任意角与弧度制-知识点汇总
- 格式:docx
- 大小:111.90 KB
- 文档页数:6
任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。
2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。
【要点梳理】 要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角 终边相同的角为{}|360k k Z βββα∈=+∈og ,角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 3.常用的象限角α是第一象限角,所以(){}|36036090,k k k Z αα<<+∈o o o g g α是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈o o o o g g α是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈o o o o g g α是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈o o o o g g要点二:弧度制 1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算弧度与角度互换公式: 180rad π︒=1rad=0180π⎛⎫ ⎪⎝⎭≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】类型一:终边相同的角的集合例1.在与10030°角终边相同的角中,求满足下列条件的角。
高三数学一轮复习知识点专题专题专题4.1 任意角和弧度制及任意角的三角函数【考情分析】1.了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义. 【重点知识梳理】 知识点一 角的概念 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧ 正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合:S ={β|β=α+k ·360°,k ∈Z}或{β|β=α+2k π,k ∈Z}.知识点二 弧度制及应用 1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.弧度制下的有关公式知识点三 任意角的三角函数有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线【典型题分析】高频考点一 象限角的判断【例1】(2020·新课标Ⅱ)若α为第四象限角,则( ) A. cos2α>0 B. cos2α<0C. sin2α>0D. sin2α<0【答案】D 【解析】当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确;【变式探究】(2020·黑龙江省宁安市一中模拟)设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅【答案】B【解析】由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B 。
知识点:1.弧度制(1)弧度制的定义长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.(2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是零.(3)角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是2.角度制与弧度制的换算(1)(2)一些特殊角的度数与弧度数的对应关系视频教学:练习:1.将表的分针拨慢20分钟,则分针转过的角的弧度是( )A. B. C. D.2.集合,,则有( )A. B. C. D.3.与角的终边相同的角的表达式中,正确的是( )A. B. C. D.4.若扇形的半径为2,面积为,则它的圆心角为( )A. B. C. D.5.已知扇形的圆心角为,半径为,则此扇形的面积为( )A. B. C. D.课件:教案:教材分析前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程一、情景导入度量单位可以用米、英尺、码等不同的单位制,度量质量可以用千克、磅等不同的单位制,不同的单位制能给解决问题带来方便.角的度量是否也可以用不同的单位制呢?能否像度量长度那样,用十进制的实数来度量角的大小呢?要求:让学生自由发言,教师不做判断。
三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。
α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。
终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。
终边落在坐标轴角的集合为__________________。
象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。
第三象限的角的集合为_________________;第四象限的角的集合为____________。
例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。
(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。
1.1任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角,记作:角或 可以简记成。 2、角的分类:
由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、(1)A={小于90°的角},B={第一象限的角},则A∩B= (填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、 C关系是( ) A.B=A∩C B.B∪C=C C.AC D.A=B=C 4、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0到360的角与)(Zkk个周角的和。 (2)所有与终边相同的角连同在内可以构成一个集合 即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和 注意: 1、Zk 2、是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若角的终边与58角的终边相同,则在2,0上终边与4的角终边相同的角
为 。 (2)若和是终边相同的角。那么在
