中国土壤元素背景值基本统计量及其特征_魏复盛
- 格式:pdf
- 大小:374.60 KB
- 文档页数:6
N ●能源环保●表1 河南省土壤A 、B 、C 层背景值统计量及范围 单位:mg /kg (另注明者除外) 层 样 统 元 点 计?素 次 数量算 术几 何平均值标准差平均值标准差分布类型95(%)范围值 层 样 统 元 点 计?素 次 数量算 术几 何平均值标准差平均值标准差分布类型95(%)范围值Cu Pb Zn Cd Ni Cr H g A 40720.0 5.919.9 1.35对11.0-36.1B 25721.7 6.421.3 1.36对11.5-39.2C 33820.7 6.820.6 1.44对10.03-42.49A 40722.3 5.321.8 1.27对13.6-35.0B 25721.5 4.921.0 1.28对13.0-34.1C 33821.3 5.420.8 1.30对12.4-34.8A 40762.513.561.9 1.25对40.1-95.7B 25763.013.962.2 1.27正35.3-90.6C 33863.113.962.9 1.25正35.4-90.9A 4070.0650.0210.065 1.4对0.034-0.124B 2570.0620.0220.060 1.5对0.030-0.121C 3380.0580.0220.057 1.5对0.027-0.120A 40727.47.927.3 1.31对16.0-46.4B 25729.77.9129.1 1.31正13.9-45.5C 33829.68.930.0 1.33对11.9-47.3A 40563.214.462.5 1.26正34.5-91.9B 25665.815.065.4 1.25对42.0-102.0C 33565.318.164.8 1.31正38.2-109.8A 4070.0250.0130.026 2.0对0.007-0.097B 2560.0450.0140.025 2.0对0.007-0.093C 3360.0200.0110.020 2.0对0.005-0.076As Co V Mn F 有机质(%)p H A 4079.83.99.4 1.6对 4.0-21.7B 25711.04.310.4 1.48正 2.5-19.5C 33810.64.810.2 1.57正 1.1-20.2A 40711.53.611.3 1.39对 5.8-21.8B 25712.13.811.8 1.38对 6.2-22.5C 33812.33.912.2 1.43对 6.0-24.5A 407118.747.3118.21.575对47.6-293.1B 257106.438.4107.41.569对43.6-264.5C 337110.439.2112.01.553对46.5-269.9A 407567158570 1.35对316-1029B 257597189590 1.35对324-1075C 338618230605 1.44对293-1250A 407439139442 1.42对221-888B 255457159454 1.43对224-921C 336477167474 1.44对229-984A 382 1.390.83 1.35 2.13对0.30-6.10B 2550.760.490.71 2.2对0.15-3.32C 3340.590.370.57 2.5对0.10-3.35A 3737.71.07.6 1.2正5.8-9.6B 2298.00.78.0 1.1正6.6-9.4C 3067.90.87.9 1.1正6.4-9.4表2 国内外土壤环境背景值对比表 单位:mg /kg (另注明者除外) 元素 符号国内土壤背景值国外土壤背景值河南省土壤背景值黄河下游潮土背景值全国土壤背景值日本土壤背景值美洲大陆连片地区世界土壤背景值中位数95%范围值平均值95%范围值中位数95%范围值几何均值算术均值中位数全距中位数全距Cu 20.011.0-36.121.420.6-22.220.77.3-55.125.5024.8217<1-700302-250Pb 21.813.6-35.014.413.9-14.923.510.0-56.118.1017.1219<10-700352-300Zn 62.540.1-95.765.163.4-66.868.028.4-161.157.3054.8960<5-2500901-900Cd 0.0640.034-0.1240.0910.088-0.0940.0790.017-0.3330.380.330//0.350.01-2.00Ni 27.316.0-46.424.924.1-25.724.97.7-71.019.3018.5819<5-700502-750Cr 63.334.5-91.953.652.4-54.957.319.3-150.228.3025.67541-2000705-1500H g 0.0260.007-0.0970.0220.020-0.0240.0380.006-0.272////0.060.01-0.50As 9.8 4.0-21.712.9412.57-13.329.62.5-33.57.20 6.827.2<0.1-9760.1-40.0Co 11.2 5.8-21.810.259.87-10.6311.64.0-31.2//9.1<0.3-7080.05-6.50V 112.747.6-293.1//76.834.8-168.2//80<7-500903-500M n 560316-1029600578-623540130-1786450.3431.99600<200-7000100020-10000F 433221-888453441-463453191-1012////20020-700有机质(%)1.290.30-6.10//2.00.3-13.2//////p H 7.95.8-9.6//6.84.1-10.4//////河南省主要元素的土壤环境背景值河南省环境保护研究所 邵丰收 周皓韵 摘要 根据《河南省土壤环境背景值研究》成果,给出了河南省境内Cu 、Pb 、Zn 、Cd 、Ni 、Cr 、Hg 、As 、Co 、V 、M n 、F 、有机质等元素(项目)的背景值,分析了背景值在剖面上的分部特征,并与国内外背景值进行了比较。
土壤中重金属的背景值计算方法土壤中含有各种元素和化合物,其中一些是人体和生态系统所需的,但另一些则有害于生态和人类健康。
重金属就是一种危害性很高的污染物,尤其是在工业化快速发展的现代社会,土壤中重金属污染已成为一个严重问题。
因此,为了健康和环境保护,正确评估土壤中重金属的背景值很有必要。
1. 背景值的定义和意义背景值是指在特定区域内普遍存在的某种物质浓度,反映了该区域的基本环境状态。
土壤中的重金属背景值的计算可以提供基本参考,评估土壤污染状况,提供制定土壤污染防治措施的科学依据,保障人类健康和生态系统的稳定。
2. 重金属背景值计算方法(1)参考值方法参考值法是利用某些现有的相关标准或其他地区土壤的背景值进行参考,结合研究区域的地理、气象、土地利用等因素进行修正,得到所研究区域的背景值。
(2)累积频率分布法累积频率分布法是采用统计学方法,通过测量某种重金属在特定区域中各点的浓度,得出该区域所研究的重金属的背景值。
(3)地统计学方法地统计学方法可以通过建立高低值、方差与距离之间的关系,描绘出所研究区域中重金属偏差值的分布规律,从而得到背景值。
3. 背景值强调的注意事项(1)背景值的影响因素多样,需要引入多种影响因素,进行综合评价。
(2)背景值的数据来源是影响结果的重要因素,因此应该选用可靠的数据来源的数据。
(3)背景值的测量需要遵循严格的测量方法,确保测量数据准确可信。
(4)土壤重金属背景值是不断变化的,并且会受到区域特征、时间影响,因此需要定期更新。
总之,在重金属污染日益严重的情况下,土壤中重金属的背景值计算对于地球生命系统的健康具有重要影响。
为了减轻土壤污染的影响,降低人类和环境的健康风险,不但要加强对环境污染的监测和管理,并且应持续深入研究土壤重金属背景值的计算。
