滚动轴承常见故障及其振动信号特征
- 格式:doc
- 大小:26.00 KB
- 文档页数:6
为了尽可能长时间地以良好状态维持轴承本来的性能,必须保养、检测、检修、以求防事故于未然,确保运转的可靠性,提高生产性、经济性。
对长期运行中的设备来讲,平时的检测跟踪尤为重要,检测项目包括轴承的旋转音、振动、温度、润滑剂的状态等,根据检测结果,设备维护人员可以准确地判断设备的问题点,提早作出预防和解决方案。
一、异常旋转音分析诊断异常旋转音检测分析是采用听诊法对轴承工作状态进行监测的分析方法,常用工具是木柄长螺钉旋具,也可以使用外径为20mm左右的硬塑料管。
相对而言,使用电子听诊器进行监测,更有利于提高监测的可靠性。
轴承处于正常工作状态时,运转平稳、轻快,无停滞现象,发生的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。
异常声响所反映的轴承故障如下:1、轴承发出均匀而连续的“咝咝”声,这种声音由滚动体在内外圈中旋转而产生,包含有与转速无关的不规则的金属振动声响。
一般表现为轴承内加脂量不足,应进行补充。
若设备停机时间过长,特别是在冬季的低温情况下,轴承运转中有时会发出“咝咝沙沙”的声音,这与轴承径向间隙变小、润滑脂工作针入度变小有关。
应适当调整轴承间隙,更换针入度大一点的新润滑脂。
2、轴承在连续的“哗哗”声中发出均匀的周期性“嗬罗”声,这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。
声响的周期与轴承的转速成正比。
应对轴承进行更换。
3、轴承发出不规律、不均匀的“嚓嚓”声,这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。
声响强度较小,与转数没有联系。
应对轴承进行清洗,重新加脂或换油。
4、轴承发出连续而不规则的“沙沙”声,这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系。
声响强度较大时,应对轴承的配合关系进行检查,发现问题及时修理。
二、振动信号分析诊断轴承振动对轴承的损伤很敏感,例如剥落、压痕、锈蚀、裂纹、磨损等都会在轴承及振动测量中反映出来。
所以,通过采用特殊的轴承振动测量器(频率分析器等)可测量出振动的大小,通过频率分布可推断出异常的具体情况。
滚动轴承缺陷频谱特征及故障诊断实例由于使用维护方便、工作性能可靠,滚动轴承在旋转机械中有着广泛的应用,其运行状态的好坏对旋转机械的正常运转起着至关重要的作用。
随着状态监测技术的发展和应用,通过提取滚动轴承频谱特征来进行轴承故障诊断的实例越来越多。
对应用实践进行总结分析,对滚动轴承频谱特征进行分类,并列举了相应的实例,为滚动轴承故障诊断提供参考。
一、前言旋转机械是大型石油石化行业的核心设备,一旦不能正常运转,将导致整个装置停工,会给企业带来巨大的经济损失。
滚动轴承是旋转机械的重要部件,滚动轴承的工作状态与旋转机械的运行可靠性息息相关。
然而,滚动轴承也是机器中最易损坏的部件之一,据统计,在旋转机械中有70%的故障是由滚动轴承引起的,在齿轮箱的各故障中,轴承故障仅次于齿轮故障而占到19%,电动机故障中有80%表现为电动机轴承故障。
因此,滚动轴承常见故障诊断显得十分重要。
随着旋转设备状态监测和故障诊断技术理论的发展和应用实践,利用振动信号监测分析来判断滚动轴承的运行情况成为可能。
一般来说,滚动轴承由内圈、外圈、保持架和滚动体四部件组成。
当任何一个部件出现缺陷时,轴承座振动速度频谱都会表现出不同的信号特征。
二、频谱中出现非整数倍频成分1. 频谱特征在已知滚动轴承的几何尺寸、滚动体数目和轴转速的基础上,导出了一系列的轴承故障频率公式。
