2016河南中考数学压轴题解题技巧
- 格式:ppt
- 大小:60.00 KB
- 文档页数:10
中考数学压轴题解题的常用数学思想一、运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二、运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三、运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。
因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。
中考数学压轴题解题技巧(一)态度上的技巧:建议参加中考的同学们,在自己心中一定要给压轴题一个切实的评价,如果超过你的能力限制,大可放弃,回头认真检查前面的题。
检查订正完之后,如果时间还有节余,大可以好好思考压轴题怎么做。
如果。
(二)知识上的技巧审题是解题的开始,也是解题的基础。
一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题必须要有科学的分析问题的方法,要善于总结解数学压轴题中所隐含的重要数学思想。
破除模式化、力求创新是近几年中考数学试题的显著特点。
知识储备是压轴题的基础,学生需要打好基础。
(三)答题上的技巧1、写上去的东西必须要规范,字迹要工整,布局要合理;2、过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;3、尽量多用几何知识,4、压轴题的问题设置经常可以传递使用。
中考数学压轴题两大类型函数型综合题:以给定的直角坐标系和几何图形为背景,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法有待定系数法,包括关键是求点的坐标,而求点的坐标基本方法是几何图形的性质地几何法(图形法)和代数法(解析法)。
几何型综合题:先给定几何图形,根据已知条件进行计算,常以动点或动形为依托,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
压轴题的做题技巧数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。
压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面谈谈中考数学压轴题的解题技巧。
压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。
所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问。
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
中考数学压轴题的5种解题方法题目:如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;方法一:常规的几何思路过点D做CG的垂线,设AB=2a,在△CBE中利用面积相等,得出BG的长,再证明△CBG≌△DCM,利用全等的性质得到CM的长,最后得出GM=CM,利用垂直平分线的性质可以得到DG=DC。
方法二:倍长中线法我个人认为这个方法是最简单,延长CD,取MD=CD,连接MF,利用△MDF与△BAF相似,可以得到MFG三点共线。
因为DG是RT△MGC斜边上的中线,所以DG=DC。
方法三:类似垂直、相等模型取BC的中点N,因为AD平行于BC,所以∠CMN=90°,易得△CMN相似于△CGB,可证明M为CG中点,于是得到DN垂直平分CG,最后得到DG=DC。
方法四:建立圆的模型因为∠FDC与∠FGC都是直角,连接FC,所以G、C、D、F四点共圆。
因为BC∥AD,所以∠CBG=∠BFA,易得△CDF≌△BFA,得到∠CFD=∠BFA,根据同弧所对的圆周角相等得到∠CFD=∠CGD,再根据同角的余角相等得到∠DCG=∠CBG,所以∠DCG=∠DGC,最后根据相同的角所对的弦相等得到DC=DG。
方法四:建立圆的模型因为∠FDC与∠FGC都是直角,连接FC,所以G、C、D、F四点共圆。
因为BC∥AD,所以∠CBG=∠BFA,易得△CDF≌△BFA,得到∠CFD=∠BFA,根据同弧所对的圆周角相等得到∠CFD=∠CGD,再根据同角的余角相等得到∠DCG=∠CBG,所以∠DCG=∠DGC,最后根据相同的角所对的弦相等得到DC=DG。
方法五:建立平面直角坐标系以点A为原点建立平面直角坐标系,令DC=2a,然后把线段FB、EC的解析式,用含a的式子表示出来,再联立这两个解析式,可以得出点G的坐标,最后求出DG的长,得到DC=DG=2a。
河南中考数学2013冲刺八年中招真题试卷中招考前必练试卷近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。
不过这些传说中的主角,并没有大家想象的那么神秘,只是我们需要找出这些压轴题目的切入点。
切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的。
对于河南中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
