非常好的定积分与微积分基本定理复习讲义
- 格式:doc
- 大小:246.50 KB
- 文档页数:13
课题:定积分与微积分基本定理考纲要求:① 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念 . ② 了解微积分基本定理的含义. 教材复习1.定积分()1积分的定义及相关概念如果函数()f x 在区间[],a b 上连续,用分点0122n n a x x x x x b -=<<<<<=,将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,i =…,n ),作和式1()ni i b af n ξ=-∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰.其中, 与 分别叫做积分下限与积分上限,区间[],a b 叫做积分区间, 叫做被积函数, 叫做积分变量,()f x dx 叫做被积式.()2定积分的性质:①1ba dx =⎰;②()bakf x dx =⎰ (k 为常数);③[]()()baf xg x dx ±=⎰ ;()b af x dx =⎰()3定积分的几何意义:① 当函数()f x 在区间[],a b 上恒正时,定积分()baf x dx ⎰的几何意义是由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积(左图中的阴影部分)即()baS f x dx =⎰; 当()f x ≤0时,()baS f x dx ==⎰()baf x dx ⎰.② 一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲边()f x以及直线x a =,x b =之间的曲边梯形的面积的代数和(右图中的阴影部分),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上的积分值的相反数.2.微积分基本定理如果()f x 是区间[],a b 上的连续函数,并且()()F x f x '=,那么()baf x dx =⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式.3.定积分的应用()1曲边梯形的面积:一般地,设由曲线()y f x =,()y g x =以及直线,x a x b ==所围成的平面图形的面积为S ,则S = (()()f x g x >).()2匀变速运动的路程公式:作变速直线运动的物体所经过的路程s,等于其速度函数()v v t =(()0v t ≥)在时间区间[],a b 上的定积分,即 ()bas v t dt =⎰.()3简单几何体的体积:若几何体是由曲线()y f x =与直线,x a x b ==以及x 轴所围成的区域绕x 轴旋转一周得到的,则其体积为V =基本知识方法:1.求定积分有两种途径:牛顿-莱布尼兹公式和定积分的几何意义;当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.2.若()f x 是[],a a -连续的奇函数,则()aaf x dx -=⎰ ;若()f x 是[],a a -连续的偶函数,则()aaf x dx -=⎰()af x dx ⎰典例分析:考向一 定积分的计算(考虑牛顿-莱布尼兹公式和定积分的几何意义) 问题1.计算下列积分:()1221x dx ⎰; ()20(sin cos )x x dx π-⎰; ()32132xdx -⎰;()41-⎰; ()5()11cos 5sin x x x dx --⎰考向二 利用定积分求面积 问题2.求下图中阴影部分的面积.解:考向三 定积分的应用问题3.()1一物体以()238v t t t =-+()m s 的速度运动,在前30s 的平均速度为()2(2012福建)如图所示,在边长为1 的正方形OABC中任取一点P ,则点P 恰好取自阴影部分的概率为.A 14 .B 15 .C 16 .D 17课后作业:1.计算定积分:①220sin 2xdx π⎰; ②()0cos x x e dx π-+⎰;③;④⎰2. (2013届高三西工大附中六模))1x dx ⎰=3. (2013届高三湖北武汉调研)2302cos 12x dx π⎛⎫-= ⎪⎝⎭⎰.A -.B 12-.C 12.D走向高考:1.(2013北京)直线l 过抛物线C :24x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 .A 43 .B 2 .C 83 .D 32.(2013江西)若2211S x dx =⎰,2211S dx x=⎰,231,x S e dx =⎰则123,,S S S 的大小关系为.A 123S S S << .B 213S S S << .C 231S S S << .D 321S S S <<3.(2013湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()73v t t =-251t++(t 的单位:s ,v 的单位:/m s )行驶至停止.在此期间汽车继 续行驶的距离(单位;m )是.A 125ln5+ .B 11825ln 3+ .C 425ln5+ .D 450ln 2+4.(2013湖南)若209Tx dx =⎰,则常数T 的值为5.(2012江西)计算定积分()121sin xx dx -+=⎰6.(2010湖南) 421dx x⎰等于 .A 2ln 2- .B 2ln 2 .C ln 2- .D ln 2 7.(2011陕西)设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a =。
