当前位置:文档之家› 实验34-温度控制系统的开环控制和闭环控制

实验34-温度控制系统的开环控制和闭环控制

实验34-温度控制系统的开环控制和闭环控制
实验34-温度控制系统的开环控制和闭环控制

实验三十四 温度控制系统的开环控制和闭环控制

(自动控制理论—检测技术综合实验)

一、 实验原理

1.温度控制问题

温度是一个极易受环境、负载变化而变化的物理量。温度控制应用很广,从温室的温度、冶炼时的炉温、化工产品生产制造工艺过程对恒温的需要,到家用电器的温度控制(如电磁炉温度控制)、等等,都需保持温度为恒定值,或按照一定规律变化。

扰动导致的输出(温度)偏离希望值可以通过闭环控制得到抑制。温度控制系统除了受到负载扰动(如电加热炉的水温控制中,热水因供水需要不断减少和不断补充加入的冷水)的影响外,与其它物理量(如转速、电压、电流等)的控制不同的是,被控的温度容易受到环境温度的影响;此外,温度控制对象(如电炉)具有滞后的特性,即除了一般系统的惯性)1(1+Ts 外,还有一个明显滞后的环节,构成了具有滞后特性的一阶(或二阶)环节:

s e τ?1

)(+=?Ts e K s G s

p τ (34-1) 其中τ远大于T 。由开环系统的Nyquist 图分析可知,当被控对象不存在滞后特性,即控制系统的开环传递函数为)1()(+=Ts K s G p 时,其Nyquist 图(图34-1)不包围(-1,

j0)点,无论增益K 为多大,对应的闭环系统总是稳定的。而对象具有滞后特性(式(34-1))时,对应的Nyquist 图如图34-2,由于纯滞后环节的相频特性加上

τωτωj e j ?=∠?)1(+Ts K 的滞后相频特性,相位比仅有)1(+Ts K 环节时更加滞后,Nyquist 图与负实轴有无穷多个穿越点。当增益K 增大到一定程度时,Nyquist 图顺时针包围(-1,j0)点,系统不稳定。

图34-2 具有滞后特性的惯性环节的Nyquist 图

Re Im 图34-1 惯性环节的Nyquist 图

因此,温度的控制控制,不能简单地采用普通的PI 控制,或PID 控制,或其它的超前-迟后控制。从闭环特征方程0)()(1=+s G s G p c 上看,特征方程所对应的相位延

迟很大;而控制器(校正环节)的传递函数

∏∏==??=1

111)()()(n i i

c m j j c c c p s z

s K s G (34-2) 中,校正环节中的PI 控制特性或校正网络极点仍具有迟后特性,会导致系统的不稳定性更严重;而其中的超前环节(零点)相对于滞后环节而言时间常数太短(电子元件构成的校正环节不可能产生足以补偿温度对象这样的纯滞后环节的时间常数),因此对系统存在的不稳定性无任何改善作用。因此,若对于具有纯滞后特性的温度系统采用普通的校正方式,不但不能达到预期的效果,反而会产生更大系统超调和振荡。

s e τ? 这类系统对快速性的要求是次要的,主要要求是无超调或超调量很小,并且允许有较长的调节时间。

2.温度闭环控制方式

简单的温度控制(电热水器加热的水温控制、电冰箱温度控制等),由于对温度控制精度要求不高,可以简单地采用开关控制方式,即当温度达到一定程度时,断开控制信号;当温度超过希望值左右的一定误差范围时,接通控制信号进行加热。控制器简单地采用比例放大环节(以加速温度控制过程和减小稳态误差),以及开关器件(温度开关,或温度继电器)。这样的控制系统中,温度不会稳定在一个恒定值,而是在一个温度范围内波动。

对温度控制精度要求较高的控制系统(波动小,振荡性小,不产生超调),温度开关器件不能满足要求,因此必须采用特殊的控制方式。一般采用数字控制方式中的大林算法。当温度对象为:

1

)(1+=?s T e K s G s

p τ (34-3) 采用数字控制时,对象传递函数的z 变换为

1/1

/1111)1(]11[)(?????????=+??=z e z e K s T Ke s e Z z G T T N T T s Ts τ (34-4)

大林算法的设计原则是[1]:设计的数字控制器(算法)使闭环系统的特性为具有时间滞后的一阶惯性环节,且滞后时间与被控对象的滞后时间相同,即闭环控制后的传递函数为

1

)(+=?Ts e s s

τφ (34-5) 其z 变换为

1

/1

/1)1(]11[)(???????=+??=z e z e s T e s e Z z T T N T T s Ts ττττφ (34-6)

图34-3 采用数字控制方式的温度控制系统方框图

)(*t e )

采用数字控制器去实现这样的闭环控制,方框图见图34-3,可以得到:

)(z D 1/1/1

/)1(1)1()(1)](1)[()()(?????????????=?=N T T T T N T T z

e z e z e z G z z G z z D τττφφ (34-7) 将(34-3)带入(34-6)得到数字控制器算法:

]