例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)210; (2)731484. 例3、求,使与900角的终边相同,且1260180,. 2、终边在坐标轴上的点: 终边在x轴上的角的集合: Zkk,180| 终边在y轴上的角的集合:Zkk,90180| 终边在坐标轴上的角的集合:Zkk,90| 3、终边共线且反向的角: 终边在y=x轴上的角的集合:Zkk,45180| 终边在xy轴上的角的集合:Zkk,45180| 4、终边互相对称的角: 若角与角的终边关于x轴对称,则角与角的关系:k360 若角与角的终边关于y轴对称,则角与角的关系:180360k 若角与角的终边在一条直线上,则角与角的关系:k180 角与角的终边互相垂直,则角与角的关系:90360k 例1、若360k,),(360Zmkm则角与角的中变得位置关系是( )。 A.重合 B.关于原点对称 C.关于x轴对称 D.有关于y轴对称 二、弧度与弧度制 1、弧度与弧度制: 弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度 定义:长度等于 的弧所对的圆心角称为1弧度的角。
如图:AOB=1rad ,AOC=2rad , 周角=2rad 注意: 1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 2、角的弧度数的绝对值 rl(l为弧长,r为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。 4、在同一个式子中角度、弧度不可以混用。 2、角度制与弧度制的换算 弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360= rad 180= rad
∴ 1=radrad01745.0180 '185730.571801rad 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 例1、 把'3067化成弧度例 例2、 把rad53化成度 例3、将下列各角从弧度化成角度 (1)36 rad (2)2.1 rad? (3) rad53 3、弧长公式和扇形面积公式 rl ;
2
212
1rlRS
练习题 一、选择题 1、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630° 2、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是 ( ) A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°
3、终边在第二象限的角的集合可以表示为: ( )
A.{α∣90°B.{α∣90°+k·180°
o r C 2rad 1rad r l=2r o A A B C.{α∣-270°+k·180°D.{α∣-270°+k·360°4、下列命题是真命题的是( ) Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是锐角
C.不相等的角终边一定不同D.Zkk,90360|=Zkk,90180| 5、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( ) A.B=A∩C B.B∪C=C C.AC D.A=B=C 6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( ) A.① B.①② C.①②③ D.①②③④
7、若α是第一象限的角,则-2是( ) A.第一象限的角 B.第一或第四象限的角 C.第二或第三象限的角 D.第二或第四象限的角 8、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等 9、集合A={α|α=k·90°,k∈N+}中各角的终边都在( ) A.x轴的正半轴上 B.y轴的正半轴上 C.x轴或y轴上 D.x轴的正半轴或y轴的正半轴上 10、α是一个任意角,则α与-α的终边是( ) A.关于坐标原点对称 B.关于x轴对称C.关于直线y=x对称D.关于y轴对称 11、集合X={x|x=(2n+1)·180°,n∈Z},与集合Y={y|y=(4k±1)·180°,k∈Z}之间的关系是( ) A.XY B.XY C.X=Y D.X≠Y 12、设α、β满足-180°<α<β<180°,则α-β的范围是( ) A.-360°<α-β<0° B.-180°<α-β<180° C.-180°<α-β<0° D.-360°<α-β<360° 13、下列命题中的真命题是 ( ) A.三角形的内角是第一象限角或第二象限角 B.第一象限的角是锐角 C.第二象限的角比第一象限的角大
D.角α是第四象限角的充要条件是2kπ-2<α<2kπ(k∈Z) 14、设k∈Z,下列终边相同的角是 ( ) A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90° C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60°
15、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )
A.2 B.1sin2 C.1sin2 D.2sin 16、设角的终边上一点P的坐标是)5sin,5(cos,则等于 ( ) A.5 B.5cot C.)(1032Zkk D.)(592Zkk 17、若90°<-α<180°,则180°-α与α的终边 ( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.以上都不对
18、设集合M={α|α=k,k∈Z},N={α|-π<α<π},则M∩N等于 ( )
A.{-3,} B.{-4,7} C.{-4,107,3,} D.{07,03 } 19、“21sinA”“A=30o”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
20、中心角为60°的扇形,它的弧长为2,则它的内切圆半径为 ( )
A.2 B.3 C.1 D.23 21、设集合M={α|α=kπ±,k∈Z},N={α|α=kπ+(-1)k,k∈Z}那么下列结论中正确的是 ( ) A.M=N B.MN C.NM D.MN且NM 二、填空题
22、若角α是第三象限角,则2角的终边在 . 23、与-1050°终边相同的最小正角是 . 24、已知是第二象限角,且,4|2|则的范围是 .
任意角的三角函数练习题一、选择题1. 设角属于第二象限,且2cos2cos,则
2角属于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各
函数值:①)1000sin(0;②)2200cos(0;③)10tan(;④917tancos107sin. 其中符号为负的有( )A. ① B. ② C. ③ D. ④3. 02120sin等于( )A. 23 B. 23 C. 23 D. 214. 已知4sin5,并且是第二象限的角,那么tan的值等于( )A. 43
B. 34 C. 43 D. 345.若θ∈(5π4 ,3π2 ),则1-2sinθcosθ 等于 A.cosθ-sinθ B.sinθ+cosθ