中考数学压轴题课程资料目录第一部分思维的程序化第一讲:思维的程序化1、综合讲解 (3)2、图上操作 (4)3、几何表示 (6)4、代数表示 (9)第二部分类型的模块化第二讲:特殊三角形、特殊四边形模型1、特殊三角形模型等腰三角形 (10)直角三角形 (12)2、特殊四边形模型平行四边形、菱形、矩形、正方形 (15)梯形 (21)第三讲:面积类、线段和差模型1、面积类模型 (24)2、线段和差模型 (29)第四讲:图形运动中代数计算说理、几何证明说理问题1、代数计算说理 (32)2、几何证明说理 (34)第五讲:图形的平移翻折旋转1、图形的平移 (41)2、图形的翻折 (46)3、图形的旋转 (52)压轴题解法体系图第一课时:思维的程序化1、 综合讲解例题(2010年河南23):在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.21.解:(1)设抛物线的解析式为y =ax2+bx +c (a ≠0),则有 ⎪⎩⎪⎨⎧02440416 =++==+--c b a c c b a 解得⎪⎪⎩⎪⎪⎨⎧4121- ===c b a ∴抛物线的解析式为y =21x2+x -4 ···································· 3分 (2)过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,21m2+m -4) 则AD =m +4,MD =-21m 2-m +4 ∴S =S △AMD +S 梯形DMBO -S △ABO =21(m +4)(-21m 2-m +4)+21(-21m2-m +4+4)(-m )-21×4×4 =-m 2-4m (-4<m <0) ··································································· 6分即S =-m2-4m =-(m +2)2+4 ∴S 最大值=4 ·········································· 7分 (3)满足题意的Q 点的坐标有四个,分别是:(-4,4),(4,-4)(-2+52,2-52),(-2-52,2+52) ······································· 11分2、图上操作【分析】图上操作,就是由直接已知挖掘隐含已知的过程,在操作的过程中,要抓住边和角两个要素。
数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧
1. 单选题
•理解题意:仔细阅读题目,确保理解题目的要求和限制条件。
•画图辅助分析:针对几何题目,可以通过画图来帮助理解和解答问题。
•排除法:通过逐个排除选项,找出符合题目要求的答案。
2. 多选题
•筛选关键信息:将题目中的关键信息提取出来,对比选项中的信息,选择合适的答案。
•逻辑推理:通过逻辑分析,推断出哪些选项是肯定正确的,哪些是肯定错误的。
•试验法:将选项应用到一些具体的例子中进行试验,排除不符合题目要求的选项。
3. 填空题
•空中填数法:根据已知条件和问题要求,将空缺处需要填写的数进行逐步推导,不断试错,找出符合题目要求的答案。
•利用关系式:通过已知的关系式或者公式,将题目中的其他已知条件和空缺的部分进行联立,解方程求解空缺处的答案。
4. 解答题
•分析问题:对于解答题,首先要充分理解问题的要求和限制条件,有针对性地进行分析。
•简洁明了的表达:在解答问题时,要尽量用简洁明了的语言和符号,避免冗长和歧义。
•举例和论证:通过举例和论证来证明所给答案的正确性,增加解答的可信度。
5. 解题策略
•看清关键信息:题目中常常会有一些关键信息,通过仔细阅读题目,抓住这些关键信息来辅助解题。
•分析题目结构:将问题分解为更小的问题,并且对每个小问题进行分析和解答。
•多角度思考:尝试从不同的角度和方法来考虑问题,增加解题的灵活性和创造力。
通过以上的解题技巧和策略,在数学中考中解答压轴题将会更加
得心应手。
希望同学们能够充分理解和掌握这些技巧,取得好的成绩!。
数学中考压轴题解题技巧
1. 嘿,你知道吗?数学中考压轴题其实没那么可怕!就比如求不规则图形面积那类题,咱得学会分割啊!把那个复杂图形像切蛋糕一样分成一个个我们熟悉的形状,那不是就好解决多啦!就像你拼拼图,把大难题拆成小部分来解决呀,是不是一下子就感觉不难啦?
2. 哎呀呀,遇到函数与几何综合的压轴题咋办?别慌呀!这时候要像侦探找线索一样,仔细分析每个条件呀!举个例子,给出一条直线和一个圆,那不就是在给咱提示怎么找它们之间的关系嘛!你想想,这就像在迷宫里找到关键路线一样兴奋呢!
3. 哇塞,碰到动点问题的时候是不是头都大啦?嘿嘿,但其实抓住关键就好啦!比如说那个动点是按照一定规律运动的,那就跟着它的节奏呀!好比跟着音乐的节拍跳舞一样,掌握好它的步骤,解决起来也不难嘛!就像追着蝴蝶跑,只要有耐心就能抓住它,对不对?
4. 嘿,那种需要证明的压轴题你可得瞪大眼睛瞧仔细啦!每个条件都是宝藏啊!比如说要证明两个三角形全等,那你就去挖那些隐藏的边和角相等呀!这就像在沙滩上找贝壳,用心找就能找到那些漂亮的宝贝呢,你说是不是呀?
5. 哎哟喂,代数计算的压轴题也别小瞧呀!可不能马虎,一步错步步错呢!举个例子,解那个方程的时候,要像走钢丝一样小心翼翼啊!一个数字算错了,那就全完啦!就像搭积木,有一块没搭好,整个就垮啦,可得认真对待哦!