利用这些故障频率可以分别检测轴承内圈、外圈、保持架和滚动体本身的故障。
假如内圈滚道、外圈滚道或滚动体上有一处缺陷(剥落或裂纹),则两种金属体在缺陷处相接触就会发生冲击作用,冲击的间隔频率见表1。
表1 由局部缺陷引起的冲击振动间隔频率由局部缺陷引起的冲击振动间隔频率表式中n——轴的转速,单位为r/min;d——滚动体直径,单位为mm;Dm——滚动体中心直径,单位为mm;α——接触角,指接触面中心与滚动体中心连线和轴承径向平面之间的夹角,单位为弧度或角度;z——滚动体个数。
现场诊断时,往往不了解滚动轴承的型号和具体尺寸,用表1中的公式计算,其过程也相当复杂。
机械振动信号的特征分析与故障诊断引言近年来,随着科技的不断发展,机械设备的应用越来越广泛。
然而,由于长时间工作和不良工作环境等因素,机械设备的故障率也逐渐增加。
因此,进行机械设备的故障诊断和预测对于提高设备的可靠性和工作效率至关重要。
本文将探讨机械振动信号的特征分析与故障诊断。
一、机械振动信号的特征分析1. 振动信号的采集机械设备中的振动信号通常通过加速度传感器进行采集。
采集的数据可以是时域信号,也可以进行傅里叶变换得到频域信号。
2. 时域分析时域分析是对振动信号在时间上的变化规律进行分析。
通过观察振动信号的波形、幅值和频率等特征,可以初步判断出机械设备的工作状态。
例如,当振动信号呈现规律性的周期性波形时,说明机械设备正常运行;而当出现突然的幅值变化或频率变化时,可能存在故障。
3. 频域分析频域分析是将振动信号从时间域转换到频率域进行分析。
通过傅里叶变换等方法,可以得到振动信号的频谱图。
频谱图可以清晰地显示振动信号在不同频率上的分布情况。
根据不同频率上的峰值和频率分布情况,可以分析出机械设备的工况和故障情况。
例如,当频谱图中出现特定频率的峰值时,可能说明存在共振或传动系统故障。
二、机械振动信号的故障诊断1. 故障特征提取在进行机械设备的故障诊断时,首先需要从振动信号中提取故障特征。
根据机械设备的不同类型和工作方式,故障特征可能具有多种形式。
例如,对于滚动轴承故障,常用的特征包括脉冲特征、包络谱特征和细节系数特征等。
2. 故障诊断方法针对不同类型的故障,可以采用不同的诊断方法。
常见的故障诊断方法包括模式识别、神经网络和支持向量机等。
这些方法可以通过对机械振动信号进行特征提取和分析,建立故障诊断模型进行故障判断。
3. 故障诊断系统为了实现机械设备的在线故障诊断和预测,可以搭建故障诊断系统。
故障诊断系统将振动传感器、数据采集模块、信号处理模块和故障诊断模型等部件进行集成,实时监测和分析机械设备的振动信号,并输出故障诊断结果。
滚动轴承的故障诊断⽅法研究滚动轴承的故障诊断⽅法研究第1章绪论1.1研究的⽬的和意义滚动轴承是⽣产机械中的地位⽆可替代,当然也最易损坏的部件。
其运⾏状态会直接影响整台机械⼯作效率、精度寿命和可靠性。
滚动轴承的损坏会导致⽣产机械剧烈振动,并伴有强⼤噪声,不仅会影响产品的加⼯质量,严重时会导致⽣产机械的损坏或机械事故。
随着电机的⼴泛应⽤及其⾃动化程度的不断提⾼,对其安全性、精度和故障诊断的准确性的要求也随之提⾼。
传统的诊断⽅法不仅成本较⾼、准确率偏低,并且更新费⽤⾼,已然不能满⾜⾼科技设备的需求。
基于以上原因,本⽂在虚拟仪器的环境下,利⽤多传感器信息融合技术,实现滚动轴承的故障诊断,会对现在和将来的⽣产技术提供强有⼒的帮助。
1.2国内外电机滚动轴承故障诊断的研究现状近现代以来,国内和国外的研究机构及学者在电机滚动轴承故障诊断的理论、技术与⽅法等⽅⾯进⾏了⼤量的研究分析⼯作,发表了诸多研究成果。
在国外,美国南卡罗林娜⼤学运⽤振动响应的多参数多频率的⽅法,对具有裂纹的和损伤的故障轴承进⾏诊断,⽬前已经取得了良好的成果。