第十九讲定积分与微积分基本定理一学习目标1.理解定积分的概念和性质2.会运用微积分基本定理二知识梳理及拓展在ʃb a f(x)dx中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。
(1)ʃb a kf(x)dx=kʃb a f(x)dx(k为常数);(2)ʃb a[f1(x)±f2(x)]dx=ʃb a f1(x)dx±ʃb a f2(x)dx;(3)ʃb a f(x)dx=ʃc a f(x)dx+ʃb c f(x)dx(其中a<c<b).一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)dx=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F(x)叫做f(x)的一个原函数.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)dx=F(x)|b a=F(b)-F(a).三考点梳理考点1:定积分的性质【例1】定积分ʃ20|x-1|dx=________.【例2】定积分ʃ1-1(x2+sin x)dx=________.考点2:利用函数的性质计算定积分【例3】定积分325425sin21x xdxx x-++⎰=________.【例4】定积分()111x dx -+⎰=________. 考点3:利用几何意义计算定积分 【例5】定积分1201x dx -⎰=________.【例6】定积分322166x x dx -+-⎰=________.四 课后习题1.若ʃT 0x 2d x =9,则常数T 的值为________.2.如图所示,曲线y =x 2和直线x =0,x =1及y =14所围成的图形(阴影部分)的面积为( )A.23 B.13C.12D.143..计算下列定积分:(1)ʃ2-2|x 2-2x |d x(2)ʃ20(x -1)d x(3)ʃ1-1(x 2+sin x )d x(4) ʃ1-1(1-x 2+e x -1)d x课后习题答案1. 3 [解析] ∵ʃT 0 x 2d x =13x 3|T 0=13×T 3=9. ∴T 3=27,∴T =3.2.D [解析] 由x 2=14,得x =12或x =-12(舍),则阴影部分的面积为S =ʃ120(14-x 2)d x +ʃ112(x 2-14)d x =(14x -13x 3)|120+(13x 3-14x )|112=14.3. (1) ʃ2-2|x 2-2x |d x =ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x = (x 33-x 2)|0-2+(x 2-x 33)|20=83+4+4-83=8. (2) ʃ20(x -1)d x =(12x 2-x )|20=12×22-2=0. (3) ʃ1-1(x 2+sin x )d x = ʃ1-1x 2d x +ʃ1-1sin x d x = 2ʃ10x 2d x =2·x 33|10=23. (4)ʃ1-1(1-x 2+e x -1)d x = ʃ1-11-x 2d x +ʃ1-1(e x -1)d x .因为ʃ1-11-x 2d x 表示单位圆的上半部分的面积,即ʃ1-11-x 2d x =π2, 而ʃ1-1(e x -1)d x =(e x -x )|1-1 = (e 1-1)-(e -1+1)=e -1e-2, 所以ʃ1-1(1-x 2+e x -1)d x = π2+e -1e -2.。
3.3 定积分与微积分基本定理必备知识预案自诊知识梳理1.定积分的定义如果函数f (x )的图像在区间[a ,b ]上连续,用分点a=x 0<x 1<…<x i-1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i-1,x i ]上任取一点ξi (i=1,2,…,n ),作和式∑i=1nf (ξi )Δx=∑i=1n b -a nf (ξi ),当n →+∞时,上述和式无限接近某个常数,这个常数叫作函数f (x )在区间[a ,b ]上的定积分,记作∫baf (x )d x.2.定积分的几何意义(1)当函数f (x )的图像在区间[a ,b ]上连续且恒有f (x )≥0时,定积分∫baf (x )d x 的几何意义是由直线x=a ,x=b (a ≠b ),y=0和曲线y=f (x )所围成的曲边梯形(图①中阴影部分)的面积.图①图②(2)一般情况下,定积分∫baf (x )d x 的几何意义是介于x 轴、曲线y=f (x )以及直线x=a ,x=b之间的曲边梯形(图②中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.3.定积分的性质(1)∫ba kf (x )d x= (k 为常数); (2)∫ba [f (x )±g (x )]d x= ;(3)∫baf (x )d x= (其中a<c<b ).4.微积分基本定理一般地,如果f (x )是图像在区间[a ,b ]上连续的函数,并且F'(x )=f (x ),那么∫baf (x )d x= .这个结论叫作微积分基本定理,又叫作牛顿—莱布尼茨公式,其中F(x)叫作f(x)的一个原函数.