这样银发世代、银色友人、银发善行者、养老机构等人们的生活、教育、休闲方面的需求都能更好地得到满足,提升银居领域社会发展水平。
重金属污染、危害及其防治斑斓山石,奔腾河流,幽闭静水,传承下来的地球上所有的美景,我们却无法将美丽延续。
这是一个急速发展的时代,资金快速流动,观念快速变换。
但并非所有的变化都如繁星替代晚霞般优雅美丽,当黑色的石油在地球动脉中流淌,当二氧化硫揉杂进碧蓝天空时,没有人能挽留住所有美景。
对地球生存环境的关爱和保护,不仅仅是生存的需要,更是人类发展历程中不可缺少的心灵净化器。
只有这样,才能源源不断地从大自然中汲取无数灵感和创意,令我们的生活更加美好。
2021年4月初,我国首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》获得国务院正式批复,防治规划力求控制5种重金属。
本刊就重金属污染、危害及其防治等问题专访了我国环境监测专家、中国工程院院士魏复盛。
他的环保科技研究与中国环保事业共同起步,2021年,媒体评他为“改革开放30年中国环保人物”,当新中国工业发展所带来的环境问题的端倪呈现在他面前时,深深震撼了他,使他转向环境污染与健康的研究。
本刊记者:2021年4月初,我国首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》将重金属污染问题提高到国家意志,我们必须进一步提高认识。
首先请魏院士您谈谈人体和地壳元素的相关性好吗?魏复盛院士:人类在长期的进化过程当中,跟地球发生物质和能量的交换,已经达到了一个动态平衡,人体血液中几十种元素与地壳元素的平均值(丰度)有很好的相关性即是证明。
我们人体血液当中的元素跟地壳的丰度值关系非常明显。
说明我们人类和地球之间发生物质和能量交换至今已经达到了一个平衡。
人体对外界环境因素的反应性,随着“量变”过渡到“质变”。
有害因素要达到一定的数量才能产生有害;即使是有益的必需元素超过允许摄入量也会变成有害。
因此我们不能以“有无”论是非,而要以“量的多少”论长短。
在工业化之后,许多深埋在地下的重金属、类金属元素被挖掘出来,并被广泛使用,造成环境污染,破坏了人体元素与外界环境平衡,从而引发健康问题。
山东省土壤地球化学背景值庞绪贵;王增辉;赵西强;曾宪东;任文凯;代杰瑞;胡雪平;宋志勇;喻超;陈磊;张华平;刘华峰;王红晋【摘要】自2003年开始,历时15余年,在山东省开展了表层土壤地球化学调查,基本查明了全省土壤地球化学背景值.表层土壤样品采样密度为1点/km2,4 km2组合成1件分析样品,分析测试Ag,As,Au,B等54项指标;统计并研究了这些指标土壤地球化学参数,确定了山东省土壤地球化学背景值,为山东省基础地质研究及地质找矿与区划等提供了基础数据.【期刊名称】《山东国土资源》【年(卷),期】2018(034)001【总页数】5页(P39-43)【关键词】地球化学调查;表层土壤;背景值;基础数据;山东省【作者】庞绪贵;王增辉;赵西强;曾宪东;任文凯;代杰瑞;胡雪平;宋志勇;喻超;陈磊;张华平;刘华峰;王红晋【作者单位】山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013【正文语种】中文【中图分类】P595;X142土地质量地质调查(也称生态地球化学调查)是一项基础性、公益性、战略性的地质调查与研究工作。
山东省地质调查院自2003年开始,历时15余年,组织实施了山东省黄河下游流域生态地球化学调查、山东省乐陵—河口地区多目标区域地球化学调查、山东省东部地区农业生态地球化学调查、山东省中南部地区农业生态地球化学调查。
至此,实现了全省陆域范围1∶25万土地质量地质调查工作全覆盖。
农用地土壤中汞元素形态特征浅析
农用地土壤中汞元素形态特征浅析
以第四纪沉积物厚覆盖区农用地表层土壤汞元素为研究对象,分析了汞的水溶态、离子交换态、碳酸盐态、铁锰氧化态、腐殖酸态、强有机结合态、残渣态等7种形态存在特征,研究表明残渣态的含量比例与全量呈正相关关系,其他6种类型形态含量比例则与全量呈负相关关系,农用地土壤中汞的增量主要为残渣态的汞.
作者:何中发方正孙彦伟李金柱夏晨温晓华张琢刘文长江思珉 He Zhongfa Fang Zheng Sun Yanwei Li Jinzhu Xia Chen Wen Xiaohua Zhang Zhuo Liu Wenzhang Jiang Simin 作者单位:何中发,方正,孙彦伟,李金柱,夏晨,温晓华,张琢,He Zhongfa,Fang Zheng,Sun Yanwei,Li Jinzhu,Xia Chen,Wen Xiaohua,Zhang Zhuo(上海市地质调查研究院,上海,200072)
刘文长,Liu Wenzhang(国土资源部合肥矿产资源监督监测中心,合肥,230001)
江思珉,Jiang Simin(同济大学水利工程系,上海,200092)
刊名:上海地质英文刊名:SHANGHAI GEOLOGY 年,卷(期):2009 ""(1) 分类号:S1 关键词:农用地重金属汞元素形态特征。
页岩气钻屑中的重金属成分研究卢邦俊【摘要】本文对页岩气开采过程中产生的各种钻屑中的重金属含量进行了分析.结果表明,按照浸出毒性浸出方法处理的样品中,重金属含量均较低;按照微波消解方法处理的样品中,清水钻屑、水基钻屑中的重金属含量也较低,但处理后的油基钻屑中重金属含量较高,其主要来源可能是钻井中使用的加重剂.【期刊名称】《能源环境保护》【年(卷),期】2015(029)005【总页数】2页(P33-34)【关键词】页岩气;钻屑;重金属【作者】卢邦俊【作者单位】重庆市涪陵环境监测中心,重庆408000【正文语种】中文【中图分类】X830.22013年9 月,国家能源局批复设立“重庆涪陵国家级页岩气示范区”,涪陵焦石坝也成为我国首个实现商业化开发的页岩气田。
页岩气开采过程中不可避免地产生各种固体废物,主要是钻屑,根据钻井中使用的钻井液的不同,可以分为清水钻屑、水基钻屑和油基钻屑。
各种钻屑,尤其是油基钻屑,有机物、油类、加重剂含量较高。
重金属是我国土壤污染的重要因素,可以经过富集进入食物链,造成有毒物质在人体内的聚集[1-4]。
因此,钻屑中的重金属含量将影响到其最终的综合利用方式是否合理,环境是否可以承受。
1 实验部分1.1 仪器与试剂原子吸收分光光度计:耶拿contrAA700型原子荧光分光光度计:吉天AFS-930型翻转式振荡器:湖南金蓉园仪器设备有限公司JRY-Z08型微波消解仪:MILESTONE ETHOS MPR-600型实验所用的金属标准溶液来自国家有色金属及电子材料分析测试中心,土壤标准样品(ESS-4)来自中国环境监测总站,硝酸、硫酸、氢氟酸均为优级纯,试验用水为去离子水。
1.2 实验方法随机采集清水钻屑、水基钻屑和油基钻屑(脱油处理后)各两份,各种钻屑经自然风干后,分别按照两种方式进行前处理,一种方式是采用《固体废物浸出毒性浸出方法硫酸硝酸法》(HJ 299-2007)规定的方法,浸出后,用《危险废物鉴别标准浸出毒性鉴别》(GB 5085.3-2007)推荐方法进行测定。
山东省17市土壤地球化学背景值庞绪贵;王增辉;赵西强;曾宪东;任文凯;王存龙;代杰瑞;陈磊;刘华峰;喻超;韩鎏;任天龙;胡雪平;王红晋【摘要】近20年来,利用财政资金,通过山东省黄河下游流域生态地球化学调查等4个项目,全面完成了山东省1∶25万土地质量地球化学调查与评价.该文以表层土壤Ag,As,Au,B等54项指标地球化学调查数据为基础,分行政区域,统计并研究了全省1 7市表层土壤地球化学参数及其特征,厘定了山东省1 7市土壤地球化学背景值,并与全国、全省背景值进行对比,分析了其差异性.【期刊名称】《山东国土资源》【年(卷),期】2019(035)001【总页数】11页(P46-56)【关键词】生态地球化学;表层土壤;背景值;基础数据;山东省;行政区域【作者】庞绪贵;王增辉;赵西强;曾宪东;任文凯;王存龙;代杰瑞;陈磊;刘华峰;喻超;韩鎏;任天龙;胡雪平;王红晋【作者单位】山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地矿工程勘察院,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南250014;山东省地质调查院,山东济南 250013;山东省土地质量地球化学与污染防治工程技术研究中心,山东济南 250014【正文语种】中文【中图分类】P595;X142土地质量地球化学调查是一项基础性、公益性、战略性的地质调查与研究工作。
