24、0-25、9 碳钢 10、6-12、2 11、3—13 12、1-13、512、9-13、9 13、5-14、3 14、7-15 ?线膨胀系数不就是一个固定得数值,会随着温度得升高而提高,所以在应用时只作为参考,还要根据材料成份,就是否经过锻打\热处理等情况做综合考虑、 材料线膨胀系数(x0、000001/°C) 一般铸铁9、2-11、8 一般碳钢10~13 铬钢10~13 镍铬钢13-15 铁12-12、5 铜18、5 青铜17、5 黄铜18、5 铝合金23、8 金 14、2 热膨胀系数 thermal expansion coefficient 物体由于改变而有胀缩现象。其变化能力以等压(p一定)下,单位温度变化所导致得变化,即热膨胀系数表示 热α=ΔV/(V*ΔT)、 式中ΔV为所给温度变化ΔT下物体体积得改变,V为物体体积

材料的热膨胀系数

热膨胀系数 物体由于温度改变而有胀缩现象。其变化能力以等压(p一定)下,单位温度变化所导致的长度量值的变化,即热膨胀系数表示。 线胀系数是指固态物质当温度改变摄氏度1度时,其某一方向上的长度的变化和它在20℃(即标准实验室环境)时的长度的比值。各物体的线胀系数不同,一般金属的线胀系数单位为1/摄氏度。 大多数情况之下,此系数为正值。也就是说温度变化与长度变化成正比,温度升高体积扩大。但是也有例外,如水在0到4摄氏度之间,会出现负膨胀。而一些陶瓷材料在温度升高情况下,几乎不发生几何特性变化,其热膨胀系数接近0。 中文名:热膨胀系数 英文名:coefficient of thermal expansion , CTE 线膨胀系数:α=ΔL/(L*ΔT) 面膨胀系数:β=ΔS/(S*ΔT) 体膨胀系数:γ=ΔV/(V*ΔT) 1. 概述 expansion thermal coefficient 热膨胀系数有线膨胀系数α、面膨胀系数β和体膨胀系数γ。 式中ΔL为所给长度变化ΔT下物体温度的改变,L为初始长度; ΔS为所给面积变化ΔT下物体温度的改变,S为初始面积; ΔV为所给体积变化ΔT下物体温度的改变,V为初始体积; 严格说来,上式只是温度变化范围不大时的微分定义式的差分近似;准确定义要求ΔV与ΔT无限微小,这也意味着,热膨胀系数在较大的温度区间内通常不是常量。 线热膨胀系数αL

δ = 热膨胀系数* 全长* 温度变化 = 10.8 * 10-6 * 100mm * 100℃ = 0.108 (mm) 3. 热膨胀系数的精密测试与测量能力溯源 为了保证材料热膨胀系数国与国之间的量值统一和互认,国际计量局长度委员会(CCL)2004年启动过材料热膨胀系数的国际比对,有十几个国家参加了这个项目的国际比对。 为应对国际比对,更为了统一与实现国内材料的热膨胀系数测量能力及热膨胀仪测量精度,经国家局批准在国家计量院(中国计量科学研究院)建立“材料热膨胀系数国家最高标准装置”,以满足量值统一及测试需求。该标准基于最小误差链原则,把相关量值直接溯源到国家基准单位,在-180度到2400度范围内提供最高达10E-8量级测量不确定度。 4. 金属膨胀系数 测定温度条件及单位:20℃,(单位10-6/K或10-6/℃) 备注:简单讲就是材料在变化1摄氏度时长度的相对变化量。 膨胀系数实际就是:1MM长的材料在变化1摄氏度时长度变化了多少NM(纳米)。 一般钢材的热膨胀系数为(10-20)×10-6 /℃,系数越大在受热后变形则越大,反之则越小。 比如:钢轨的线膨胀系数是:11.8 nm/(mm×℃),实际上就是指1mm(毫米)长的钢轨在温度变化1摄氏度时长度会变化11.8nm (纳米)。 金属名称元素符号线性热膨胀系数金属名称元素符号线性热膨胀系数铍Be 12.3 铝Al 23.2 锑Sb 10.5 铅Pb 29.3 铜Cu 17.5 镉Cd 41.0