为了方便,我们常把F(b)-F(a)记作,即∫ba f(x)d x=F(x)|a b=F(b)-F(a).5.定积分在物理中的两个应用(1)变速直线运动的路程:如果变速直线运动物体的速度为v=v(t),那么从时刻t=a到t=b所经过的路程s=∫ba v(t)d t.(2)变力做功:某物体在变力F(x)的作用下,沿着与F(x)相同的方向从x=a移动到x=b时,力F(x)所做的功是W=∫baF(x)d x.1.定积分与曲边梯形的面积的关系:设图中阴影部分的面积为S,则(1)如图(1),S=∫baf(x)d x;(2)如图(2),S=-∫baf(x)d x;(3)如图(3),S=∫ca f(x)d x-∫bcf(x)d x;(4)如图(4),S=∫ba[f(x)-g(x)]d x.2.设函数f(x)在闭区间[-a,a]上连续,则有:(1)若f(x)是偶函数,∫a-a f(x)d x=2∫af(x)d x;(2)若f(x)是奇函数,则∫a-af(x)d x=0.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)若函数y=f(x)的图像在区间[a,b]上连续,则∫ba f(x)d x=∫b a f(t)d t.()(2)若f(x)是图像连续的偶函数,则∫a-a f(x)d x=2∫af(x)d x;若f(x)是图像连续的奇函数,则∫a-af(x)d x=0.()(3)在区间[a,b]上连续的曲线y=f(x)和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=∫ba|f(x)|d x.() (4)若∫baf(x)d x<0,则由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.()(5)已知质点移动的速度v=10t,则质点从t=0到t=t0所经过的路程是∫t010t d t=5t02.()2.已知函数f(x)={√x,1<x≤4,x|x|,-1≤x≤1,则∫4-1f(x)d x=()A.14B.143C.7D.2123.汽车以v=(3t+2)m/s做变速运动时,在第1 s至2 s之间的1 s内经过的路程是()A.5 mB.112mC.6 mD.132m4.(2020湖南师大附中测试)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2√2B.4√2C.2D.45.(2020江西南昌模拟)设a>0,若曲线y=√x与直线x=a,y=0所围成的封闭图形的面积为a2,则a=.关键能力学案突破考点定积分的计算【例1】计算下列定积分.(1)∫1(-x2+2x)d x;(2)∫π(sin x-cos x)d x;(3)∫21(e2x+1x)d x;(4)∫π2√1-sin2x d x.?解题心得计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分.(3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.对点训练1(1)∫3-1(3x2-2x+1)d x;(2)∫21(x-1x)d x;(3)∫π-π(x3cos x)d x;(4)∫2|1-x|d x.考点利用定积分的几何意义求定积分【例2】已知函数f(x)={-x+2,x≤2,√1-(x-3)2,2<x≤4,则定积分∫412f(x)d x的值为()A.9+4π8B.1+4π4C.1+π2D.3+2π4?解题心得当被积函数的原函数不易求,而被积函数的图像与直线x=a,x=b,y=0所围成的曲边图形形状规则,面积易求时,利用定积分的几何意义求定积分.对点训练2(2020四川成都一中测试)∫1-1(√1-x2+sin x)d x=()A.π4B.π2C.πD.π2+2考点定积分的应用(多考向探究)考向1求曲线围成的平面图形的面积【例3】(1)如图所示,曲线y=x2-1,x=2,x=0,y=0围成的阴影部分的面积为() A.∫2|x2-1|d xB.∫21(1-x2)d x+∫1(x2-1)d xC.∫2(x2-1)d xD.∫21(x2-1)d x+∫1(1-x2)d x(2)(2020云南昆明一中测试)如图是函数y=cos2x-5π6在一个周期内的图像,则阴影部分的面积是()A.34B.5 4C.3 2D.32−√34?2已知曲线围成的面积求参数【例4】(2020安徽合肥摸底)由曲线f(x)=√x与y轴及直线y=m(m>0)围成的图形的面积为83,则m的值为()B.3C.1D.8?3定积分在概率中的应用【例5】(2020山西太原联考)如图,在矩形ABCD中的曲线是y=sin x,y=cos x的一部分,点A(0,0),B(π2,0),D(0,1),在矩形ABCD内随机取一点,则此点取自阴影部分的概率是()A.4π(√3-1) B.4π(√2-1) √3-1)π D.4(√2-1)π?4定积分在物理中的应用【例6】(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+251+t(t 的单位:s,v的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是()A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2(2)一物体在力F (x )={5,0≤x ≤2,3x +4,x >2(单位:N )的作用下沿与力F 相同的方向从x=0处运动到x=4(单位:m)处,则力F (x )做的功为 J .?