2021年4月第2期第46卷昆明理工大学学报(自然科学版)JournalofKunmingUniversityofScienceandTechnology(NaturalSciences)Apr.2021No 2Vol 46doi:10.16112/j.cnki.53-1223/n.2021.02.05滇西保山-临沧地区土壤元素背景值特征及成因分析王乔林1,2,3,宋云涛1,2,3,王成文1,2,3,彭 敏1,2,3,韩 伟1,2,3,周亚龙1,2,3(1.中国地质科学院地球物理地球化学勘查研究所,河北廊坊065000;2.中国地质调查局土地质量地球化学调查评价研究中心,河北廊坊065000;3.中国地质科学院地球表层碳-汞地球化学循环重点实验室,河北廊坊065000)摘要:基于滇西保山-临沧地区土地质量地球化学调查数据资料,采用具有稳健特性的中位数表征表层土壤53种元素的地球化学背景值,对比了不同成土母质和不同用地类型元素分布特征和富集贫化规律,在此基础上采用因子分析从元素组合特征角度剖析了地球化学背景值的成因机制.结果表明,研究区土壤中As、Hg、Cr、Mn、Sn等9种元素含量明显高于全国和云南省背景值;W、Mo、Sb、U含量高于全国水平但低于云南省背景值;CaO、MgO、Na2O含量低于全国水平但高于云南省背景值;Be、Ba、Cd含量与全国水平相当但高于云南省背景值;Cu、Ni、Pb、Zn、I等19种元素含量高于全国水平但与云南省背景值相当.成土母质是表层土壤元素地球化学背景值的主要控制因素,用地类型对背景值亦有一定的影响.因子分析表明风化作用、淋滤作用、生物富集作用、黏土物理化学吸附作用和人类生产活动共同影响着研究区表层土壤的背景值特征,其中母岩的风化作用起着重要作用.研究成果为区域资源环境评价提供了基础地球化学信息.关键词:地球化学背景值;因子分析;表层土壤;土壤元素;滇西中图分类号:P595 文献标志码:A 文章编号:1007-855X(2021)02-0037-14收稿日期:2020-10-12基金项目:中国地质调查局项目西南重金属高背景区土地质量地球化学调查(DD20190522)作者简介:王乔林(1982-),男,硕士,高级工程师.主要研究方向:勘查地球化学和土地质量地球化学评价.E-mail:408409647@qq.comCharacteristicsandGenesisofSoilElementBackgroundBaoshan-LincangAreainWesternYunnanProvinceWANGQiaolin1,2,3,SONGYuntao1,2,3,WANGChengwen1,2,3,PENGMin1,2,3,HANWei1,2,3,ZHOUYalong1,2,3(1.InstituteofGeophysical&GeochemicalExploration,ChineseAcademyofGeologicalSciences,Langfang,Hebei065000,China;2.ResearchCenterofGeochemicalSurveyandAssessmentonLandQuality,ChinaGeologicalSurvey,Langfang,Hebei065000,China;3.KeyLaboratoryofGeologicalCyclingofCarbonandMercuryintheEarth’sCriticalZone,ChineseAcademyofGeologicalSciences,LangfangHebei065000,China)Abstract:BasedonthegeochemicalsurveydataoflandqualityBaoshan-LincangareainwesternYunnanProv ince,thegeochemicalbackgroundof53elementsinsurfacesoilwerecharacterizedbythemedianwithrobustcharacteristics.Theirdistributionandenrichmentordilutionfeaturesofelementsindifferentparentmaterialsandlandusetypeswerecompared.Onthisbasis,factoranalysiswasusedtoanalyzethegeneticmechanismofgeo chemicalbackgroundfromtheperspectiveofelementcombinationcharacteristics.TheresultsshowedthatthecontentsofAs,Hg,Cr,Mn,Snandother9elementsweresignificantlyhigherthanthenationalandYunnan昆明理工大学学报(自然科学版) 第46 卷background.ThecontentsofW,Mo,SbandUwerehigherthanthenationallevelbutlowerthanthebackgroundofYunnanProvince.ThecontentsofCaO,MgOandNa2OwerelowerthanthenationallevelbuthigherthanthebackgroundofYunnanProvince.ThecontentsofBe,BaandCdweresimilartothenationallevelbuthigherthanthebackgroundofYunnanProvince.Nineteenelements,suchasCu,Ni,Pb,Zn,I,werehigherthanthena tionallevel,butsimilartothebackgroundofYunnanProvince.Soilformingparentmaterialisthemaincontrol lingfactorofgeochemicalbackgroundofsurfacesoilelements.Landusetypesalsohascertaininfluenceonback ground.Factoranalysisshowsthatweathering,leaching,bioaccumulation,clayphysicochemicaladsorptionandhumanactivitiesjointlyaffectthebackgroundvaluecharacteristicsofsurfacesoilinthestudyarea,andtheweatheringofparentrockplaysanimportantrole.Theresearchresultsprovidebasicgeochemicalinformationforregionalresourceenvironmentassessment.Keywords:geochemicalbackground;factoranalysis;surfacesoil;soilelements;WesternYunnanProvince图1 研究区位置图Fig.1 Locationmapofstudyarea0引言土壤中元素含量水平直接影响农作物的生长,对农业生产布局具有指导意义,也是环境科学研究的重要基础资料.土壤元素背景值是反映地球化学特征的基本指标,通过对特定区域进行土壤元素背景值特征研究,不仅可以为生态环境地球化学现状评价、变化趋势监测和预警提供科学依据,还能为耕地保护与利用、土地资源科学利用提供参考资料,具有环境、农业、生态以及地方病等多学科研究价值[1-6].