美国宾州⼤学采⽤alpha beta -gamma跟踪滤波器和Kalman滤波器,对轴承故障的智能预⽰实现了完美成功。
⽇本九州⼯业⼤学运⽤基因算法优化组合特征参数,成功诊断出⼯况滚动轴承微弱故障。
意⼤利的Cassino⼤学,使⽤⾃谱技术对出现的轴承进⾏检测,判断故障轴承的初始问题,到⽬前为⽌也取得了有效的研究成果。
国外的这些技术有我们值得借鉴的地⽅,去其糟粕取其精华,研究更有技术的故障轴承诊断系统。
在国内,当滚动轴承存在故障时,⼤都以振动检测为主,因为轴承故障后常伴随巨⼤的声响,以及明显的外观表现。
国内的主要研究成果如下图所⽰。
或⾃⾝故障等多个⽅⾯的原因,会对故障造成误判或错判,如:声级计传感器易受到噪声的⼲扰,不能准确、⽆失真的反映滚动轴承的真实信号,温度传感器由于易受到外界温度的⼲扰,也常会出现误判或者错判等等。
滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。
据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。
滚动轴承的常见故障形式有以下几种。
1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。
严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。
疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。
然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。
轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。
2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。
磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。
3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。
其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。
通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。
胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。
4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。
5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。
滚动轴承故障诊断分析学院名称:机械与汽车工程学院专业班级:学生姓名:学生学号:指导教师姓名:摘要滚动轴承故障诊断本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。
通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征.本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,关键词:滚动轴承;故障诊断;特征参数;特征;ABSTRACT :The Rolling fault diagnosisIn the thesis ,the fault types,diagnostic methods and vibration principle of rolling bearing arediscussed。