)1(1)[1()1)(1()(1/1//1//11???????????????=N T T T T T T T T T T z e z e e K z e e z D τττ (34-8) 其中,τ = N T ,T 为采样周期,N 为正整数。

通过编程实现控制器(34-8),可以使系统稳定,且由于可以设计,闭环调节时

间不会超过开环所具有的调节时间。

1T T >3.温度传感器

将温度量反馈到输入测构成闭环控制,需要温度传感器作为检测元件。在上述控制中,需要将连续的温度变量变换为连续的电压量形成反馈量。

精度较高的温度传感器有温度-电压变换器(简称温度变送器),将连续变化的温度量变为连续变化的电压量,但是市场成本较高。

成本较低、用途较广的温度传感器为热敏电阻,将连续变化的温度量变为连续变化的电阻阻值。配合设计相应的电路再将这个变化的电阻量转化为电压量,就构成对应于温度变化的电压反馈量,形成闭环系统。热敏电阻的不足之处是温度-电阻的变换并不是完全线性的,使闭环控制精度降低。如何设计一个好的克服热敏电阻非线性的测量电路,也是测量上的研究热点,也有成熟的例子。请自行查阅有关资料。

二、 实验目的

1.掌握温度数字控制系统的设计方法,以及电路设计和调试方法。

2.掌握采用单片机或DSP 实现温度控制的编程方法。

3.了解可以采用的温度检测元件的特性,设计热敏电阻作为检测元件的反馈电路。

三、实验内容

1. 构建温度及负载扰动系统(实验装置,包括温度传感器),针对温度控制对象(例如水

温或功率晶体管工作时的结温,或其它对象)进行温度控制,设计和构建相应的开环控制系统和闭环控制系统,并进行比较。控制器设计方案自选。要求稳态误差小、超调量小(对温度控制系统,一般不要求响应时间最短)。系统构建方案尽可能简单、可靠。

2. 设计数字控制器;并采用单片机或DSP实现闭环控制。

3. 对开环和变换两种方案进行对比。

四、实验设备

1.实验室温度对象装置(或自行搭建的温度对象装置)和功率供电电源、控制电源2.系统设计所需的功率晶体管、运放芯片、阻容等元器件

3.示波器

4.计算机以及相应的分析软件

五、实验步骤

1.完成系统方案设计;

2.根据实验内容要求,自行拟定实验步骤。

六、实验报告

1.画出所设计搭建的控制系统实验电路图。

2.确定对象传递函数中的各种参数。

3.设计温度反馈电路并确定各参数。

4.编制数字控制器实现程序及控制系统运行的有关程序。

5.对设计的实验系统进行稳定性、动态及稳态性能分析,在静态和扰动作用下,分别对测量结果进行分析和讨论。

6.对所设计系统存在的问题,提出改进意见或思路。

七、实验思考题:

1.你设计的温度控制系统的负载扰动是什么?你是如何在实验中实现扰动作用的?2.你采用了什么措施改善热敏电阻作为检测元件的非线性问题?

3.如果增加积分环节来提高系统类型,对温度控制有作用吗?为什么?

附录

参考文献

[1] 席爱民. 计算机控制系统. 北京:高等教育出版社,2004年7月

开环与闭环系统

Hefei University 自动控制课程综述 开环与闭环系统 BACH ELOR DISSERTATION 论文题目:______________ 开环与闭环系统_____________________ 学科专业:____________ 自动化1班_______________________ 学生姓名:__________________ 姚辉___________________________ 导师姓名:__________________ 李秀娟__________________________

摘要: 所谓开环与闭环系统主要是对开环和闭环传递函数的研究。 所谓传递函数,只是反馈信号的数学公式/模型。传递函数零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。记作G(s)=Y(s)/U(s),其中Y(s)、U(s)分别为输出量和输入量的拉普拉斯变换。传递函数是描述线性系统动态特性的基本数学工具之一,经典控制理论的主要研究方法——频率响应法和根轨迹法——都是建立在传递函数的基础之上。而在经典控制理论中传递函数有两个重要且易混淆的内容即: Gk(s)=G(s)?H(s) 开环传递函数 Gb(s)=G(s)/1+G(s)?H(s) 闭环传递函数开环传函其实是闭环传函的一部分。开环和闭环的本质区别是:闭环控制系统的被控量要反馈回到给定信号端,与给定信号进行比较(一般为负反馈),而开环没有这一环节。 另外,还有半闭环控制系统,之所以叫半闭环是因为反馈回到给定输入信号的反馈量不是直接取自被控量,而是间接取到的。 关键字:自动控制原理、开环系统、闭环系统、传递函数、区别、联系 发展与前景: 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以开环与闭环理论为基础的自动调节原理,主要用于工业控制,二战期间为了设计和制造飞机及船用自动驾驶仪,火炮定位系统,雷达跟踪系统以及其他基于反馈原理的军用设备,进一步促进并完善了自动控制理论的发展。到战后,以形成完整的自动控制理论体系,这就是以传递函数为基础的经典控制理论,它主要研究单输入-单输出,线形定常数系统的分析和设计问题。 20世纪60年代初期,随着现代应用数学新成果的推出和电子计算机的应用,为适应宇航技术的发展,自动控制理论跨入了一个新阶段——现代控制理论。他主要研究具有高性能,高精度的多变量变参数的最优控制问题,主要采用的方法是以状态为基础的状态空间法。目前,自动控制理论还在继续发展,正向以控制论,信息论,仿生学为基础的智能控制理论深入。 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于闭环控制的闭环反馈控制系统。 开环与闭环系统的应用(以数控机床为例): 开环控制指调节系统不接受反馈的控制,只控制输出,不计后果的控制。又称为无反馈控制系统。