线胀系数实验讲义

线胀系数实验讲义

————————————————————————————————作者:————————————————————————————————日期:

固体线膨涨系数的测定及温度的PID调节 绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。利用本实验提供的固体线膨胀系数测量仪和温控仪,能对固体的线膨胀系数予以准确测量。 在科研,生产及日常生活的许多领域,常常需要对温度进行调节、控制。温度调节的方法有多种,PID调节是对温度控制精度要求高时常用的一种方法。物理实验中经常需要测量物理量随温度的变化关系,本实验提供的温控仪针对学生实验的特点,让学生自行设定调节参数,并能实时观察到对于特定的参数,温度及功率随时间的变化关系及控制精度。加深学生对PID调节过程的理解,让等待温度平衡的过程变得生动有趣。 [实验目的] 1、测量金属的线膨胀系数。 2、学习PID调节的原理并通过实验了解参数设置对PID调节过程的影响。 [实验仪器] 金属线膨胀实验仪,ZKY-PID温控实验仪,千分表 [实验原理] 1.线膨胀系数 设在温度为t0时固体的长度为L0,在温度为t1时固体的长度为L1。实验指出,当温度变化范围不大时,固体的伸长量△L= L1-L0与温度变化量△t= t1-t0及固体的长度L0成正比,即: △L=αL0△t (1) 式中的比例系数α称为固体的线膨胀系数,由上式知: α=△L/L0?1/△t (2) 可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。多数金属的线膨胀系数在(0.8—2.5)×10-5/℃之间。 线膨胀系数是与温度有关的物理量。当△t很小时,由(2)式测得的α称为固体在温度为t0时的微分线膨胀系数。当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t0—t1温度范围内的线膨胀系数。 由(2)式知,在L0已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t 与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地控制t、测量t及△L是保证测量成功的关键。

化学镍讲义

化学镀镍 一、化学镀的定义及相应工作条件: 1、定义: 化学镀:是利用合适的还原剂使溶液中的金属离子有选择地在经催化剂活化的表面上还原析出金属镀层的一种处理方法。 电镀:当具有导电表面的制件与电解质溶液接触并作为阴极时,在外电流的作用下在其表面形成与基体牢固结合的镀覆层。(适应基体为钢铁、铜制件等) 阳极氧化:当具有导电表面的制件与电解质溶液接触并作为阳极时,在外电流的作用下在其表面形成与基体牢固结合的氧化膜。(适应基体为铝制件) 2、化学镀溶液的组成及相应工作条件: a、只限在具有催化作用的制件表面进行,且溶液自身不应自发地发生氧化还原作用(否则镀液会自然分解,造成溶液失调)。 b、要求被镀的金属本身是催化剂,则化学镀的过程就具有自动催化作用,使反应不间断进行并使镀层增加(不具自动催化表面的制件,需经特殊的预处理,使其表面活化而具催化作用。如:塑料、玻璃等)。 还原剂的种类:次磷酸盐、甲醛、硼氢化物、二甲基胺硼烷、肼等。 具自动催化作用的金属:镍、钴、钯、铑等。 二、化学镀特点: 1、无需外加电源。 2、化学镀镍层致密、孔隙少、化学稳定性高。 3、能获得均匀的镀层,深度能力好(如孔、槽)。 4、能在金属、非金属、半导体等各种基材表面施镀。 5、硬度高、可焊性好。 6、溶液的稳定性差,管理困难,溶液的再生能力差,成本浪费高。 三、Ni-P合金镀层的组成和特性: 1、Ni-P合金镀层的组成: Ni-P合金镀层是利用硫酸镍做主原(Ni具催化作用),次磷酸盐做还原剂获得的。其含磷量约1~12%(1~4%属低磷;5~8%属中磷;9~12%属高磷)。 如果采用硼氢化物或胺基硼烷作还原剂得到的镀层含硼0.2~5%的镍硼合金;采用肼作还原剂得到镀层为纯镀层,含Ni量可99.5%以上。 镀层的含磷量主要取决于PH值,随着PH值降低,磷含量增大。常规的酸性化学镀镍层含磷量约为7~12%(目前市场上一般采用酸性化学镀),碱性化学镀镍层含磷量为4~7% 2、Ni-P合金镀层的特性: a、硬度: 化学镀镍层比电镀镍层硬度高、耐磨性好。电镀Ni硬度一般为HV160~180,而化学镍层一般可达到HV300~500。化学镍镀层属非金型的无定型结构,热处理后(BK处理)则转变为金型组织,大大提高化学镀层的硬度,可达HV900~1100。热处理温度一般380~400℃,保温1小时(为防止镀层氧化变色应采用保护气氛或真空热处理)。 b、磁性能: 化学镀层的磁性能决定于含磷量的高低和热处理温度,含磷量超过8%为弱磁性,含磷量达11.4%以上完全没有磁性。含磷量低于8%时才具有磁性。但它的磁性比电镀镍层要小,经热处理后磁性会有显著提高。 c、电阻率: 化学镀镍层的电阻率与含磷量有关,一般含磷量越高电阻率约大。酸性化学镀其镀镍层约为51~58 u??cm,碱性为28~34 u??cm。经热处理化学镀镍层电阻率可明显下降,如:含磷量为7%的化学镀镍层经600?C热处理后电阻率可从72将至20 u??cm。