6. 嘿嘿,最后说说那种综合性超强的压轴题!哇,那可是大挑战呢,但咱也不能怕呀!把之前学的各种方法都搬出来试试呀!就像孙悟空有七十二变,遇到困难总有办法应对呀!比如利用相似三角形,三角函数什么的,总有一款合适的!不信你试试,肯定能行的!
我觉得呀,只要掌握好这些技巧,数学中考压轴题就不再是那座难以翻越的大山啦!咱都能轻松翻过去!。
中考数学压轴题答题技巧中考数学压轴题答题技巧4篇中考数学压轴题答题技巧1各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的。
中考数学压轴题,解题需找好四大切入点。
切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的。
对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,中考数学压轴题的切入点有很多,考试时并不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
中考数学压轴题答题技巧21、做题时间规划考试写不完,大部分时间花在难题上,建议1到18题25分钟做完,中考第12题或16题若卡住了,思考时间不要多于5分钟,因为做题前5分钟效率是最高的,5到10分钟左右焦虑情绪明显上升,10分钟以后已经不再想题了,而在思考做不出的严重后果,遇到难题该跳则跳。
关于中考数学压轴题的思考2013、5、18思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它;其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难;这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法;压轴题难度有约定:历年中考,压轴题一般都由3个小题组成;第1题容易上手,得分率在以上;第2题稍难,一般还是属于常规题型,得分率在与之间,第3题较难,能力要求较高,但得分率也大多在与之间;近十年来,最后小题的得分率在以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注;控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在与之间,即考生的平均得分在7分或8分;由此可见,压轴题也并不可怕;压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识;如果以为这是构造压轴题的唯一方式那就错了;方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例;动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起;在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角;总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题;分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要;如果1、2、3三个小题是平列关系,它们分别以大题的已知为条件进行解题,1的结论与2的解题无关,2的结论与3的解题无关,整个大题由这三个小题“拼装”而成;如果1、2两个小题是“递进关系”,1的结论由大题的已知条件证得,除已知外,1的结论又是解2所必要的条件之一;思考二:中考数学压轴题解题技巧之分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,是满分率比较低的一种题,这一类题的特点就是小题较多,且容易失分,常常会被同学们忽略,经常忘记分类讨论,而大题却经常是讨论不全,讨论全了结果还不一定对;而且,这类题往往陷阱比较多,一个不注意就会掉进出题陷阱中;因此我们在考试当中一定要养成以下几个好习惯;以下几点是需要大家注意分类讨论的1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决;在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合;2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上;3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论;4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍;5、考查点的取值情况或范围;这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围;6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点;7、由动点问题引出的函数关系,当运动方式改变后比如从一条线段移动到另一条线段时,所写的函数应该进行分段讨论;值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的;最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留;思考三:破解中考数学压轴题四个秘诀切入点一:做不出、找相似,有相似、用相似;压轴题牵涉到的知识点较多,知识转化的难度较高;学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形;切入点二:构造定理所需的图形或基本图形即作辅助线;在解决问题的过程中,有时添加辅助线是必不可少的;对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题;中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形;切入点三:紧扣不变量,并善于使用前题所采用的方法或结论;在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变;切入点四:在题目中寻找多解的信息分类思考; 图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题;思考四:压轴题的做题技巧1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”;所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍;2、解数学压轴题做一问是一问;第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问;过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质;例解压轴题解题:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8ba=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t .∴点E的坐标为4+12t,8-t. ∴点G 的纵坐标为:-124+12t 2+44+12t=-18t 2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题解题技巧练习一、 对称翻折平移旋转1.2010年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形说明你的理由.3在抛物线1l 上是否存在点M ,使得ABMAOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2009年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分二、 动态:动点、动线3.2010年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.4.2008年山东省青岛市已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC =3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts0<t<2,解答下列问题:1当t为何值时,PQ∥BC2设△AQP的面积为y2cm,求y与t之间的函数关系式;3是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分若存在,求出此时t的值;若不存在,说明理由;4如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD的边长为6厘米,∠B=60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,△APQ与△ABC重.叠部分...