the thesis sets up a series of academic models of faulty rolling bearings an d lists some symptom parameters which often used in fault diagnosis of ro lling bearings 。
the study of vibration principle of rolling bearings can hel p us to know the essence and feature of rolling bearings.In this paper, th e parameters of the extraction, theoretical analysis, and process are descr ibed in detail。
Keywords: Rolling Bearing; Fault Diagnosis; Symptom Parameter; Distinctio n Index; Distinction Rate0引言:化方向发展,在提高生产率、降低成本、节约能源、减少废品率、保证产品质量等方面具有很大的优势.但是,由于故障所引起的灾难性事故及其所造成的对生命与财产的损失和对环境的破坏等也是很严重的,这就使得人们对诸如航空航天器、核电站、热电厂及其他大型化工设备的可靠性、安全性提出了越来越高的要求。
滚动轴承故障的机理分析一、轴承产生振动机理由于滚动轴承的内、外圈和滚动体都是弹性体,构成振动系统或以子系统的形式耦合在整个系统中。
内、外圈和滚动体都有自己的振动特征----固有频率和振型。
所以从轴承的振源不同,滚动轴承的振动可分为非轴承故障性振动和轴承故障性振动。
使用同步平均处理拾得的振动信号来寻找轴承故障几乎是不可能的,因为轴承信息中的基频是非同步的。
滚动轴承有损伤时,其振动波形往往是调幅波。
相当于载波的是轴承各部件及传感器本身以其固有频率振动的高频成分,起调制作用的是与损伤有关的低频成分。
冲击振动从分析的角度来看可以分为两种类型。
第一种是直接分析由于滚动体通过工作面上的缺陷、产生反复冲击而形成1kHz以下的低频振动,或称为轴承的通过振动,它是滚动轴承的重要特征信息之一。
但是由于这一频带中的噪声干扰很大,所以不容易捕捉到早期诊断信息。
第二类是分析由于冲击而激起的轴承零件的固有振动。
实际应用中可以利用的固有振动有三种:1)轴承内、外圈一阶径向固有振动,其频带范围一般在1—8kHz之间。
2)轴承零件其他固有振动,其频率范围多在20一60kHz之间。
3)加速度传感器的一阶固有频率,其频率中心通常选择在10一25kHz附近。
1、非轴承故障性振动非轴承故障性振动主要有安装不当或制造误差引起的偏心,转子或转轴不平衡引起的振动,这类振动往往被用来作为对转子故障进行诊断的信息。
在滑动轴承和高速旋转机械中更是如此。
2、滚动轴承结构引起的振动对于水平轴旋转时,每个钢珠通过轴的正下方时,轴就会略为向上升起。
这样就产生了回转轴端部的上下运动。
这种运动也称为滚动元件的通过振动。
3、轴承故障性振动轴承故障性振动主要由下列各种原因引起:1)由于载荷过大引起内、外圈和滚动体变形过大导致的旋转轴中心随滚动体位置变化所引起的振动----传输振动。
还有因安装不准确或滚动体大小不一致引起的振动。
一般情况下,这样的振动其频率较低(≤1KHz)。
基于时频分析方法的滚动轴承故障诊断引言滚动轴承作为机械设备中重要的零部件,一旦出现故障会给机械设备带来严重影响,甚至造成事故。
因此,及早发现和诊断滚动轴承的故障就显得非常重要。
目前,基于时频分析方法的滚动轴承故障诊断成为工业界和研究领域的热门话题。
本文将介绍基于时频分析方法的滚动轴承故障诊断技术。