物理竞赛讲义——热学

物理竞赛讲义——热学

————————————————————————————————作者:————————————————————————————————日期: ?

第七部分 热学 热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。 一、分子动理论 1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别) 对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。 【例题1】如图6-1所示,食盐(N a Cl)的晶体是由钠离子 (图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。已知食盐的摩尔质量为58.5×10-3kg/mo l,密度为2.2×103kg/m3,阿伏加德罗常数为6.0×10 23mol-1 ,求食盐晶体中两个距离最近的钠离子中心之间的距离。 【解说】题意所求即图中任意一个小立方块的变长(设为a )的 2倍,所以求a 成为本题的焦点。 由于一摩尔的氯化钠含有NA 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v = A m ol N 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3 , 即 a 3 = A m ol N 2V = A m ol N 2/M ,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10 m 。 〖思考〗本题还有没有其它思路? 〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81 ×8个离子 = 2 1 分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。) 2、物质内的分子永不停息地作无规则运动 固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0 ),少数可以脱离平衡位置运动。

材料的热膨胀系数

https://www.doczj.com/doc/f818272359.html,/p-50731110.html 陶粒5.83 耐火粘土砖的热膨胀系数是多少呀? (4.5-6)×10的负6次方/℃ 材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2

固体线膨胀系数的测定讲义

固体线膨胀系数的测定 大多数固体材料内部分子热运动的剧烈程度与物体的温度有关,故而都遵从热胀冷缩的规律。固体的体积随温度升高而增大的现象称为热膨胀。固体热膨胀时,它在各个线度上(如长、宽、高、直径等)都要膨胀,我们把物体线度的增长称为线膨胀;将体积的增大称为体膨胀。若固体在各方向上热膨胀规律相同时,可以用固体在一个方向上的线膨胀规律来表征它的体膨胀,所以线膨胀系数是很多工程技术中选材料的重要技术指标。在道路、桥梁、建筑等工程设计、精密仪器仪表设计、材料的焊接、加工等领域都必须考虑该参数的影响。 线膨胀系数的测量方法有很多种,包括:光杠杆法、千分表法、读书显微镜法、光学干涉法、组合法等,本实验采用千分表法测金属线膨胀系数,用FD-LEB 线膨胀系数测定仪进行测量。 一、实验目的 1.学习测量固体线膨胀系数的方法; 2.掌握用千分表测量微小长度变化的方法; 3.练习作图法处理实验数据的方法; 4.分析影响测量精度的因素。 二、实验原理 固体受热后的长度L 和温度t 之间的关系为: )1(20 +++=t t L L βα (1) 式中L 0为温度t=0℃时的长度, βα、是和被测物质有关的数值很小的常数,而β 以后的各系数和α相比甚小,所以常温下可以忽略,则上式可写成: )1(0t L L α+= (2) 式中α就是固体的线膨胀系数,其物理意义为温度每升高一度时物体的伸长量与它在零度时的长度比,单位是摄氏度分之一。 如果在温度t 1和t 2时,金属杆的长度分别为L 1和L 2,则有:

)1(101t L L α+= (3) )1(202t L L α+= (4) 联立(3)、(4)式可得: )(11 22112t L L t L L L --=α。 由于L 2与L 1相差微小,1/12≈L L 所以上式可近似写为 t L L ??=1α。式中12L L L -=?是固体当温度变化12t t t -=?时相对应的伸长量。该式通常可简单表示为:t L L ??= α。 (5) 式中L 为物体的原长,L ?为固体在温度变化为t ?时的伸长量。在温度变化不大的范围内,固体的线胀系数可以认为是与温度无关的常量,但是在不同的温度区域,同一材料的线胀系数不一定相同。另外,不同材料的线膨胀系数是不同的,塑料最大,金属次之,大多数金属的线膨胀系数在C 0 5/10)5.2~8.0(-?之间。 三、实验仪器 FD-LEB 线膨胀系数测定仪包括电加热箱、千分表、温控仪、扳手、米尺和待测金属棒。其中电加热箱结构如图1所示。

固体线热膨胀系数测定讲义

固体线热膨胀系数的测定 物体因温度改变而发生的膨胀现象叫“热膨胀”。通常是指外压强不变的情况下,大多数物质在温度升高时,其体积增大,温度降低时体积缩小。也有少数物质在一定的温度范围内,温度升高时,其体积反而减小。在相同条件下,固体的膨胀比气体和液体小得多,直接测定固体的体积膨胀比较困难。但根据固体在温度升高时形状不变可以推知,一般而言,固体在各方向上膨胀规律相同。因此可以用固体在一个方向上的线膨胀规律来表征它的体膨胀。 [实验目的] ⒈ 了解FD-LEA 固体线热膨胀系数测定仪的基本结构和工作原理。 ⒉ 掌握使用千分表和温度控制仪的操作方法。 ⒊ 掌握测量固体线热膨胀系数的基本原理。 4.测量铁、铜、铝棒的线膨胀系数。 5. 学会用图解图示法处理实验数据。 [实验仪器] FD-LEA 固体线热膨胀系数测定仪(一套)(电加热箱、千分表、温控仪) [实验原理] 在一定温度范围内,原长为0l 的物体受热后伸长量l ?与其温度的增加量t ?近似成正比,与原长0l 也成正比。通常定义固体在温度每升高1℃时,在某一方向上的长度增量t l ??/与0℃(由于温度变化不大时长度增量非常小,实验中取室温)时同方向上的长度0l 之比,叫做固体的线热膨胀系数α,即t l l ???= 0α 实验证明:不同材料的线热膨胀系数是不同的。实验要求学生对配备的实验铁棒、铜棒、铝棒进行测量并计算其线热膨胀系数(每三个同学一组,分别测量一种金属)。 [仪器介绍] 本实验使用FD-LEA 固体线热膨胀系数测定仪进行测量,该仪器由电加热箱和温控仪两部分组成