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

开环控制系统与闭环控制系统方框图几例

开环控制系统与闭环控制系统方框图几例(仅供参考) 1.普通机械式电饭煲简单的工作过程如下:接通电源,拨动杠杆按钮,给出做饭指令,磁钢吸合,拉住与之相连的杠杆,杠杆拨动微动开关,微动开关在杠杆的按压下接通加热回路,磁钢铝壳帽与锅底接触,开始加热。当饭熟时(不再有水的沸腾),锅底温度升高,磁钢温度达到150℃时失去磁性,在弹簧力作用下,杠杆下移,微动开关恢复常态,结束加热状态。此时电源仍是接通状态,由于双金属片温控器的作用,电饭煲进入保温状态(70度以下),这就是电饭煲接通电源后即使不按键也能得到温水的原因。但不按下杠杆按键则煮不熟饭。 由上面的工作过程可知,普通电饭煲虽然简单,但其控制过程还是比较复杂的。其工作流程为:给出“做饭”指令——进入加热状态——判断是否达到150度,没有达到,继续加热,如果达到,则进入保温状态。从这个流程知道,电饭煲的控制,从总体上说,仍是一个开环控制。因为,输入一个“做饭”指令,输出的就是“做饭”状态。如果输入的是“温水”指令,则输出的状态就是“温水”状态。即输入量和输出量是一一对应的。但是,其局部环节还有反馈。其参考方块图如下: 3.宾馆、酒店的“自动叫醒服务系统”是一个开环控制系统。 参考框图如下: 4.家用缝纫机的缝纫速度控制系统

缝纫机“转速控制系统”的控制对象应该是“缝纫机”不应该是“机针”。对缝纫机来说,还有其它控制系统,如“针距控制系统”、“倒车控制系统”等,这些系统的控制对象都是缝纫机。参考框图如下: 注:有些学生会认为这个控制系统是一个闭环控制系统,理由是人可以不断调整缝纫的转速。其实这种理解是错误的。它不是闭环的原因是:第一,它输入的转速不是恒定的,没法与输出转速进行比较。第二,“人”作为操作者,对控制系统施加控制指令的行为,不能视为“人作为某个环节参与了控制系统”。 5.走道路灯的声光控制系统 声光自动控制白炽灯开关的基本工作原理如下:白天或夜晚光线较亮时,光控部分将开关自动关断,声控部分不起作用。当光线较暗时,光控部分将开关自动打开,负载电路的通断受控于声控部分。电路是否接通,取决于声音信号强度。当声强达到一定程度时,电路自动接通,点亮白炽灯,并开始延时,延时时间到,开关自动关断,等待下一次声音信号触发。这样,通过对环境声光信号的检测与处理,完成电路通断的自动开关控制。其声控部分的参考框图如下: 6.交通路口红绿灯自动控制(根据车流量大小改变红绿灯时间)系统 目前所用的交通路口的红绿灯控制系统一般都是按给定的时序来控制的,因此应该是开环控制系统,而不是闭环。对车流量因素的考虑,是在调查统计的基础上在设计给定时序时体现的。其参考框图如下: 当然有一点在注意,红绿灯的时间并不能完全靠车流量的多少来控制。对单个交叉口而言,当交通需求较小时,信号周期则应短一些,但一般不能少15秒,以免某一方向的绿灯时间小于15秒使车辆来不及通过路口影响交通安全;当交通需求较大时,信号周期则应长一些,但一般不能超过120秒,否则某一方向的红灯时间将超过60秒,驾驶员心理上不能忍受。当交通需求很小时,一般按最

实验八单闭环温度恒值控制系统

实验八单闭环温度恒值控制系统 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3.学习温度PID控制参数的配置。 二、实验设备 1.THKKL-6型控制理论及计算机控制技术实验箱; 2.PC机1台(含软件“THKKL-6”、“keil uVision3”及“Easy 51Pro”); 3.51单片机下载线; 4.USB数据线。 三、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流24V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 本实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。