因此,许多国家都开展了土壤元素背景值的研究工作[7-8],我国学者在20世纪80年代就开展了土壤元素背景值的研究工作[9],为我国土壤背景值研究打下了坚实基础.随后大量学者对不同地区开展了相关研究[1-6,10-16],特别是多目标区域地球化学调查全面实施以来,随着分析技术的发展和测试指标的增加,获得了土壤圈大量高精度数据信息,探讨了背景值特征与成土母质、表生环境(土地利用类型、土壤理化性质、地貌地形等)以及人类生产活动之间的关系,为科学利用土壤资源提供了地球化学依据[10-20].但是以往的研究多集中于我国中东部的平原地区,针对云南省西部高原和山地景观区土壤背景值的研究鲜有报道,仅有少量学者对锰、钴等单元素背景值或较小的区域开展了研究[21-24].本文依托云南省西部地区新近完成的1∶250000土地质量地球化学调查获得的22万余条高精度数据,探讨了表层土壤中53种元素指标的背景值特征,并利用因子分析法结合统计结果剖析其成因,以期为研究区资源环境评价和经济发展规划提供更加准确、可靠的基础信息.1研究区概况研究区位于云南省西南部,行政区包括保山市的隆阳区、施甸县、昌宁县和临沧市的凤庆县与云县(图1),面积约16700km2.研究区地处横断山脉滇西纵谷南端,地形以山区为主,占研究区总面积的91.79%,丘陵岗地和山间盆地占8.21%.该区属低纬山地亚热带季风气候带,受复杂地形地貌影响形成“一山分四季,十里不同天”的立体气候,年均气温14~17℃,降水丰沛,年降雨量700~2100mm.区内从新生代到元古代83第2期 王乔林,宋云涛,王成文,等:滇西保山- 临沧地区土壤元素背景值特征及成因分析地层均有发育,其中以三叠纪地层最为发育,以澜沧江深断裂为界,其东以浅变质的上古生界和中生界地层为主,岩性以火山岩为主,西侧发育不同时代的沉积岩、变质岩和火山岩,侵入岩以二长花岗岩为主.区内土壤按成土母岩的岩性划分为沉积岩区、变质岩区、侵入岩区、火山岩区和松散沉积物区,其中沉积岩区分布面积最广泛,占比56.36%,变质岩区占19.03%,侵入岩区占12.75%,火山岩区占8.69%,松散沉积物区分布面积最小,仅占3.17%.区内用地类型受地形地貌多样性的影响,主要为林地(55.63%)和旱地(25.98%),其次草地(6.68%)、园地(5.12%)和水田(4.31%),建筑用地(2.28%)呈零星分布.区内土壤类型主要有红壤、漂洗黄壤、黄色赤红壤、黄棕壤、黄红壤、酸性紫色土、水稻土,其中红壤、漂洗黄壤、黄色赤红壤分布最广.区内矿产资源丰富,主要矿种为铅锌矿、铜矿和铁矿.经济以农、林、采矿和茶叶为主.2数据来源与研究方法2.1样品采集与处理采用双层网格化进行样品布设,采样密度为1点/km2,深度为0~20cm,采样时去除地表落叶、杂草、砾石和根等杂物,原始样品重量不低于1500g.土壤样品自然干燥后统一过10目尼龙筛,弃去样品中的植物碎片、岩屑、原生矿物颗粒等杂物,10目以下部分用于组合分析样.分析样以4km2为1个单元,将该单元内4个样品各取50g土壤组合混匀后送实验室进行分析测试,共获取表层分析样4172件.2.2样品分析样品分析由中国地质科学院地球物理地球化学勘查研究所分析测试研究中心完成.按照多目标区域地球化学调查规范要求选择样品分析配套方法和分析质量监控方案,测定了52种元素含量,同时测定了土壤理化指标pH值.通过插入国家一级标准物质监控样、密码样和重复样等控制分析质量,统计表明分析数据的准确度、精密度等各项质量参数均符合规范要求,分析数据质量可靠(见表1).表1 样品分析方法、检出限及分析数据合格率Tab.1 Analyticalmethod,detectionlimitandanalyticalquality序号元素分析方法实际检出限合格率/%序号元素分析方法实际检出限合格率/%1AgICP-MS0.0299.227PbICP-MS298.32AsAFS110028RbXRF51003BES199.229SICP-OES3099.24BaXRF510030SbAFS0.0597.55BeICP-OES0.510031ScICP-MS11006BiICP-MS0.0510032SeAFS0.0199.27BrXRF110033SnES197.58CdICP-MS0.0398.334SrXRF51009CeICP-MS110035ThICP-MS297.510ClXRF2098.336TiXRF510011CoICP-MS110037TlICP-MS0.110012CrXRF510038UICP-MS0.110013CuICP-MS110039VXRF510014FISE10010040WICP-MS0.498.315GaXRF210041YICP-MS110016GeICP-MS0.110042ZnICP-MS410017HgAFS0.000598.343ZrXRF210093昆明理工大学学报(自然科学版) 第46卷序号元素分析方法实际检出限合格率/%序号元素分析方法实际检出限合格率/%18ICOL0.597.544SiO2XRF0.110019LaICP-MS110045Al2O3XRF0.0510020LiICP-OES110046TFe2O3XRF0.0510021MnXRF510047MgOICP-OES0.0510022MoICP-MS0.298.348CaOXRF0.0510023NGC2010049Na2OICP-OES0.0510024NbXRF210050K2OXRF0.0510025NiICP-MS210051TCGC0.199.226PXRF510052AuGF-AAS0.000298.3 注:氧化物和TC单位为%;其他元素为μg/g;XRF-为X射线荧光光谱法;ICP-MS为电感耦合等离子体质谱法;ICP-OES为电感耦合等离子体发射光谱法;AFS为原子荧光光谱法;ES为发射光谱法;ISE为离子选择性电极法;COL为催化分光光度法;GC为氧化燃烧-气相色谱法;GF-AAS为泡沫塑料吸附-石墨炉原子吸收光谱法.土壤理化指标pH值采用电位法测定,检出限为0.1(无量纲).2.3地球化学背景值确定遵照多目标区域地球化学调查规范要求,前人在相关研究中通常先对土壤数据频率分布形态进行正态性检验,服从正态或对数正态分布的,分别用算术平均值和几何平均值代表背景值;当不服从正态分布或对数正态分布的,则按算术平均值加减2倍或3倍标准差反复剔除,剔除后的平均值代表背景值[1-5,17-20].已有的研究表明地球化学大样本数据的中位数不受离群极端值的影响[25-27],具有稳健统计学特征,中位数可以较好地刻画数据组的整体含量特征[28].因此,可以利用中位数来表征地球化学背景值.统计检验表明,研究区内表层土壤中多数元素呈偏态分布,本文在数据处理过程中按数据组的平均值加减3倍标准离差反复剔除后计算其中位数,作为研究区表层土壤的地球化学背景值.各类型土壤元素背景值的确定方法与全区相同.数据统计利用乌鲁木齐金维图文信息科技有限公司开发的GeoIPAS软件和Excel2013协同完成.3结果与讨论3.1全区背景值特征研究区表层土壤中53种元素背景值见表2.表中X1、CV1和X2、CV2分别代表剔除离群数据前后的平均值和变异系数,Xmin和Xmax为原始数据中元素的最小值和最大值,富集系数K1、K2为研究区元素背景值/全国土壤背景值[29]、云南省土壤背景值[30]的值.