(图1) 1、托架 2、隔热盘A 3、隔热顶尖 4、导热衬托A 5、加热器 6、导热均匀管 7、导向块 8、被测材料 9、隔热罩 10、温度传感器 11、导热衬托B 12、隔热棒 13、隔热盘B 14、固定架 15、千分表 16、支撑螺钉 17、坚固螺钉 1)当面板电源接通数字显示为FdHc 是表示生产公司产品的符号,随即自动转向A ××.×表示当时传感器温度,b= =.=表示等待设定温度。 2)按升温键,数字即由零逐渐增大至所需的设定值,最高可选80.0℃。 3)如果数字显示值高于所需要的温度值,可按降温键,直至所需要的设定值。 4)当数字设定值达到所需的值时,即可按确定键,开始对样品加热,同时指示灯亮,发光频闪与加热速率成正比。 5)确定键的另一用途可作选择键,可选择观察当时的温度值和先前设定值。 6)如果需要改变设定值可按复位键,重新设置。 [实验内容与要求] (一)、仪器的安装和调试 1、接通电加热器与温控仪输入输出接口和温度传感器的插头。 2、旋松千分表固定架螺栓,转动固定架至使被测样品(Ф8×400mm 金属棒)能插入紫铜管内,再插入隔热棒(不锈钢)用力压紧后转动固定架。 3、把安装千分表安装在固定架上,并且扭紧螺栓,不使千分表转动,在安装千分表时注意被测物体与千分表测量头保持在同一直线;再向前移动固定架,使千分表读数值在0.2—0.4mm 处,固定架给予固定。 以上仪器调节过程已完成,同学们了解即可。 (二)、数据测量 稍用力压一下千分表滑络端,使千分表测量头能与隔热棒有良好的接触,再转动千分表圆盘,使指针指向零。接通温控仪的电源,设定需加热的值,一般可分别设定温度为40.0℃、50.0℃、60.0℃、70.0℃,按确定键开始加热,同时记下显示的温度值,即为初始温度值。当温控仪的显示值上升到大于设定值,电脑将自动控制温度到设定值(正常情况下在±0.3℃左右波动三次以上后,可认为金属棒的温度达到了设定值),分别记录每个温度对应的千分表读数1l 、2l 、3l 、4l .

固体线胀系数的测定讲义(新)

311 固体线胀系数的测定 绝大多数物体都具有“热胀冷缩”的特性,这是由于构成物体的微观粒子热运动随温度的升、降而加剧或减弱造成的。 固体材料的线胀系数是反映固体材料受热膨胀时,在一维方向上伸长性质的重要参数。线胀系数是选用材料的一项重要指标,是材料工程、热力工程和自动控制技术中的一个重要技术参数,在工程设计(如桥梁和过江电缆工程)、精密仪表设计,材料的焊接和加工中都必须加以考虑。 一、实验目的 1. 学会一种测定金属线胀系数的方法。 2. 掌握光杠杆法测量长度微小变化量的原理和方法。 3. 学会用最小二乘法处理数据。 二、实验原理 设金属棒在温度o t 时的长度为o L ,当其温度上升到t 时,它的长度t L 可由下式表示: t L =()[]o o t t L -+α1 (1) 式中,α即为该物体的线胀系数。可将式(1)改写成: ()() o o o o o t t t L L t t L L L -?=--= α (2) 由此可见,线胀系数α的物理意义是温度每升高1C o 时物体的伸长量L ?与原长之比。一般α随温度有微小的变化,但在温度变化不太大时,可把它当作常量。 由式(2)可以看出,测量线胀系数的关键是准确测量长度的微小变化量L ?。我们先粗略估算一下L ?的大小。若mm 500L o ≈ ,温度变化C t t o ?≈-100,金属线胀系数α的数量级为()15 C 10 --? ,则可估算出mm 50.0L ≈?。对于这么微小的长度变化量,用普通量具如钢尺 和游标卡尺无法进行精确测量,一般采用千分表法(分度值为0.001mm ),光杠杆法,光学干涉法等。 本实验采用光杠杆法,整套实验装置由固体线胀系数测定仪,光杠杆和尺读望远镜等几部分组成,如图1所示。