开环控制、半闭环控制、闭环控制

开环控制、半闭环控制、闭环控制的区别 2011-11-2 10:31 提问者:升玩就走|浏览次数:485次 数控技术 推荐答案 2011-11-2 13:39 开环:没有测量回路。 半闭环:有一个测量回路(主要反馈控制转速:编码器)注意:编码器有绝对值和相对值之分 全闭环:有两个测量回路(反馈转速+位置:编码器+光栅尺或外置编码器) | 其他回答共2条 2011-11-3 14:01Einstiphen|五级 以监测点的不同来区分三者。 开环控制就是系统按设定的参数来运转,不作监测,不反馈。 半闭环控制就是在系统的执行端之前(非最终端)设置监测,反馈回的信号可以对执行端之前的机构进行实时调整。 闭环控制是在系统的最终执行端设置监测,反馈回的信号直接用于系统整体调整。 开环系统最简单,成本低,但执行精度最差,基本无系统波动。 闭环系统最复杂,控制成本最高,但执行精度相当高,系统波动也最大。 半闭环系统介于以上两者之间。 |评论 2011-11-17 10:09wangpeng3219|二级 闭环 闭环也叫反馈控制系统,是将系统输出量的测量值与所期望的给定值相比较,由此产生一个偏差信号, 利用此偏差信号进行调节控制,使输出值尽量接近于期望值。举例:调节水龙头——首先在大脑 中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的

用手进行调节形成一个反馈闭环控制;骑自行车——同理不断的修正行进的方向与速度形成闭环控制。 半闭环 半闭环控制系统:半闭环控制系统是在开环控制系统的伺服机构中装有角位移检测装置,通过检测 伺服机构的滚珠丝杠转角,半闭环控制系统图间接检测移动部件的位移,然后反馈到数控装置的 比较器中,与输入原指令位移值进行比较,用比较后的差值进行控制,使移动部件补充位移,直到 差值消除为止的控制系统。由于半闭环控制系统将移动部件的传动丝杠螺母不包括在环内,所以传动 丝杠螺母机构的误差仍会影响移动部件的位移精度,由于半闭环控制系统调试维修方便,稳定性好, 目前应用比较广泛。半闭环控制系统的伺服机构所能达到的精度、速度和动态特性优于开环伺服机构, 为大多数中小型数控机床所采用。 开环 相对闭环而言开环(kāi huán)英文名open-loop。开环相对于闭环而言,也叫开环控制系统。意思就是不将控制的结果反馈回来影响当前控制的系统。举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起以对按开关的这个活动没有影响;投篮——篮球出手后就无法再继续对其控制,无论球进与否,球出手的一瞬间控制活动即结束。

单闭环温度恒值控制

单闭环温度恒值控制 姓名: 学号: 班级: 实验指导老师: 一、实验目的 1.理解温度控制的基本原理。 2.了解温度传感器的使用方法。 3.学习温度PID控制参数的配置。 二、实验设备 1.THBCC-1型信号与系统控制理论及计算机控制技术实验平台。 2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)。 3.PC机1台(含软件“THBCC-1”)。 三、实验内容 1.设计并实现具有一个积分环节的二阶系统的最少拍控制。 2.设计并实现具有一个积分环节的二阶系统的最少拍无纹波控制,并通过混合仿真实验,观察该闭环控制系统输出采样点间纹波的消除。 四、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流15V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的

热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为 Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 该实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。 3.温度控制系统与实验十三的直流电机转速控制相类似,虽然控制对象不同,被控参数有差别,但对于计算机闭环控制系统的结构,却是大同小异,都有相同的工作原理,共同的结构及特点。 五、温度测量及放大电路图和温度控制系统的框图

试验一典型环节的电路模拟与软件仿真

THKKL-6型 控制理论·计算机控制技术实验箱 Control Theory & Computer Control-based Technology Experimental Case 实验指导书

目录 第一部分使用说明书 (1) 第一章系统概述 (1) 第二章硬件的组成及使用 (2) 第二部分实验指导书 (5) 第一章控制理论实验 (5) 实验一典型环节的电路模拟 (5) 实验二二阶系统的瞬态响应................................................................... 错误!未定义书签。 实验三高阶系统的瞬态响应和稳定性分析........................................... 错误!未定义书签。 实验四线性定常系统的稳态误差........................................................... 错误!未定义书签。 实验五典型环节和系统频率特性的测量............................................... 错误!未定义书签。 实验六线性定常系统的串联校正........................................................... 错误!未定义书签。 实验七典型非线性环节的静态特性....................................................... 错误!未定义书签。 实验八非线性系统的描述函数法........................................................... 错误!未定义书签。 实验九非线性系统的相平面分析法....................................................... 错误!未定义书签。 实验十系统能控性与能观性分析........................................................... 错误!未定义书签。 实验十一控制系统极点的任意配置....................................................... 错误!未定义书签。 实验十二具有内部模型的状态反馈控制系统....................................... 错误!未定义书签。 实验十三采样控制系统的分析............................................................... 错误!未定义书签。 实验十四采样控制系统的动态校正....................................................... 错误!未定义书签。 第二章计算机控制技术基础实验 .............................................................. 错误!未定义书签。 实验一A/D与D/A转换.......................................................................... 错误!未定义书签。 实验二数字滤波器................................................................................... 错误!未定义书签。 实验三离散化方法研究........................................................................... 错误!未定义书签。 实验四数字PID调节器算法的研究 ...................................................... 错误!未定义书签。 实验五串级控制算法的研究................................................................... 错误!未定义书签。 实验六解耦控制算法的研究................................................................... 错误!未定义书签。 实验七最少拍控制算法研究................................................................... 错误!未定义书签。 实验八具有纯滞后系统的大林控制....................................................... 错误!未定义书签。 实验九线性离散系统的全状态反馈控制............................................... 错误!未定义书签。 实验十模糊控制系统............................................................................... 错误!未定义书签。 实验十一具有单神经元控制器的控制系统........................................... 错误!未定义书签。 实验十二二次型状态调节器................................................................... 错误!未定义书签。 实验十三单闭环直流调速系统............................................................... 错误!未定义书签。 实验十四步进电机转速控制系统........................................................... 错误!未定义书签。