表2 研究区土壤地球化学背景值统计表Tab.2 Characteristicsofgeochemicalbackgroundinthewholeregion元素X1CV1X2CV2XmaxXmin背景值K1K2Ag981.02860.35420310.8811.050.59As20.11.3715.70.609090.6712.91.431.19Au2.183.001.60.502850.011.451.12-B690.64650.477656.12621.451.16Ba4420.504270.3690351054030.791.36Be2.470.332.40.2913.60.632.321.161.73Bi0.590.830.510.418.550.050.461.530.8804续表1第2期 王乔林,宋云涛,王成文,等:滇西保山-临沧地区土壤元素背景值特征及成因分析元素X1CV1X2CV2XmaxXmin背景值K1K2Br8.010.856.690.67671.195.062.301.05Cd2011.421500.50535222.41310.961.27Ce930.23920.2123722.3901.411.08Cl634.29550.391748416.2500.64-Co18.50.5617.50.49761.5615.81.441.14Cr1040.51950.355921.04911.721.59Cu370.7333.20.456521.3930.51.530.91F6320.425910.3232581265641.161.07Ga21.20.1721.30.1733.58.3621.51.431.02Ge1.590.151.570.124.390.021.561.200.78Hg1362.06960.5868133.87853.265.65I5.580.675.20.5929.00.394.534.121.06La46.80.2546.10.2211811.545.41.380.91Li35.670.3934.360.322218.64331.101.02Mn9440.638840.529721887861.381.70Mo1.140.621.060.4014.80.190.981.400.75N17980.4517230.39739623816062.27-Nb20.00.2619.30.19777.218.91.45-Ni44.90.6340.40.443863.637.41.561.12P8320.397960.3139302437591.33-Pb43.11.9934.90.3833634.3432.81.490.91Rb1360.311340.2934515.21331.391.25S2430.482310.37289419.12150.88-Sb2.952.211.790.791450.021.271.740.73Sc16.10.3815.30.3155.73.3614.71.470.90Se0.410.520.390.435.110.030.362.121.13Sn5.170.664.630.39901.194.121.371.96Sr680.67600.4750814.453.20.270.93Th18.70.5116.70.36732.4161.451.04Ti58600.3455770.2524825126452981.510.88Tl0.910.440.880.316.560.150.851.421.05U3.590.523.330.4218.60.393.021.210.72V1270.371230.3340612.21161.660.92W2.541.072.160.361230.432.031.270.75Y31.20.3230.40.2620110.229.51.231.01Zn980.72870.32194321.3841.271.04Zr2560.202550.1859487.72541.101.11SiO2620.12620.1287.537.2162.30.93-Al2O316.50.1716.50.1727.66.1416.61.391.94TFe2O36.840.336.70.3117.71.86.371.521.40MgO1.220.641.070.4111.20.230.970.411.8014续表2昆明理工大学学报(自然科学版) 第46卷元素X1CV1X2CV2XmaxXmin背景值K1K2CaO0.831.850.410.8418.30.060.280.162.15Na2O0.331.070.250.743.410.040.180.071.29K2O2.410.312.410.306.290.072.381.661.59TC2.050.551.890.4311.30.261.711.32-pH5.750.165.750.168.334.135.380.670.96 注:Au、Ag、Cd、Hg的单位为ng/g,氧化物、TC单位为%,pH无量纲,其他元素单位为μg/g;“-”表示无数据.从变异系数来看,原始数据中53种元素变异系数在0.12~4.29之间,Cl变异系数最大为4.29,SiO2变异系数最小仅为0.12.其中Cl、Au、Sb、Hg、Pb、CaO、Cd、As、Na2O、W和Ag变异系数大于1,显示了土壤中这些元素指标受成土母质类型、成土作用过程以及后期人为扰动影响而空间分布很不均匀;剔除离群数据后La、Ce、Ga、Ge、Nb、Zr、SiO2、Al2O3变异系数小于0.25,分布均匀;Y、F、B等36种元素变异系数为0.25~0.5,分布比较均匀;CaO、Sb、Na2O、Br、As、I、Hg、Mn变异系数大于0.5,表明这些元素指标受成土母质成因来源差异、成土等表生作用过程以及外源组分的混入影响,空间变异性较强,存在一定的区域贫化或富集的特征.与全国土壤地球化学背景值相比,表层土壤中铁族元素(V、Ti、Cr、TFe2O3、Co、Ni、Mn)、亲铜元素(Cu、Pb、Zn、As、Sb、Hg)、稀有稀土稀散元素(Rb、Ga、Ge、Tl、La、Ce、Y、Nb、Sc、Se、Be)、放射性元素(U、Th)、矿化剂和卤族元素(F、Br、I、B、TC、N、P)、钨钼族元素(W、Sn、Bi、Mo)和造岩元素(Al2O3、K2O)显示富集,表明区内多数元素含量明显高于全国平均水平.铁族元素和亲铜元素富集主要与区内分布的铁矿、铜矿的矿化作用有关,稀有稀散稀土元素、造岩元素和放射性元素富集受区内分布的临沧花岗岩体影响,钨钼族元素富集与矿化作用有关,而区内广泛发育的植被和充沛的降雨量是卤族元素富集的主要因素.研究区表层土壤中地球化学背景值明显低于全国平均值的元素指标包括碱金属元素Na2O、碱土金属元素(CaO、MgO、Ba、Sr)和卤族元素Cl,其中Cl略偏低为全国值的64%,而Na2O、CaO和Sr含量显著低于全国表层土壤平均值(K1≤0.4),分别为全国平均值的7%、16%和27%.区内成土母质主要为沉积岩,CaO是其重要的成土产物,但是土壤中整体偏低,已有研究表明强烈风化淋滤作用会造成Ca、Mg、Na等元素淋失[31],研究区土壤整体呈中酸性(5.38),并且植被较为发育、降雨量丰沛和年均气温较高等因素导致土壤风化淋滤强烈、成熟度较高是Ca、Mg、Na等元素显示贫乏主要原因;Cl贫乏与表生环境下水动力作用密切相关[32],澜沧江和怒江横贯研究区东西两侧,强烈的水动力作用造成Cl贫乏.与云南省土壤背景值相比,区内碱土金属元素(Be、MgO、CaO、Ba)、铁族元素(Cr、Mn、TFe2O3)、造岩元素(Al2O3、K2O)、Hg、Sn强烈富集,主要受区内分布的铁矿、铅锌矿和汞矿等矿床影响;Na2O、Cd、Rb和As相对富集,W、Mo、Sb、U、Ag相对贫乏,其余元素含量与云南省土壤背景值相当.3.2不同成土母质背景值及其成因特征前人研究表明,土壤化学成分受控于成土母质[31],土壤与母岩元素地球化学特征具有良好的空间耦合性.按岩性可将研究区成土母岩划分为沉积岩、变质岩、侵入岩、火山岩和松散沉积物5大类,其对应区域的土壤元素地球化学富集系数(单类型背景值/全区背景值)见图2.松散沉积物区土壤中CaO、Na2O、Cu、Cd、Au、S、B、pH等8种元素指标显示富集特征(图3),富集系数最大指标为CaO(2.39),卤族元素I和Br相对贫乏,其它元素都与全区背景值相当.