解题心得1.对于求平面图形的面积问题,应首先画出平面图形的大致图形,然后根据图形特点,选择相应的积分变量及被积函数,并确定被积区间.2.已知图形的面积求参数,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再应用方程的思想建立关于参数的方程,从而求出参数的值.3.与概率相交汇问题.解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.4.利用定积分解决变速运动问题和变力做功问题时,关键是求出物体做变速运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.对点训练3(1)如图,由两条曲线y=-x 2,y=-14x 2及直线y=-1所围成的平面图形的面积为 .(2)已知t>1,若∫t1(2x+1)d x=t 2,则t= .(3)如图所示,在一个边长为1的正方形AOBC 内,曲线y=x 3(x>0)和曲线y=√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.512B.16C.14D.13(4)汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以加速度a=-2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是 m .(5)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x=1运动到x=10,已知F (x )=x 2+1,且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为 J(x 的单位:m;力的单位:N).1.求定积分的方法:(1)利用定义求定积分,可操作性不强. (2)利用微积分基本定理求定积分的步骤如下: ①求被积函数f (x )的一个原函数F (x );②计算F (b )-F (a ).(3)利用定积分的几何意义求定积分. 2.定积分∫baf (x )d x 的几何意义是x 轴、曲线f (x )以及直线x=a ,x=b 围成的曲边梯形的面积的代数和.在区间[a ,b ]上连续的曲线y=f (x )和直线x=a ,x=b (a ≠b ),y=0所围成的曲边梯形的面积S=∫ba |f (x )|d x.1.被积函数若含有绝对值号,应去掉绝对值号,再分段积分.2.若积分式子中有几个不同的参数,则必须分清谁是被积变量.3.定积分式子中隐含的条件是积分上限大于积分下限.4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.3.3 定积分与微积分基本定理必备知识·预案自诊知识梳理3.(1)k ∫ba f (x )d x(2)∫ba f (x )d x ±∫ba g (x )d x (3)∫c af (x )d x+∫bcf (x )d x4.F (b )-F (a ) F (x )|ab 考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.B 函数f (x )={√x ,1<x ≤4,x |x |,-1≤x ≤1,则∫4-1f (x )d x=∫1-1x|x|d x+∫41√x d x=0+23x 3214=143.故选B .3.D S=∫21(3t+2)d t=(32t 2+2t) 12=92+2=132.故选D .4.D 由{y =4x ,y =x 3,得x=0或x=2或x=-2(舍),∴S=∫2(4x-x 3)d x=2x 2-14x 402=4.5.49 封闭图形如图阴影部分所示,则∫a√x d x=23x 32 0a =23a 32=a 2,解得a=49.关键能力·学案突破例1解(1)∫1(-x 2+2x )d x=∫1(-x 2)d x+∫12x d x=(-13x 3) 01+(x 2) 01=-13+1=23. (2)∫π0(sinx-cosx )dx=∫π0sinxd x-∫πcos x d x=(-cos x ) π0-sin x π0=2.(3)∫21(e 2x +1x )dx=∫21e 2x dx+∫211x x=12e d 2x12ln x 12=12e+4-12e 2+ln2ln1=e-4-12e 122+ln2. (4)∫π2√1-sin2x dx=∫π2|sinx-cos x|d x=∫π4(cos x-sin x )d x+∫π2π4(sin x-cos x )d x=(sinx+cos x ) 0π4+(-cos x-sin x ) π4π2=√2-1+(-1+√2)=2√2-2.对点训练1解(1)∫3-1(3x 2-2x+1)d x=(x 3-x 2+x )|-13=24. (2)∫21(x -1x )d x=12x 2-ln x 12=32-ln2.(3)因为y=x 3cos x 为奇函数, 所以∫π-π(x 3cos x )d x=0.(4)∫2|1-x|dx=∫1(1-x)dx+∫21(x-1)d x=(x -12x 2) 01+12x 2-x 12=(1-12)-0+12×22-2-12×12-1=1.例2A 因为f (x )={-x +2,x ≤2,√1-(x -3)2,2<x ≤4,所以∫412f (x )dx=∫212(-x+2)dx+∫42√1-(x -3)2d x ,∫212(-x+2)d x=-12x 2+2x122=98. ∫42√1-(x -3)2d x 的几何意义为以(3,0)为圆心,以r=1为半径的圆在x 轴上方的部分,因而S=12×π×12=π2, 所以∫412f (x )d x=98+π2=9+4π8.