实验十五 单闭环温度恒值控制系统

实验十五单闭环温度恒值控制系统 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3.学习温度PID控制参数的配置。 二、实验设备 1.THBCC-1型信号与系统?控制理论及计算机控制技术实验平台 2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根) 3.PC机1台(含软件“THBCC-1”) 三、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流15V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 该实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。 4.温度控制系统与实验十三的直流电机转速控制相类似,虽然控制对象不同,被控参数有差别,但对于计算机闭环控制系统的结构,却是大同小异,都有相同的工作原理,共同的结构及特点。 四、实验步骤 1、实验接线 1.1 用导线将温度控制单元24V的“+”输入端接到直流稳压电源24V的“+”端; 1.2 用导线将温度控制单元0~5V的“+”输入端接到数据采集卡的“DA1”的输出端,同时将温度变送器的“+”输出端接到数据采集卡的“AD1”处; 1.3打开实验平台的电源总开关。 2、脚本程序的参数整定及运行

开环控制系统与闭环控制系统的区别及相关

开环控制系统与闭环控制系统的区别及相关的实例 开环控制系统:不将控制的结果反馈回来影响当前控制的系统 举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起以对按开关的这个活动没有影响; 闭环控制系统:可以将控制的结果反馈回来与希望值比较,并根据它们的误差调整控制作用的系统 举例:调节水龙头——首先在头脑中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的用手进行调节形成一个反馈闭环控制;骑自行车——同理不断的修正行进的方向与速度形成闭环控制 开环闭环的区别:1、有无反馈;2、是否对当前控制起作用。开环控制一般是在瞬间就完成的控制活动,闭环控制一定会持续一定的时间,可以借此判断。 手动控制系统:必须在人的直接干预下才能完成控制任务的系统 自动控制系统:不需要有人干预就可按照期望规律或预定程序运行的控制系统 判断:骑自行车——人工闭环系统,导弹——自动闭环系统,人打开灯——人工开环系统,自动门、自动路灯——自动开环系统 开环控制系统方框图19例 开环控制系统的方框图: 1、水泵抽水控制系统 2、家用窗帘自动控制系统 3、宾馆自动门控制系统 4、楼道自动声控灯装置 控制量 控制量 控制量 控制量

5、游泳池定时注水控制系统 6、十字路口的红绿灯定时控制系统 7、公园音乐喷泉自动控制系统 8、自动升旗控制系统 9、宾馆火灾自动报警系统 10、宾馆自动叫醒服务系统 11、活动猴控制系统 控制量 控制量 控制量 控制量 控制量 控制量 控制量

12、公共汽车车门开关控制系统 14、普通电风扇控制系统 15、普通全自动洗衣机控制系统 16、手电筒控制装置 17、宾馆自动门加装压力传感器防意外事故自动控制系统 18、可调光台灯控制系统 控制量 (压缩空控制量 控制量 控制量 控制量 输入量 (压力传感器是否测到压力异常信号) 控制量 控制量

最新过程控制工程模拟试卷(含答案)

《过程控制工程》考试试题 一、填空(20分) 1、定值控制系统是按()进行控制的,而前馈控制是按()进行控制的;前者是()环控制,后者是()环控制。前馈控制一般应用于扰动()和扰动()与扰动()的场合。 2、串级控制系统能迅速克服进入()回路的扰动,改善()控制器的广义对象特性,容许()回路内各环节的特性在一定的范围内变动而不影响整个系统的控制品质。 二、试写出正微分与反微分控制作用的传递函数,画出它的阶跃响应,并简述各自的应用场合。(15) 三、前馈控制适用于什么场合?为什么它常与反馈控制构成前馈—反馈控制 系统?对于扰动至测量值通道的传递函数为,控制作用对测量通 道的传递函数为的前馈—反馈控制系统,试求前馈控制规律 。(20分) 四、甲的正常流量为240kg/h,仪表量程为0~360kg/h;乙的正常流量为120NM3/h,仪表量程为0~240NM3/h。设计控制乙的单闭环比值控制系统,画出流程图并计算引入开方运算与不引入开方运算所分别设置的比值系数。(15分)