松散沉积物区主要分布于水动力作用强烈的低海拔河口、河谷地区,表生环境下易溶于水的CaO和Na2O在水动力的作用下由高海拔区溶出向低海拔区迁移,在河口、河谷地区沉积而富集,而水溶性更强的卤族元素则随河水继续迁移而呈现相对贫化;推断Cu、Cd、Au的富集机制与陈兴仁等[2]研究提出的江淮流域河流冲积物基本一致;24续表2第2期 王乔林,宋云涛,王成文,等:滇西保山-临沧地区土壤元素背景值特征及成因分析图2 不同成土母质区表层土壤元素富集系数Fig.2 EnrichmentcoefficientofsurfacesoilelementsindifferentparentmaterialareasCa2+、Na+等盐基离子具有中和H+、防止土壤酸化的化学性质[32],区内广泛分布的沉积岩在风化成壤过程中形成大量的Ca2+、Na+等盐基离子为土壤保持中碱性提供了丰富的物质基础,造成了松散沉积物区pH最高;S在松散沉积物区富集受流水的搬运作用和较低的海拔影响,与林才浩[3]对福建沿海土壤的研究结果一致.火山岩区成土母岩主要为安山岩和流纹岩等中酸性岩石和少量玄武岩与辉绿岩等基性岩石.表层土壤中多数元素背景值与全区相当,但铁族元素Ti、MgO、TFe2O3、Co、Mn和亲石元素Zn、Sc、Sr、Na2O呈现富集特征,显示典型火山岩母岩的地球化学特征;仅有B呈现贫乏,林秋婷等[33]研究认为B易形成高挥发性、易溶于水的化合物硼酸,且其溶解度随着温度升高而增加,研究区雨量丰沛、较高的年均气温导致土壤中B溶于水发生迁移是造成其背景值较低的原因.沉积岩区成土母岩主要为碳酸盐岩,表层土壤中多数元素与全区背景值相当,仅有Cd、Mn、Sb和CaO相对富集(图3),其中CaO强烈富集(富集系数1.50),主要由于碳酸盐岩在成壤过程中分解释放大量CaO所致,且其风化成壤过程中重金属元素的富集系数明显高于其他成土母质[34],是沉积岩区重金属元素Cd、Mn和Sb背景值偏高的主要原因.侵入岩区成土母岩主要为中酸性侵入岩,土壤中稀土元素、亲石元素、放射性元素和卤族元素背景值较高,铁族元素和易挥发元素背景值较低.前人研究表明[31,35]中酸性侵入岩富含Na2O、K2O、La、Ce、Be、Rb、Ba、Tl、I、Br、Cl、U、Th,相对贫乏B、Sb、Mn、Au、Cu、CaO、Co等元素,再加上W、Sn、Pb等矿化作用的影响,导致这些元素背景值偏高.与全区背景值相比,变质岩成土母质的土壤中富集Sn、Mo、Se、As、Br、Bi和Sb,其余元素与区域背景值相当.已有研究表明[36]土壤中Se含量与成土母质岩性密切相关,其含量从变质岩到沉积岩与岩浆岩呈下降趋势;区内经历多期次构造热液活动[37],可能是变质岩区Sn背景值较高的原因,半金属元素As、Sb和Bi及矿化剂元素Br富集可能与区域成矿作用相关.母岩是表层土壤最直接的物质来源,在复杂的成土过程中既能在原地残留形成土壤,也能在海拔高差和水动力作用下形成冲积物土壤.总体来看,沉积岩母质区土壤富集CaO和重金属元素,火山岩母质区土壤富集铁族元素和亲石元素,侵入岩区土壤富集稀土元素、放射性元素和卤族元素,变质岩区土壤富集半34昆明理工大学学报(自然科学版) 第46卷图3 研究区土壤元素含量空间分布与成土母质图Fig.3 Spatialdistributionofsoilelementcontentandparentmaterialmapinthestudyarea金属元素和矿化剂元素.不同成土母质区土壤背景值特征存在显著性差异,表明成土母质是土壤背景值的主要控制因素,同时地形地势、温度和降雨量等表生环境对土壤背景值特征亦有一定影响.3.3不同用地类型背景值及其成因特征已有研究表明,不同用地类型会影响土壤地球化学化学组成[38].统计结果表明,不同用地类型土壤中元素富集系数(单类型背景值/全区背景值)存在一定的差异性(图4).与全区土壤背景值相比,水田中Na2O和CaO显示富集,I、Br和Mn相对贫乏,水田成土母质(主要为松散沉积物和碳酸盐岩)决定了其富含Na2O和CaO,同时水田大多数时间处于淹水状态使得土壤Eh较低,还原条件下Mn的淋溶和迁移系数较大,溶解态的Mn容易通过生物吸收或者随着水流迁移[39],频繁44第2期 王乔林,宋云涛,王成文,等:滇西保山-临沧地区土壤元素背景值特征及成因分析图4 不同用地类型表层土壤元素富集系数Fig.4 Enrichmentcoefficientofsurfacesoilelementsindifferentlandusetypes的水动力作用导致水田中水溶性较强的I、Br和Mn溶解迁移淋失显示贫乏;旱地中主要富集CaO和Sb,水田和旱地背景值特征与唐文春等[11]对成都平原土壤特征研究结果基本一致.林地中多数元素含量与全区背景值一致,仅有Br显示富集.由于林地面积占研究区总面积的56.11%,因而其土壤地球化学特征基本代表了区域土壤的整体特征.Br化学性质活泼,其在土壤中含量一般高于岩石,通常认为土壤中Br主要来源于大气的干湿沉降,而大气中的Br主要源于海洋的蒸发作用.成杭新等[32]研究表明中国西南地区表层土壤中Br多以吸附态形式存在,林地植被覆盖率高,动植物残体进入土壤后能够为微生物活动提供良好的碳源,剧烈的微生物活动能够提高土壤有机质的含量[40].林地中多富含有机质且海拔相对较高,因而高山阻滞和丰富的有机质以及丰沛的降雨是林地中Br富集的主要因素.园地中Mn、CaO、Co和Sr显示贫乏,富集元素有Pb、N、Cl、W、TC、Se、Th、U、I、Bi、Sn、Br.园地成土母质(主要为变质岩和侵入岩)多富含放射性元素、卤族元素和W、Sn、Se;TC富集主要与园地中丰富的有机质有关;农民在经济效益的驱动下对园地中经济作物(主要为茶叶)的化肥投入量较大,使得园地土壤N含量较高.种植茶树会使土壤中交换性铝含量增加导致pH显著降低[41],已有研究表明土壤酸化会导致碱土金属大量流失[19],同时园地多位于山间坡地,地表径流发达且植被根系较浅,推断Mn、CaO、Co和Sr贫乏与园地较低的pH和特殊的地形地貌有关.草地中富集CaO、MgO、Ni、Cr、Cu、Co、As、Sb、I等元素,与其成土母质主要为碳酸盐岩有关.草地中有机质多以整体有机残体形式进入土壤,在表层土壤腐殖质组成中胡敏酸占绝对优势,使得草地土壤呈中碱性[42],已有研究表明[43]随土壤酸碱度升高,CaO、MgO、Ni、Cu、As和Sb含量呈上升趋势;成杭新等[32]对我国西南地区的研究表明Cr、Co高背景与碳酸盐岩密切相关;草地多位于地势较低的山间坝子里,土壤水分含量高,特别是丰沛的降雨使得草地Eh较低,有机质分解缓慢导致在土壤中积累,土壤中I容易被有机质吸附发生富集[19],推断草地中I富集与富含有机质相关.河流用地中Hg、I、Br、Se呈现贫乏,而CaO、Na2O、Sr和B等元素显示富集,表明河流的搬运作用对土壤中元素的含量有很大影响,特别是重金属元素、卤族元素和碱(土)金属元素的影响明显.河流用地多位于河谷边地势低洼处,季节性的降水使得水动力作用强烈,碱(土)金属元素和卤族元素化学性质活泼,在54昆明理工大学学报(自然科学版) 第46 卷风化成壤过程中易于由高海拔区迁移至低海拔的河流用地周围聚集,而水溶性更强的卤族元素则在水动力作用下迁移至更低海拔处导致呈现贫乏.建筑用地中I、Br、Mn呈现贫乏,富集CaO、Cd、S、B等元素.CaO易溶于水的化学性质使其在成土过程中易于迁移至低海拔区;Cd富集可能与人类的生产生活有关[43];S和B富集与建筑用地处于较低的海拔及其气候水文条件有关;如前文所述,I和Br贫乏主要受区域性的高山阻滞和丰沛的降雨影响[32],导致建筑用地中含量较低.用地类型是人类活动对土壤元素含量影响最具代表性的因素,上述讨论表明不同用地类型土壤背景值的差异主要受成土母质的控制,在相同的气候和地理条件下,土地利用方式是影响土壤中元素含量的直接因素.不同用地类型的植被、灌溉、施肥等因素的差异,会改变土壤的理化性质并影响元素的运移与转化,造成不同用地类型土壤背景值的差异.3.4土壤背景值特征成因分析因子分析是将原始数据中多项指标减少为几个综合指标来反应数据信息的方法.本文利用分析统计软件SPSS20.0首先对表层土壤数据进行KMO和Bartlett检验,经验KMO值为0.893>0.5,显著性水平(sig.)为0<0.05,表明原始数据适宜进行因子分析[44].由于初始因子之间的整体关联性较强,对因子分析的结果采用最大方差旋转的正交因子载荷矩阵进行剖析可使各原始变量的系数具有明显的差异,从而更好地揭示土壤地球化学信息的内在联系[45].