线胀系数实验讲义

固体线膨涨系数的测定及温度的PID调节 绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。利用本实验提供的固体线膨胀系数测量仪和温控仪,能对固体的线膨胀系数予以准确测量。 在科研,生产及日常生活的许多领域,常常需要对温度进行调节、控制。温度调节的方法有多种,PID调节是对温度控制精度要求高时常用的一种方法。物理实验中经常需要测量物理量随温度的变化关系,本实验提供的温控仪针对学生实验的特点,让学生自行设定调节参数,并能实时观察到对于特定的参数,温度及功率随时间的变化关系及控制精度。加深学生对PID调节过程的理解,让等待温度平衡的过程变得生动有趣。 [实验目的] 1、测量金属的线膨胀系数。 2、学习PID调节的原理并通过实验了解参数设置对PID调节过程的影响。 [实验仪器] 金属线膨胀实验仪,ZKY-PID温控实验仪,千分表 [实验原理] 1.线膨胀系数 设在温度为t0时固体的长度为L0,在温度为t1时固体的长度为L1。实验指出,当温度变化范围不大时,固体的伸长量△L= L1-L0与温度变化量△t= t1-t0及固体的长度L0成正比,即: △L=αL0△t (1) 式中的比例系数α称为固体的线膨胀系数,由上式知: α=△L/L0?1/△t (2) 可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。多数金属的线膨胀系数在(0.8—2.5)×10-5/℃之间。 线膨胀系数是与温度有关的物理量。当△t很小时,由(2)式测得的α称为固体在温度为t0时的微分线膨胀系数。当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t0—t1温度范围内的线膨胀系数。 由(2)式知,在L0已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t 与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地控制t、测量t及△L是保证测量成功的关键。

材料的热膨胀系数[1]

材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2 铬镍钴耐热钢Cr-Ni-Co-Fe Superalloysd 9.1 8 1.6 1.4 合金钢Alloy Steelsd 8.6 6.3 1.5 1.1 Carbon Free-Cutting Steelsd 8.4 8.1 1.5 1.5 铸造合金钢Alloys Steels (cast)d 8.3 8 1.5 1.4 Age Hardenable Stainless Steelsd 8.2 5.5 1.5 1 金Goldc 7.9 - 1.4 - High Temperature Steelsd 7.9 6.3 1.4 1.1 Ultra High Strength Steelsd 7.6 5.7 1.4 1 Malleable Ironsc 7.5 5.9 1.3 1.1 Titanium Carbide Cermetd 7.5 4.3 1.3 0.8 Wrought Ironsc 7.4 - 1.3 - 钛及其合金Titanium & its Alloysd 7.1 4.9 1.3 0.9 钴Cobaltd 6.8 - 1.2 - 马氏体不锈钢Martensitic Stainless Steelsc 6.5 5.5 1.2 1 渗氮钢Nitriding Steelsd 6.5 - 1.2 - 钯Palladiumc 6.5 - 1.2 -

各种材料的热膨胀系数

常用材料的热膨胀系数 ×106 ?????????? 表常用材料的热膨胀系数 ×106 (mm/mm·℃) t/℃ -100~0 20~100 20~200 20~300 20~400 20~500 20`600 20~700 20~800 20~900 15号钢、A 3钢 A3F 、B3钢 10号钢 20号钢 45号钢 1Cr13、2Cr13 Cr17 12Cr1MoV 10CrMo910 Cr6SiMo X20CrMo WV121 1Cr18Ni9Ti 10.6 — — — 10.6 — 10.05 — — — — 16.2 — — — 11.75 11.5 11.60 11.16 11.59 10.50 10.00 9.80~ 10.63 12.50 11.50 10.80 16.60 10.60~ 12.20 12.41 12.60 12.12 12.32 11.00 10.00 11.30~ 12.35 13.60 12.00 11.20 17.00 11.30~ 13.00 17.10~ 13.45 12.78 13.09 11.50 10.50 12.30~ 13.35 13.60 11.60 17.20 12.10~ 13.50 17.60 17.90 20.90 13.60 13.00 13.38 13.71 12.00 10.50 13.00~ 13.60 14.00 12.50 11.90 17.50 12.90~ 13.90 18.00~ 13.85 13.93 14.18 12.00 11.00 12.84~ 14.15 14.40 12.10 17.90 13.14 13.20 13.90 14.60 14.38 14.67 13.80~ 14.60 14.7 13.00 12.30 18.20 13.50~ 14.30 18.60 13.31 13.50 14.81 15.08 14.20~ 14.86 18.60 14.70~ 15.00 13.54 13.80 12.93 12.50 13.50 12.48 13.56

相关主题
文本预览
相关文档 最新文档