五、如图示的加热炉,采用控制燃料气的流量来保证加热炉出口温度恒定。(20分) 1、总进料量是主要扰动且不可控扰动时,设计合理的控制方案,并作简要说明。 2、当燃料气阀前压力是主要扰动且不可控扰动时,设计合理的控制方案,并作简要说明。 六、APC的涵义是什么?它主要包括哪些控制系统?(10分) 一、答: 1.定值控制系统是按(偏差)进行控制的,而前馈控制是按(扰动)进 行控制的;前者是(闭)环控制,后者是(开)环控制。前馈控制一般应用于扰动(可测)和扰动(显著)与扰动(频繁)的场合。

2.串级控制系统能迅速克服进入(副)回路的扰动,改善(主)控制器 的广义对象特性,容许(副)回路内各环节的特性在一定的范围内变动而不影响整个系统的控制品质。 二、答: 理想微分作用:;。 由于理想微分作用对高频分量要有巨大的 放大能量,无法达到。因此,实际情况: ;阶跃响应曲线如图: 当时,为正微分作用;如果则为反微分作用;当时,为 的单纯比例作用。 1.微分作用可以使系统开环频率特性幅值比增大,相位提前。微分作用量适当,可以使系统的稳定域度提高,最大偏差减小,回复时间缩短;对温度和成分控制系统,往往引入微 分控制。对真正的时滞,微分作用不能改善控制品质。对噪声大的对象,微分作用会把这些高频干扰放大的很厉害,将使系统的控制质量降低。因此,对流量和液位控制系统,一般不引入微分作用。如实必要,须先将测量信号滤波。 2.反微分作用常常用在噪声很大的流量系统控制。 三、答:

温度闭环控制电路设计

大连民族大学 温度闭环控制设计电路仿真 专业:通信工程 学生姓名:熊和艳 指导教师:吴宝春老师 完成时间:2015年4月26日

一、设计内容 1.通过运算差分放大电路将温度传感器的阻值变化转化为电压信号的变化放大。 2.利用A/D转换实现魔力信号到数字信号的转换,根据模拟电路部分电路原理计算得出最后电压与温度值的关系,并通过数码管显示温度的值,实现温度的测量。 3.并利用比较器来实现对温度的控制,通过设定温度上下限可使整个系统工作于一个限定的温度范围内。 4.报警设置,当被测温度超出温度范围时,进行相应的报警设。 5.学会系统仿真、测量和测试。 二、方案实现及设计思路 1.当温度小于等于20℃时,系统自动加热。 2.当水温高于或等于50℃时,系统停止加热。 3.并用数码管显示温度情况,水温测量用热敏电阻,加热、停止加热用不同的发光二极管。 4.系统流程图: 电路仿真及调试方案设计电路设计器件设计机构设计

方案设计:按照要求,将电路划分为若干模块,从而将一个大的系统划分为小的单元电路,并分配各单元模块要完成的任务,确定各模块间输入输出关系,最后决定各单元电路的组成方式。 电路设计:电路设计是按功能模块确定的单元电路设计。在该部分中,要详细拟定单元电路组成,性能指标及前后电路关系,明确采用的算法,理清思路。 器件设计:是在单元电路的结构确定后,根据单元电路的功能,确定具体器件型号及计算相应的系数,计算量较大。主要分为①阻容原件的设计;②分立元件的选择;③模拟集成电路的相关计算。 电路仿真测试:使用Proteus 软件仿真,争取实现各单元的具体功能。 三、设计方法及步骤 1.系统框图 ⑴信号调理模块 由于被测是温度,由设计要求,温度检测用热敏电阻。而热敏电阻将温度转化成电阻值的变化,故在系统中由信号调理电路作用是将温度的变化这样一个非电量转化成电信号,然后加以放大。以便后一温度显示 检测对象 信号调理 水温检测 加热、停止、状态显示 加热、停止检测

基于S7-300PLC单闭环比值控制系统设计与实现 - 副本

摘要 在石油、化工生产过程中过程中,要求两种或多种物料成一定比例关系,一旦比例失调,会影响生产的正常进行,影响产品质量,所以严格控制其比例。尤其在生产中,经常需要两种或两种以上的物料按一定比例混合或进行化学反应,如果比例失调,轻则造成产品质量不合格,重则会造成生产事故或发生人身伤害,给企业带来较大的损失。例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。比值控制的目的就是为了实现几种物料符合一定比例关系,以使安全生产正常进行。 在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。 关键词:比值控制;流量;可编程控制器;PID控制

目录 1设计背景 (1) 1.1课题研究的背景和意义 (1) 2比值控制系统概述 (2) 2.1比值控制系统定义 (2) 2.2比值控制原理 (2) 2.3比值控制系统特点 (2) 2.4比值控制系统的类型 (3) 2.4.1开环比值控制系统 (3) 2.4.2单闭环比值控制系统 (4) 3流量比值控制系统方案设计 (7) 3.1系统方案设计 (7) 3.2系统硬件设计 (7) 4上位机组态与程序设计 (10) 4.1WinCC的发展及应用 (10) 5PID参数整定及系统调试 (12) 5.1PID控制器 (12) 5.1.1PID控制器的优点 (13) 5.1.2控制规律的选择 (13) 5.2PID控制器参数的调节及其对控制性能的影响 (14) 5.2.1比例控制对控制性能的影响 (14) 5.2.2积分控制对控制性能的影响 (15) 5.2.3微分控制对控制性能的影响 (17) 5.3控制系统的整定 (18) 5.3.1控制系统整定的基本要求 (18) 5.3.2调节器参数的整定方法 (18) 5.4调节器参数的整定及调试 (20) 总结 (23) 参考文献 (24)