故选A .对点训练2B ∫1-1(√1-x 2+sin x )d x=∫1-1√1-x 2d x+∫1-1sin x d x ,∵y=sin x 为奇函数,∴∫1-1sin x d x=0. 又∫1-1√1-x 2d x 表示以坐标原点为圆心,以1为半径的圆的上半圆的面积,∴∫1-1√1-x 2d x=π2. ∴∫1-1(√1-x 2+sin x )d x=π2.例3(1)A (2)B (1)由曲线y=x 2-1,直线x=0,x=2和x 轴围成的封闭图形的面积为S=∫1(1-x 2)d x+∫21(x 2-1)d x.根据对称性,它和函数y=|x 2-1|,直线x=0,x=2和x 轴围成的封闭图形的面积相等,如图所示,即S=∫2|x 2-1|d x.(2)阴影部分的面积为S=-∫π6cos 2x-5π6d x+∫2π3π6cos 2x-5π6d x =-12sin 2x-5π60π6+12sin 2x-5π6π62π3= -12sin -π2-12sin -5π6+12sin π2−12sin -π2=14+1=54.故选B .例4A 由题知曲线f (x )=√x 与直线y=m 的交点为(m 2,m ),则∫m 20(m-√x )d x=mx-23x 320m 2=m 3-23m 3=83,解得m=2.例5BS 阴影=2∫π4(cos x-sin x )d x=2[sin x+cos x ] 0π4=2(√2-1),S ABCD =π2×1=π2,由测度比是面积比可得,此点取自阴影部分的概率是P=S 阴影SABCD=2(√2-1)π2=4π(√2-1).故选B .例6(1)C (2)36 (1)由v (t )=7-3t+251+t =0,可得t=4,t=-83(舍去),因此汽车从刹车到停止一共行驶了4s,此期间行驶的距离为∫40v (t )d t=∫47-3t+251+t d t=7t-32t 2+25ln(1+t )04=4+25ln5(m).(2)由题意知,力F (x )所做的功为W=∫42F (x )d x=∫425d x+∫42(3x+4)d x=5×2+32x 2+4x 24=10+32×42+4×4-32×22+4×2=36(J).对点训练3(1)43 (2)2 (3)A (4)25(5)342 (1)由{y =-x 2,y =-1得交点A (-1,-1),B (1,-1).由{y =-14x 2,y =-1得交点C (-2,-1),D (2,-1).所以所求面积S=2∫2(-14x 2+1)−∫1(-x 2+1)=43.(2)∫t1(2x+1)d x=(x 2+x ) 1t =t 2+t-2,从而得方程t 2+t-2=t 2,解得t=2.(3)此题为关于面积的几何概型,边长为1的正方形AOBC 的面积为1,叶形图(阴影部分)的面积S (A )=∫1(√x -x 3)d x=(23x 32-14x 4) 01=512. 所以所求概率P (A )=512.故选A .(4)t=0时,v 0=36km/h=10m/s ,刹车后,汽车减速行驶,速度为v(t)=v 0+at=10-2t ,由v (t )=0得t=5s,所以从刹车到停车,汽车所走过的路程为∫5v(t)dt=∫5(10-2t )d t=(10t-t 2)05=25(m).(5)变力F (x )=x 2+1使质点M 沿x 轴正向从x=1运动到x=10所做的功为W=∫101F (x )d x=∫101(x 2+1)d x=(13x 3+x) 110=342(J).。
定积分与微积分基本定理复习讲义[备考方向要明了]考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.3.考查曲边梯形面积的求解.4.与几何概型相结合考查.1.定积分(1)定积分的相关概念:在错误!错误!f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x 叫做积分变量,f(x)dx叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分错误!错误!f(x)d x 的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分错误!错误!f(x)dx的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质: ①错误!错误!kf(x)dx=k错误!错误!f(x)d x.②错误!错误![f1(x)±f2(x)]dx=错误!错误!f1(x)d x±错误!错误!f2(x)d x.③错误!错误!f(x)dx=错误!错误!f(x)d x+错误!错误!f(x)d x.[探究] 1.若积分变量为t,则错误!错误!f(x)dx与错误!错误!f(t)d t是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分错误!错误![f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么?提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积.2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么错误!