一、时频分析方法基于时频分析方法是一种在时间和频率域中同时分析信号的方法。
它能够准确地反映信号在时间和频率上的变化规律,对于复杂信号的分析有很好的效果。
时频分析方法的主要思想是将信号在不同时间上分解为一系列窄带信号,并计算这些信号在频域上的功率谱密度。
常用的时频分析方法有短时傅里叶变换(Short-Time Fourier Transform, STFT)、小波变换(Wavelet Transform, WT)等。
二、滚动轴承的故障特征滚动轴承的故障通常表现为以下几种特征:(1)局部损伤。
轴承表面出现磨痕、划痕、龟裂等现象。
(2)疲劳裂纹。
因长时间使用或负载过高造成轴承材料疲劳、塑性变形等现象,导致轴承出现裂纹。
(3)卡滞。
轴承在旋转过程中无明显的摩擦或滚动。
(4)松动。
轴承内部零件出现松动现象。
(5)内部故障。
包括球、滚道和保持架的断裂、脱落等。
以上故障通常表现为轴承内部振动信号的变化。
因此,我们可以通过对轴承振动信号的时频分析来判断轴承是否存在故障。
三、基于时频分析方法的滚动轴承故障诊断滚动轴承振动信号的瞬时频率在动态过程中会发生变化。
因此,利用短时傅里叶变换或小波变换对滚动轴承振动信号进行时频分析,可以得到滚动轴承振动信号的时频谱图。
时频谱图反映了振动信号在时间和频率上的变化规律。
对于滚动轴承,其正常工作状态下,其振动信号的时频谱图呈现出周期性的结构,与机械设备的旋转周期一致。
而当滚动轴承出现故障时,其时频谱图则会出现不规则的结构。
例如,当滚动轴承表面出现局部损伤时,时频谱图中将显示出一系列高幅值的谱线,这些谱线与轴承旋转周期不一致。
哈尔滨工业大学工学硕士学位论文4.2 轴承振动测试系统 (33)4.3 轴承单点故障振动模型的建立与验证 (34)4.3.1 无故障轴承VC振动 (34)4.3.2 外圈单点故障分析 (36)4.3.3 内圈单点故障分析 (41)4.4 轴承复合故障振动模型的建立及验证 (45)4.4.1 内圈两点复合故障分析 (45)4.4.2 内外圈各一点复合故障分析 (49)4.5 本章小结 (52)结论 (53)参考文献 (54)攻读硕士学位期间发表的论文 (57)哈尔滨工业大学学位论文原创性声明和使用权限 (58)致谢 (59)哈尔滨工业大学工学硕士学位论文第1章绪论1.1课题的研究意义及目的本课题来源于国家自然科学基金资助项目:不完备信息下基于流向图的诊断知识获取理论与方法(编号:51175102)。
滚动轴承是一种广泛应用于各类旋转机械的通用基础部件,其运行状态的正常与否往往会对于整台机器的寿命、可靠性和精度等性能产生直接的影响。
据统计,旋转机械中30%的故障[1]287和大型异步电机中44%的故障[2]是由故障轴承引起的,而位于轴承内圈和外圈的故障占了其中的90% [1]287。
相较于其它机械零部件,滚动轴承的寿命具有离散性大的特点。
即使是生产过程完全一样的同一批轴承,它们的寿命也相差很大[3]1。
所以,对轴承按照设计寿命进行定期检查和维修是不合适的。
因此,需要对于轴承进行工况监测和故障诊断,及时发现轴承运行中存在的问题。
在轴承故障诊断的研究中,针对轴承中晚期单一故障的研究已经十分成熟,可以精确地对于轴承故障做出诊断。
然而,在工程实际中,故障轴承往往是多个故障并存的情况。
复合故障信号由于信号之间相互抵消、叠加,导致故障信号十分复杂,难以作出准确的诊断。
因此,如何对于复合故障进行有效的诊断,一直都是研究者重点关注的问题。
机械故障诊断学经过数十年的发展,在研究内容上基本可以划分为信号获取与传感技术、故障机理与征兆联系、信号处理与特征提取、识别分类与智能决策四个方面[3]64。
轴承发响的30种原因正常运转的轴承声音1、轴承若处于良好的连转状态会发出低低的呜呜或嗡嗡声音。