51系列单片机闭环温度控制实验报告

成绩: 综合实验报告 题目:51系列单片机闭环温度控制 班级: 小组成员: 指导教师: 完成时间:2015年11月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1.实验项目组长: 2. 小组成员: 3.具体分工:负责程序编写,主要负责查询资料与实验报告撰写。 4.实验要求: ①设计硬件电路: 温度检测:采用热电偶或热电阻 温度给定:采用电位器进行模拟电压给定,0——5V AD转采用12位转换 显示采用8位LED,或者LCD1602显示 键盘4X4,PID等参数通过键盘设置。 ②软件 控制算法:数字PID,参数在线修改。 显示窗口:显示温度的设置值SV、温度的实际值PV。 实际温度值,温度峰值、峰值时间等通过串口上传到上位机(选做)

二、实验内容 1、系统基本原理(实验原理介绍) 根据实验要求,温度闭环控制,即对加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理图如下: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。 8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数

基于PID算法的模拟温度闭环控制系统课程设计报告

计算机控制技术课程设计 学院: 专业: 班级: 学号: 姓名: 指导教师: 时间:

基于PID算法的温度仿真 温度是工业对象中一种重要参数,特别在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉和反应炉等。用微型计算机对炉温进行控制,无论在控制品质,节约能源,还是在改善劳动环境等方面都显示了巨大的优越性。本报告介绍了温度测量及自动控制系统的软件设计。 一、课设内容 实现用PID闭环控制温度系统的仿真。 二、总体方案 温度信号经过PID控制算法的处理,输出相应的控制信号。此次课程设计侧重PID温度控制算法的实现。 三、控制系统分析: 零状态下,输入为单位阶跃信号R的输出反馈给输入。在参数给定值R的情况下,给定值R与反馈值比较得到偏差,

经过PID 调节器运算产生相应的控制量,PID 调节器的输出作为被控对象的输入信号,是输入的数值稳定在给定值R 。 通过PID 算法控制系统在单位阶跃信号R(t)的激励下产生的零状态响应。传递函数表达式为: 经过Z 的反变换后得差分方程为: 四、软件设计 P ID 调节由比例调节、积分调节、微分调节三者组成,是技术最成熟、应用最广泛的一种调节方式。PID 调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,运算结果用于控制输出。在实际应用中,根据被控对象的特征和控制要求,可灵活地改变PID 的结构,取其中一部分环节构成控制规律,如比例调节、比例积分调节、比例积分微分调节等。 PID 算法表达式: ??????++=?dt t de T dt t e T t e p K t P D I )()(1)()()( (1) 当采样周期T 很小时dt 可以用T 近似代替,)(t de 可用)1()(--t e t e 近似代替,“积分”用“求和”近似代替,即可作如下近似

《自动控制技术》章节测试题(全)

第一章单闭环直流调速系统 1-1 自动控制技术概述 1、根据不同的信号源来分析,自动控制包含(ABC)几种基本控制方式。 A开环控制 B闭环控制 C 复合控制 D人为控制 2、在自动控制系统中,若想稳定某个物理量,就该引入该物理量的(B ) A.正反馈 B.负反馈 C. 微分负反馈 D. 微分正反馈 3、控制系统输出量(被控量)只能受控于输入量,输出量不反送到输入端参与控制的系统称为(A)。 A、开环控制系统 B、闭环控制系统 C、复合控制系统 D、反馈控制系统 4、闭环控制系统是建立在(B)基础上,按偏差进行控制的。 A、正反馈 B、负反馈 C、反馈 D、正负反馈 5、闭环控制系统中比较元件把(A)进行比较,求出它们之间的偏差。 A、反馈量与给定量 B、扰动量与给定量 C、控制量与给定量 D、输入量与给定量 6、比较元件是将检测反馈元件检测的被控量的反馈量与(B)进行比较。 A、扰动量 B、给定量 C、控制量 D、输出量 7、偏差量是由(B)和反馈量比较,由比较元件产生的。 A、扰动量 B、给定量 C、控制量 D、输出量 8、在生产过程中,如温度、压力控制,当(D)要求维持在某一值时,就要采用定值控制系统。 A、给定量 B、输入量 C、扰动量 D、被控量 9、开环控制系统可分为(A C)。 A、按给定量控制的开环控制系统 B、按输出量控制的开环控制系统 C、前馈控制系统 D、按输出量控制的反馈控制系统 E、按输入量控制的反馈控制系统 10、自动控制系统的信号有(A B C D)等。 A、扰动量 B、给定量 C、控制量 D、输出量