错误!f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b)-F(a)记成F(x)错误!错误!,即错误!错误!f(x)dx=F(x)错误!错误! =F(b)-F(a).课前预测:1.错误!错误!错误!dx等于()A .2l n 2 B.-2ln 2 C.-l n 2 D.l n 22.(教材习题改编)一质点运动时速度和时间的关系为V(t)=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.\f(17,6) B.错误! C.错误! D.错误!3.(教材习题改编)直线x =0,x=2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.4.(教材改编题)错误!错误!错误!d x =________.5.由y =\f(1,x ),直线y =-x +\f(5,2)所围成的封闭图形的面积为________考点一 利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)错误!错误!(x 2+2x +1)d x ;(2)错误!错误!(si n x-cos x)d x ; (3)错误!错误!x (x +1)d x ;(4)错误!错误!错误!d x ; (5)20π⎰ sin 2错误!d x . ———————————————————求定积分的一般步骤:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分;(3)分别用求导公式找到一个相应的原函数;(4)利用牛顿—莱布尼兹公式求出各个定积分的值;(5)计算原始定积分的值.强化训练:1.求下列定积分:(1)错误!错误!|x -1|dx;(2) 20π⎰错误!d x .考点二 利用定积分的几何意义求定积分[例2] 错误!错误!错误!d x =________.变式:在本例中,改变积分上限,求错误!错误!错误!d x的值. ———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.强化训练:2.(2014·福建模拟)已知函数f (x)=错误!错误!(cos t -sin t )dt (x >0),则f (x)的最大值为________.考点三:利用定积分求平面图形的面积[例3] (2014·山东高考)由曲线y=x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B.4 C.\f (16,3) D.6变式训练:若将“y =x-2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?———————————————————利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差.(4)计算定积分,写出答案.强化训练:3.(2014·郑州模拟)如图,曲线y =x2和直线x =0,x=1,y =14所围成的图形(阴影部分)的面积为( )A.23 B .错误! C.错误! ﻩD .错误!考点四:定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a=-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?——————————————————— 1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t=b 所经过的路程为错误!错误!v (t )dt;如果做变速直线运动的物体的速度v关于时间t 的函数是v=v (t )(v (t )≤0),那么物体从时刻t =a 到t=b 所经过的路程为-错误!错误!v(t)dt.2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x=a 到x =b 所做的功为错误!错误!F(x )d x .强化训练:4.一物体在力F (x )=错误!(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A.44J B.46J C.48J D.50 J1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量;(2)定积分式子中隐含的条件是积分上限不小于积分下限;(3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例](2013·上海高考)已知函数y=f(x)的图象是折线段ABC,其中A(0,0),B错误!,C(1,0).函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为________.错误!1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:(1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形;(2)准确确定被积函数和积分变量.变式训练:1.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.错误! B.错误! C .错误! D .错误!2.(2014·山东高考)设a >0.若曲线y=x 与直线x =a ,y=0所围成封闭图形的面积为a 2,则a =________.