在分析区内表层土壤含量特征值的方差累计贡献率(表3)基础上,本次研究截取特征值大于1的10个主因子作为研究对象,其表达的信息量占总信息量的83.51%,基本能够反映研究区表层土壤的主要地球化学特征.表3 因子分析正交旋转因子载荷矩阵和特征值与累积方差贡献率Tab.3 Orthogonalrotationfactorloadmatrix,eigenvalueandcumulativevariancecontributionrateoffactoranalysis元素F1F2F3F4F5F6F7F8F9F10Ag-0.0270.1790.262-0.1180.5450.117-0.0050.217-0.163-0.133As0.2640.2030.0240.0100.7040.296-0.002-0.1180.1970.058Au-0.1690.305-0.014-0.0380.5140.4240.116-0.196-0.134-0.348B-0.095-0.0800.0560.1320.2260.848-0.1010.117-0.050-0.034Ba0.495-0.342-0.019-0.1980.023-0.0130.4220.185-0.069-0.191Be0.7840.174-0.1850.236-0.0320.1490.2280.061-0.112-0.017Bi0.715-0.1060.229-0.1510.0170.0290.167-0.2610.189-0.177Br0.084-0.0490.726-0.345-0.040-0.1810.0220.0190.516-0.066Cd0.0340.3850.3890.3120.3010.121-0.0010.357-0.429-0.016Ce0.8180.044-0.002-0.101-0.0860.031-0.0330.0900.0140.070Cl0.380-0.3480.167-0.119-0.209-0.3410.339-0.1310.083-0.077Co-0.0620.809-0.1320.2690.0420.1250.0460.367-0.1280.092Cr-0.0890.8790.0870.1010.1320.038-0.069-0.0760.041-0.021Cu-0.2490.7760.1060.0820.2390.229-0.0100.101-0.161-0.097F0.5300.0410.0460.3570.1160.442-0.0970.110-0.0810.148Ga0.6460.4170.149-0.092-0.0600.0580.225-0.0940.2160.006Ge0.1190.2970.066-0.0560.1260.425-0.113-0.031-0.0150.069Hg-0.0880.1580.651-0.1260.2860.070-0.299-0.0470.0700.482I0.0950.1810.554-0.2650.041-0.023-0.1450.0480.701-0.045La0.6980.038-0.1760.105-0.0290.121-0.0520.141-0.1510.14764第2期 王乔林,宋云涛,王成文,等:滇西保山-临沧地区土壤元素背景值特征及成因分析元素F1F2F3F4F5F6F7F8F9F10Li0.0250.3450.0310.1290.0150.4650.1070.2020.0500.230Mn-0.2120.4050.1290.0640.1040.198-0.0030.7540.0540.115Mo0.1940.2970.239-0.4010.3990.116-0.123-0.1360.053-0.048N-0.050-0.0470.925-0.0590.0150.111-0.0060.0700.027-0.042Nb0.3980.404-0.0060.058-0.0310.161-0.1070.086-0.0600.277Ni-0.0160.8830.0040.2160.1000.117-0.0640.081-0.026-0.046P0.1070.3280.6170.0370.0420.0220.1670.188-0.1160.012Pb0.6840.0190.219-0.0760.232-0.052-0.0860.182-0.1280.026Rb0.796-0.355-0.066-0.033-0.0150.1570.0580.1740.019-0.074S0.0260.2130.7980.1540.0710.081-0.118-0.064-0.1380.003Sb-0.0810.033-0.023-0.0070.9470.039-0.1420.126-0.0280.080Sc0.0810.878-0.0060.1260.0680.0060.1060.0180.0280.022Se0.0440.0260.561-0.5540.231-0.059-0.209-0.1270.245-0.099Sn0.801-0.1490.076-0.124-0.041-0.1040.099-0.2630.090-0.136Sr-0.1080.216-0.1910.370-0.0800.1730.2450.136-0.0870.691Th0.869-0.0960.059-0.106-0.080-0.188-0.107-0.1840.066-0.056Ti-0.1320.8310.0410.005-0.0150.000-0.0770.064-0.0410.142Tl0.840-0.186-0.021-0.0620.0980.0450.0520.1010.0650.016U0.8450.0690.083-0.102-0.081-0.242-0.120-0.1970.0260.000V-0.2140.8750.1110.0220.1790.104-0.010-0.0350.0050.005W0.7420.0470.0020.0400.127-0.0740.027-0.2240.073-0.023Y0.5500.397-0.2050.2650.0940.007-0.0930.057-0.1480.058Zn0.2210.6150.1540.1650.1550.1670.0580.406-0.1990.114Zr0.358-0.179-0.148-0.2640.004-0.158-0.226-0.024-0.0800.038SiO2-0.432-0.643-0.153-0.0970.1130.194-0.1580.075-0.245-0.036Al2O30.6040.4580.080-0.050-0.065-0.0250.168-0.1210.255-0.018TFe2O30.0520.8900.1440.0370.0290.0250.0630.0560.1600.085MgO0.1670.5160.0140.492-0.149-0.1720.3320.1100.040-0.068CaO-0.0920.424-0.0090.877-0.0210.0660.0610.004-0.0910.105Na2O0.0510.105-0.1730.169-0.119-0.1340.922-0.023-0.0550.125K2O0.603-0.414-0.0990.0850.0040.2690.1640.250-0.095-0.040TC-0.038-0.0550.9260.003-0.036-0.0350.000-0.0150.156-0.072pH-0.1350.376-0.0310.7750.0040.204-0.0560.000-0.0900.092特征值2.231.781.090.980.500.450.350.300.250.19方差/%22.9618.3011.2810.065.134.603.583.042.581.98累积方差/%22.9641.2652.5462.6067.7372.3375.9178.9581.5283.51 因子F1占总变量方差的22.96%,在所有因子中所占比例最高,其中稀有稀散稀土元素(Rb、Tl、Be、Ga、La、Ce、Y)、放射性元素(U、Th)、钨钼族元素(W、Sn、Bi)、造岩元素(K2O、Al2O3)、亲铜元素(Pb)和矿卤族元素(F)占有较高的载荷.