若是发出尖锐的嘶嘶音,吱吱音及其它不规则的声音,经常表示轴承处于不良的连转状况。
尖锐的吱吱噪音可能是由于不适当的润滑所造成的。
不适当的轴承间隙也会造成金属声。
2、轴承外圈轨道上的凹痕会引起振动,并造成平顺清脆的声音。
大的金属噪音原因1:异常负荷,对策:修正配合,研究轴承游隙,调整与负荷,修正外壳挡肩位置。
原因2:安装不良,对策:轴、外壳的加工精度,改善安装精度、安装方法。
原因3:润滑剂不足或不适合,对策:补充润滑剂,选择适当的润滑剂。
原因4:旋转零件有接触,对策:修改曲路密封的接触部分。
规则噪声原因1:由于异物造成滚动面产生压痕、锈蚀或伤痕,对策:更换轴承,清洗有关零件,改善密封装置,使用干净的润滑剂。
原因2:(钢渗碳后)表面变形,对策:更换轴承,注意其使用。
原因3:滚道面剥离,对策:更换轴承。
不规则噪声11.轴承与轴的配合太松(轴的直径偏小或紧定套未旋紧);12.轴承的游隙太小,旋转时过紧(紧定套旋紧得过头了);13.轴承有噪声(滚子的端面或钢球打滑造成);14.轴的热伸长过大(轴承受到静不定轴向附加负荷);15.轴肩太大(碰到轴承的密封件并发生摩擦);16.座孔的挡肩太大(把轴承发的密封件碰得歪曲);17.迷宫式密封圈的间隙太小(与轴发生摩擦);18.锁紧垫圈的齿弯曲(碰到轴承并发生摩擦);19.甩油圈的位置不合适(碰到法兰盖并发生摩擦);20.钢球或滚子上有压坑(安装时用锤子敲打轴承所造成);21.轴承有噪音(有外振源干扰);声压信号,并经一定的分析方法提取其中的异常声成分,是异常声的直接测量方法。
(二)、振动检测法:是异常声的间接检测方法,又可分为定性检测法和定量参数检测法。
其中,定性检测法又分为监听异常声法和观察振动波形法。
定量参数检测法是指用被测轴承振动信号中与异常声有关的实测参数值如:振动的峰值,波峰因数来评价轴承的异常声。
滚动轴承常见故障及其振动信号特征
摘要:轴承为机械设备的关键部件之一,轴承损坏能直接影响设备正常运作,影响生产效率。
本文对轴承的常见故障原因及形式进行分析,并总结其故障检测方法和轴承在发生故障时的振动信号特征。
关键词:轴承故障振动信号
及时对系统关键部件进行维修和更换可以在一定程度上避免系统工作过程中关键部件损坏带来的系统故障造成的经济损失和人员伤害。
滚动轴承为旋转机械的关键部件,其运行状态直接决定转动部件的效率和安全,本文总结了常见的滚动轴承故障种类和轴承故障检测方法,并对轴承振动信号特点进行分析。
本文对轴承故障的诊断和设备的维修提供参考作用,有助于实现对轴承故障的原因和种类的预先判断。
1 轴承故障形式及原因分析
滚动轴承在工作过程中,由于装配不当、润滑欠缺、异物侵入或者超负荷运转等都可能引发轴承损坏,或者过载等都可能引发轴承损坏,或者长时间工作后产生疲劳剥落或者自然磨损导致系统故障。
常见的轴承故障可总结为损伤和磨损两大类。
常见的损伤类故障有疲劳剥落、塑性变形、轴承烧伤、锈蚀、断裂、胶合六种;磨损类故障为轴承长期正常工作引起的渐变性故障。
1.1 疲劳剥落
滚动轴承发生故障的典型方式是其滚动接触发生单纯的疲劳剥落。
在工作中,轴承滚子和滚道接触面相对滚动的同时又互相挤压,加上周期交变载荷的作用,长时间工作后,轴承部件接触面将产生小的剥落坑,最终发展为大面积剥落,该现象称作疲劳剥落。
1.2 塑性变形
当工作载荷过重时,由于滚动轴承承受的过大的冲击力和静载荷的原因,轴承滚道的表面上形成的不均匀凹坑,这种现象主要发生在低速旋转的轴承上。
另外由于热变形而引起的额外的载荷也可能使轴承产生塑性变形[1]。
1.3 断裂
过大的负荷是轴承内部部件断裂的主要原因,另外工作过程中摩擦产生的热应力过大时也能引起轴承零件的断裂。
1.4 轴承烧伤
轴承装配存在较大偏斜量时,容易引起轴承温度升高,并出现轴承烧伤现象。