定积分与微积分基本定理检测题一、选择题(本大题共6小题,每小题5分,共30分)1.错误!错误!错误!d x =( )A.l n x +12ln 2xB.\f(2,e)-1 C.32D.错误!2.(2012·湖北高考)已知二次函数y=f(x )的图象如图所示,则它与x轴所围图形的面积为( )A.2π5B.错误! C .错误! ﻩD.错误! 3.设函数f (x )=ax 2+b (a ≠0),若错误!错误!f (x)dx =3f(x 0),则x 0等于( )A .±1B .错误!C .±错误! D.24.设f (x )=错误!则错误!错误!f(x )d x =( )A.错误! B.错误! C .错误! D.不存在5.以初速度40 m/s 竖直向上抛一物体,t秒时刻的速度v =40-10t2,则此物体达到最高时的高度为( )A.错误! m B.错误! m C.错误! m D.错误! m6.(2013·青岛模拟)由直线x =-\f(π,3),x =错误!,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A .错误! B.1 C.错误! D .错误!二、填空题(本大题共3小题,每小题5分,共15分)7.设a =∫错误!si n x d x ,则曲线y =f (x )=xa x +ax -2在点(1,f (1))处的切线的斜率为________.8.在等比数列{an}中,首项a 1=错误!,a 4=错误!错误!(1+2x )d x,则该数列的前5项之和S 5等于________.9.(2013·孝感模拟)已知a ∈错误!,则当错误!错误!(cos x -s in x )d x 取最大值时,a =________.三、解答题(本大题共3小题,每小题12分,共36分)10.计算下列定积分: (1)20π⎰ s in2x d x ; (2)错误!错误!错误!2d x ; (3)120⎰e 2xd x . 11.如图所示,直线y=k x分抛物线y =x-x 2与x 轴所围图形为面积相等的两部分,求k 的值.12.如图,设点P 从原点沿曲线y=x 2向点A (2,4)移动,直线O P与曲线y =x 2围成图形的面积为S 1,直线OP与曲线y =x2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.备选习题1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在\f(1,2) s ~6 s 间的运动路程为________.2.计算下列定积分:(1)31-⎰ (3x 2-2x +1)d x ; (2)错误!错误!错误!d x.3.求曲线y=错误!,y =2-x ,y =-错误!x 所围成图形的面积.4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v (单位:m/s)与时间t (单位:s)满足函数关系式v (t )=错误!某公司拟购买一台颗粒输送仪,要求1 mi n行驶的路程超过7 673 m,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一?定积分与微积分基本定理复习讲义答案前测:1.D 2.A 3.错误! 4.错误!π 5.错误!-2ln 2例1:(1)错误!. (2)2. (3)错误!. (4)错误!e 4-错误!e 2+ln 2. (5)错误!.变式1:解:(1)|x -1|=错误!故错误!错误!|x -1|d x =错误!错误!(1-x )d x+错误!错误!(x -1)d x=错误!错误!错误!+错误!错误!错误!=错误!+12=1. (2)20π⎰错误!dx =20π⎰|sin x -c os x |d x =40π⎰ (c os x -si n x )dx +24ππ⎰ (sin x-cos x)dx =(sin x+cos x )40π+(-c os x -sinx ) 24ππ=错误!-1+(-1+错误!)=2错误!-2.例2:[自主解答] 错误!错误!错误!d x 表示y =错误!与x =0,x =1及y =0所围成的图形的面积由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0),又∵0≤x ≤1,∴y =错误!与x=0,x =1及y =0所围成的图形为错误!个圆,其面积为\f(π,4). ∴错误!错误!错误!d x=错误!.互动:解:错误!错误!错误!dx 表示圆(x-1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以 错误!错误!错误!d x =错误!.变式2. 错误!-1 例3.C 互动:错误!. 变式3.D 例4:[自主解答] a =-0.4 m/s 2,v0=72 km/h=20 m/s. 设t s 后的速度为v ,则v =20-0.4t .令v=0,即20-0.4 t =0得t =50 (s ).设列车由开始制动到停止所走过的路程为s,则s =错误!错误!v dt =错误!错误!(20-0.4t)d t =(20t -0.2t 2)错误!\o \al(50,0)=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动.变式4.46典例:[解析] 由题意可得 f (x )=错误!所以y =xf (x )=错误!与x轴围成图形的面积为120⎰10x 2dx +112⎰错误!未找到引用源。