这些元素主要与中酸性侵入岩的风化作用相关,该因子可视为中酸性侵入岩成土作用因子.因子F2占总变量方差的18.30%,其中TFe2O3、Cu、V、Co、Cr、Ti、Ni、Sc、Zn和SiO2具有较高的载荷,74续表3昆明理工大学学报(自然科学版) 第46 卷铁族元素具有亲铁、亲硫和亲氧的地球化学性质,其主要来源于深部地壳或地幔,成土过程中一般以次生矿物的形式分布于母岩周围有限范围内,表生作用下易于整体迁移[45].稀散元素Sc化学性质稳定,表生作用下难于迁移.表生迁移活动性弱的稀散元素和铁族元素主要反映了成土母岩的地球化学特征.SiO2与铁族元素呈负相关,主要与土壤矿物组成及其决定的常量组分,以及分析测试数据的闭合性有关.该因子可视为中基性成土母岩成土作用因子.因子F3占总变量方差的11.28%,其中TC、N、S、P、Hg、Br、I占有较高的载荷,为典型的生命元素组合因子.研究区内大量分布林木和茶树,对这些元素的富集提供了良好条件.研究区以山地丘陵地貌为主,植被发育、覆盖率高,根系生长、枝叶残落等生物地球化学循环过程与累积作用强烈,为该组元素的富集提供了良好条件.因子F4占总变量方差的10.06%,其中CaO、Se和pH占有较高载荷.研究区土壤整体呈中酸性,碳酸盐岩在富含CO2的雨水作用下发生化学溶蚀[32]造成CaO在表层土壤富集;Se的富集与碳酸盐岩密切相关.该因子可视为碳酸盐岩风化成土作用因子.因子F5中As、Sb、Au、Ag占有较高载荷,其占总变量方差的5.13%.该组元素为典型的亲铜元素组合,与中低温成矿作用关系密切;由于化肥中通常含有较高含量的As和Sb,研究区内茶园和农田大量使用化肥可能也是As和Sb在表层土壤富集的原因.该因子可视为中低温矿化作用和农业活动复合因子.因子F6占总变量方差的4.60%,其中Li和B占有较高载荷.研究区分布大量黏性土壤,而Li和B在表生作用下容易被黏土矿物吸附富集[46].该因子反映了黏土物理化学吸附作用的元素组合特征.因子F7中Na2O、Ba和Cl占有较高载荷,其占总变量方差的3.58%.Na2O的富集与下渗水的淋滤作用相关[41],碱土金属Ba和卤族元素Cl富集与碳酸盐岩的风化相关[47].该因子可视为碳酸盐岩风化和淋滤作用因子.因子F8占总变量方差的3.04%,其中Mn和Zn占有较高载荷.该组元素富集主要与区内分布的铅锌矿和铁矿有关,代表了矿冶活动作用因子.因子F9占总变量方差的2.58%,卤族元素Br和I占有较高载荷.I和Br富集主要受区域性的高山阻滞和丰沛的降雨影响[32],反映了特定地形地貌和气候条件下元素的组合特征.因子F10占总变量方差的1.98%,仅有Sr占有较高载荷.碱土金属Sr富集通常与碳酸盐岩的风化有关[43],主要反映了碳酸盐岩风化作用的元素组合特征.因子分析的目的不仅是找出影响因子,更重要的是研究其代表的成因意义.研究区位于西南三江特提斯构造带,地质背景复杂且伴随着多期次的热液成矿作用,导致了区内岩石复杂多变.成土母岩是表层土壤最直接的物质来源,如前文所述不同成土母岩的差异控制了土壤背景值的富集贫化特征,同时不同用地类型对土壤背景值亦有一定程度的影响.因子分析结果显示10个因子占总变量方差的83.51%,其中与母岩风化有关的因子多达5个,累积方差贡献率高达56.88%,其代表了不同岩性母岩风化成壤作用的元素组合特征,表明母岩的风化成壤作用是土壤元素背景值的主要控制因素;因子F3、F6和F9主要反映了生物富集作用、黏土的吸附作用和地形地貌等自然地理因素对背景值的影响,累积方差贡献率为18.46%;因子F5和F8主要反映了工矿业和农业等人类活动对背景值的影响,累积方差贡献率为8.17%,表明生物富集作用和人类活动等因素也在一定程度上影响着土壤中元素的背景值特征.4结论1)与全国和云南省表层土壤元素含量相比较,云南省西部地区多数元素背景值高于全国水平但与云南省土壤背景值差别不大.研究区内重金属元素(As、Hg、Cr)、铁族元素(TFe2O3、Mn)、造岩元素(Al2O3、K2O)、Sn和Rb含量明显高于全国和云南省背景值;钨钼族元素(W、Mo)、Sb、U含量高于全国水平但低于云南省背景值;CaO、MgO、Na2O含量低于全国水平但高于云南省背景值;Be、Ba、Cd含量与全国水平相当但高于云南省背景值;重金属元素(Cu、Ni、Pb、Zn)、卤族元素(I、Br)、铁族元素(Co、V、Ti)、稀有稀散稀土84。
中国城市土壤化学元素的背景值与基准值一、背景值的概念与意义背景值是指其中一地区未受污染或受轻微污染的土壤中,其中一种化学元素的平均含量水平。
背景值不等同于零值,它代表了自然环境中该化学元素的存在程度。
背景值的测定对于判断土壤中化学元素的异常增加或减少具有参考价值。
背景值的确定对于评价土壤质量、判断土壤环境污染程度、制定土壤环境质量标准等都具有重要意义。
它能帮助我们了解土壤中化学元素的自然分布情况,发现和追踪污染源,同时也能为土壤和农产品质量控制提供科学依据。
二、基准值的概念与意义基准值是根据背景值和环境容许值确定的,用于判断土壤中化学元素污染程度的指标。
基准值一般设定为环境容许值的若干倍数,超过基准值的土壤被认为存在污染。
中国国家环境保护标准《土壤环境质量标准》中规定了土壤中各种化学元素的基准值。
根据国家标准,土壤中化学元素的基准值分为地质背景值和生态背景值两类。
地质背景值指的是土壤中其中一种元素的背景值,根据元素在岩石中的平均含量确定。
地质背景值是用来评价土壤中化学元素含量是否存在异常的重要依据。
生态背景值是基于土壤的生态功能来确定的,根据不同的土壤类型和土壤利用功能给出不同元素的基准值。
生态背景值的确定是根据土壤体系的自然特征和自然功能的要求进行综合考虑的。
基准值的确定是进行土壤环境质量评价的重要依据,可以帮助我们判断土壤中化学元素的污染状况,并为制定土壤污染防治措施提供科学依据。
三、中国城市土壤化学元素的背景值与基准值情况中国是一个资源丰富、人口众多的国家,城市化进程加快,城市土壤环境问题日益突出。
过去几十年间,大量的人为污染源的排放、大规模的施肥和农药使用等,对中国城市土壤环境造成了一定的影响。
在这种情况下,了解城市土壤中化学元素的背景值和基准值对于评估土壤环境质量、制定环境保护政策具有十分重要的意义。
根据相关研究,中国城市土壤中常见的化学元素包括重金属元素、痕量元素和主要养分元素等。
这些元素在城市土壤中的含量受到地质背景、人为活动和土壤特征等多种因素的影响。
山西土壤元素背景值及其特征
山西是中国的一个重要的经济大省。
山西的土壤是地区发展的重要资源,而土
壤的元素含量及其特征就是土壤指标之一,是分析和评价土壤质量的重要依据。
近年来,国家已经采取多种措施加强了山西土壤质量检测,取得了积极效果,使山西土壤的元素含量和特征得到了明确的认识。
具体而言,平均山西土壤的全氮含量已达到18069.95mg/kg,而有机氮的含量
最多为14554.48mg/kg,活性磷含量为170.1mg/kg,全磷含量则达到454.85mg/kg。
此外,土壤铵态氮、微量元素、氯离子等含量也有不同程度的较高水平。
因此,元素含量以及有机物含量都在合理范围之内,水肥结合比也处于正常水平,说明山西土壤质量处于良好水平,满足农作物对养分和水肥的需求。
从空间差异上看,山西元素含量以及有机物含量在大致相同的横截面上存在着
一定的差异,如氮素含量的最大值达到17554.48mg/kg,较小的只有1.27mg/kg,
活性磷含量也有相应的变化,最大值为537.94mg/kg,而最小值仅为31.68mg/kg。
另外,不同地市也可能存在一些较大的差异,高剂量磷有明显沉积趋势,其可能会影响到土壤的质量以及环境的可持续发展。
总的来说,山西的土壤元素含量及其特征处于合理的范围之内,但仍有一定差异,可能会牵连到土壤质量以及环境的可持续发展。
因此,山西的土壤质量维护以及对土壤的有效利用还需要更多的努力,以达到可持续发展的目标。