11、开环控制系统和闭环控制系统最大的差别在于闭环控制系统存在一条从被控量到输出端的反馈信号。(√)12、偏差量是由控制量和反馈量比较,由比较元件产生的。(×) 1-2 调速系统性能指标 1、调速控制系统的性能指标主要指:( CD ) A最高转速 B最低转速 C调速范围 D静差率 2、静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,则 静差率(A) A.越小 B.越大 C.不变 D.不确定 3、控制系统能够正常运行的首要条件是(B) A.抗扰性B.稳定性C.快速性 D.准确性 4、调速范围是指电动机在额定负载情况下,电动机的(B)之比。 A、额定转速和最低转速 B、最高转速和最低转速 C、基本转速和最低转速 D、最高转速和额定转速 5、直流调速系统的静差率与(A C)有关。 A、机械特性硬度 B、额定转速 C、理想空载转速 D、额定电流 6、由晶闸管可控整流供电的直流电动机,当电流断续时,其机械特性具有(A C)特点。 A、理想空载转速升高 B、理想空载转速下降 C、机械特性显著变软 D、机械特性硬度保持不变 7、静差率与机械特性硬度以及理想空载转速有关,机械特性越硬,静差率越大。 (×) 1-3 直流电机的调速方案 1、调节他励直流电动机的转速主要有以下几种方式:(BCD) A 调节电机接线方式B调节电枢供电电压C调节励磁磁通D改变电枢回路电阻 2、自动控制的直流调速系统主要的调速方法是( B ) A.减弱励磁磁通 B.改变电枢电压 C.改变电枢电流 D.改变电枢回路电阻

“开环控制”与“闭环控制”的区别

开环控制与闭环控制的区别 “开环控制”与“闭环控制”的区别就在于控制系统中有无反馈环节,所谓闭环控制就是存在反馈环节的控制。这样的系统能够适时地检测控制的输出结果,并将检测到的信息通过反馈环节反映到输入端,调整输入量,达到修正控制误差、提高控制精确度的目的。反馈技术被广泛应用在各种需要精确控制的系统中,尤其是电子控制系统,比如:各种放大电路中的增益控制;环境的温度、湿度、水位、压力的控制;机械结构的位置控制、速度控制等等。因此常常使人觉得:闭环控制是复杂的、精确的、自动的控制方式,而开环控制相对的简单、粗糙和非自动。这种感觉常常造成初学者在分析系统时的误判,需要特别注意。 以普通家用压力锅的温度控制过程为例,在密闭状态下,锅内的温度与压力呈对应关系。加热锅体,锅内温度逐步升高,锅内压力也随之升高;当锅内的压力达到设定值时,高压将顶开压在排气阀上的重锤,排出蒸汽,使锅内压力降低,压力的降低又造成温度的降低。由于重锤的重量是恒定,因此当温度达到设定值之后,加热量和排气量将呈动态平衡,锅内压力保持在高于大气压力的一个恒定值上,锅内温度也保持在高于常压水的沸点温度的一个恒定值上(一般为110℃左右),不再继续升高。过程如下图所示: 分析这样一个控制问题,首先要界定所考察的系统范围。从整体效果上看,该控制过程的输入量是加热锅体,加热锅体导致的三个结果:锅体升温、锅内升压以及排气孔排气,都是输出量,而输出量并未反馈回来影响输入量,因此它是一个开环控制系统。而更细致的分析,应该把升温过程与恒压/恒温过程分别进行分析。分析时考察的系统范围不同,结论也不同。 ①压力锅的加热、升温、升压过程 把加热炉具与压力锅看成一个系统,压力锅体因外部加热而升温,分析加热的过程。输入量——接通电源或点火,输出量——锅体升温、锅内升压以及排气孔排气。控制过程如下图所示,与用炉火加热普通锅体的过程相同,属于开环自动控制。

单容水箱液位恒值控制系统设计

过程控制系统课程设计 专业:自动化 设计题目:单容水箱液位恒值控制系统设计 班级:自动化0841学生姓名:王欢 学号:15 指导教师:尹振红 分院院长:许建平 教研室主任:方健 电气工程学院

一、课程设计任务书 1. 设计内容 针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。 2. 设计要求 1)以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。 2)PLC控制器采用PID算法,各项控制性能满足要求:超调量≤15%,稳态误差≤±0.1;调节时间ts≤60s; 3)组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线;并能显示历史曲线。 4)选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数; 5)通过S7-200PLC编程软件Step7实现PLC程序设计与调试; 6)分析系统基本控制特性,并得出相应的结论; 7)设计完成后,提交打印设计报告。 3. 参考资料 1)邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.2003 2)崔亚嵩主编.过程控制实验指导书(校内) 3)廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.2007 4)吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.2007 4. 设计进度(2011年12月5日至2011年12月19日) 时间设计内容 2011.12.5 布置设计任务、查阅资料、进行硬件系统设计 2011.12.6~7 编制PLC控制程序,并上机调试;

相关主题
文本预览
相关文档 最新文档