另外,轴承润滑不良、应用不合格或者变质的润滑油、装配过紧都能引起轴承的烧伤。
设计员在装配设计时热膨胀考虑欠缺,造成运转中间隙越来越小也能引起轴承的烧伤现象。
烧伤的轴承其滚道、滚动体上有回火现象。
1.5 锈蚀
水分的侵入使造成轴承锈蚀的原因。
轴承工作时其温度高于环境温度,轴承停止工作时,轴承温度下降,空气中的水分易在轴承表面凝结水珠,未及时清理将引起轴承锈蚀。
由于保护不当使得水分直接进入轴承也是造成轴承锈蚀的原因。
1.6 胶合
轴承在高速高负荷和润滑欠缺的情况下,摩擦产生的热量能使轴承部件迅速升温,到达一定温度时能引起轴承部件接触的金属表面相互粘接,该现象称作胶合。
磨损轴承在工作过程中,轴承滚子和滚道相对运动产生的挤压力、侵入轴承滚道的杂物能引起轴承的表面磨损,另外润滑不良能加速表面磨损。
磨损能增大滚动轴承的游隙,增加轴承工作面粗糙度,降低运转精度,从而引起旋转系统工作精度的降低,工作噪音增大。
2 常见滚动轴承故障检测方法
2.1 油样分析法
通过提取分析轴承润滑油中的金属颗粒的大小形状,判断颗粒的产生原因和位置,从而判断轴承的运转状况。
此方法局限于油润滑的轴承,并且该方法受环境影响较大,比如外界金属屑溅入轴承润滑油中。
2.2 温度监测法
通过监测轴承附近部件的温度来观测轴承是否正常运转,比如监测轴承座或者箱体的温度。
温度监测对轴承过载、润滑不良引起的温度过高较敏感,常用于报警系统。
声发射法当滚动轴承通过剥落位置时会有发声现象,并且具有周期性,分析发声周期可以判断故障类型和部位。
2.3 振动法
采用振动传感器采集滚动轴承的振动信号,对其信号进行处理和分析,依据获得信号的特征,判断轴承故障的种类和位置。
振动法适用与各种工作状态下的滚动轴承轴承,对振动信号的测试与处理比较简单和直观,对轴承故障的诊断结果比较可靠。
另外还有一些通过经验来判断轴承工作状态的方法。
设备运转时,用手触摸轴承外壳,其温度不感觉烫手为正常。
反之,则表明轴承的温度过高。
周期性的撞击声说明轴承已经有剥落凹痕,刺耳的鸣叫声说明轴承润滑不足或者滚动体局部装配过紧。
3 故障轴承的振动信号特征
按轴承振动信号特点分故障形式一般可以分为表面损伤和磨损类损伤。
轴承运转过程中产生的主要特征频率见表1。
3.1 表面损伤类故障
当损伤点滚过轴承元件表面时要产生突变的宽带信号形式的冲击脉冲力,将覆盖轴承系统的高频振动频率引起谐振,从而产生冲击振动。
这是损伤类故障的振动信号的基本特点之一,并且故障特征频率一般在2kHz以下。
轴承内圈损伤:当轴承内圈损伤时,若滚动轴承无径向间隙时,会产生频率为nf6的冲击振动。
通常滚动轴承有径向间隙,且为单边载荷,由于损伤部分与滚动体接触位置不同,振动振幅会发生周期性的变化,即发生振幅调制。
若以轴频率进行调制,其振动频率为。
轴承外圈损伤:轴承外圈损伤时也会产生冲击振动振动频率为。
滚动体损伤:当滚动体产生损伤时,缺陷部位通过滚道表面时将产生冲击振动,并以公转频率进行调制,其振动频率为。
3.2 磨损类故障
磨损类故障是轴承在长时间工作时产生的一种渐变性故障。
轴承工作面磨损后产生的振动信号与正常轴承的振动信号有着相同的性质,两者的波形都是规则的。
但轴承磨损后的振动信号幅值明显高于正常轴承,这是已磨损轴承的振动信号区别于正常轴承的基本特点。
4 结语
滚动轴承故障种类较多,本文对其故障原因和种类进行分类总结,有利于及时对轴承故障进行诊断并采用合理的处理方法;采集轴承的振动信号并进行分析处理后,依据获得的振动信号特征,可诊断出轴承故障部位,并且在实时信号处理系统的辅助下,易于实现轴承状态的实时监测。
参考文献
[1] 滚动轴承故障分析与探讨[M].内燃机配件,2000(3).
[2] 滚动轴承故障分析与检查维护[J].科技传播,2010.5(上).。