的面积为y平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P、Q从出发到相遇所用时间是__________秒;2点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是__________秒;3求y与x之间的函数关系式.6.2009年浙江省嘉兴市如图,已知A、B是线段MN上的两点,4=MN,1=MB.以A为中心顺时针旋转点M,以B为中心逆时MA,1>针旋转点N,使M、N两点重合成一点1求x的取值范围;2若△ABC为直角三角形,求x的值;3探究:△ABC的最大面积三、圆7.2010青海如图10,已知点A3,0,以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.1以直线l为对称轴的抛物线过点A及点C0,9,求此抛物线的解析式;2抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;3点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.8.2009年中考天水如图1,在平面直角坐标系xOy,二次函数y=ax2+bx+ca >0的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为3,0,OB=OC,tan∠ACO=错误!. 1求这个二次函数的解析式;2若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G2,y是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大求此时点P 的坐标和△AGP 的最大面积.9.09年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式;2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切若存在,求出该圆的半径,若不存在,请说明理由.角坐标O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围11.2010年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标;2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2010年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; 3是否存在使BCM △为直角三角形的抛物线若存在,请求出;如果不存在,请说明理由.15.重庆市潼南县2010年如图, 已知抛物线c bx x y ++=221与y 轴相交于C,与x 轴相交于A 、B,点A 的坐标为2,0,点C 的坐标为0,-1.1求抛物线的解析式;2点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D,连结DC,当△DCE 的面积最大时,求点D的坐标;3在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.16.2008年福建龙岩如图,抛物线254y ax ax=-+经过ABC△的三个顶点,已知BC x∥轴,点A在x轴上,点C在y轴上,且AC BC=.1求抛物线的对称轴;2写出A B C,,三点的坐标并求抛物线的解析式;3探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.17.09年广西钦州26.本题满分10分如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为-1,0,过点C的直线y=34t x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.1填空:点C的坐标是_▲_,b=_▲_,c=_▲_;2求线段QH的长用含t的式子表示;3依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ 相似若存在,求出所有t的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.1求过点E、D、C的抛物线的解析式;2将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与1中的抛物线交于另一点M,6,那么EF=2GO是否成立若成立,请给予证明;若不点M的横坐标为5成立,请说明理由;3对于2中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形若存在,请求出点Q的坐标;若不存在,请说明理由.B19.09年湖南省长沙市如图,抛物线y3,0、B两点,与y轴相交于点C0,3.当x2+bx +ca≠0的函数值y相等,连结AC、1求实数a,b,c的值;2若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;3在2的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似若存在,请求出点Q的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF =90°,∠EDF=30°操作将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF..,并使边DE与边AB交于点P,边EF与边BC于点Q ..E.旋转...绕点探究一在旋转过程中,(1) 如图2,当CE 1EA=时,EP 与EQ 满足怎样的数量关系并给出证明. (2) 如图3,当CE 2EA=时EP 与EQ 满足怎样的数量关系,并说明理由. (3) 根据你对1、2的探究结果,试写出当CE EA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化不出相应S 值的取值范围.六、最值类22.2010年恩施 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为3,0,与y 轴交于C 0,-3点,点P 是直线BC 下方的抛物线上一动点.1求这个二次函数的表达式.2连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C, 那么是否存在点P,使四边形POP/C为菱形若存在,请求出此时点P的坐标;若不存在请说明理由.3当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.。
中考数学压轴题答题技巧01分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。
这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
02四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
中考数学的压轴题解题方法在解答压轴题的时候,会感到压力很大,找不到解题思路。
不同类型的压轴题所对应的解题思想也存在很大的差异。
小编整理了相关知识,快来学习学习吧!中考数学的压轴题解题方法分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。
这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
2016中考数学答题技巧-提高解题效率的方法讲解中考数学很多考生都觉得头疼,这是因为大家没有掌握好复习和答题技巧,为此下面为大家带来2016中考数学答题技巧-提高解题效率的方法讲解,希望能够帮助大家轻松应对2016年中考数学考试。
第一,要对计算引起足够的重视。
很多同学总以为计算式题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。
其实,计算正确并不是一件很容易的事。
例如计算一道像3754这样简单的式题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。
至于计算一道分数、小数四则混合运算式题,需要用到运算顺序、运算定律和四则运算的法则等大量的知识,经过数十次基本计算。
在这个复杂的过程中,稍有粗心大意就会使全题计算错误。
因此,计算时来不得半点马虎。
第二,要按照计算的一般顺序进行。
首先,弄清题意,看看有没有简单方法、得数保留几位小数等特别要求;其次,观察题目特点,看看几步运算,有无简便算法;再次,确定运算顺序。
在此基础上利用有关法则、定律进行计算。
最后,要仔细检查,看有无错抄、漏抄、算错现象。
第三,要养成认真演算的好习惯。
有些同学由于演算不认真而出现错误。
数据写不清,辨认失误。
打草稿时不能按照一定的顺序排列竖式,出现上下粘连,左右不分,再加上相同数位不对齐,既不便于检查,又极易看错数据。
所以一定要养成有序排列竖式,认真书写数字的良好习惯。
第四,不能盲目追求高速度。
计算又对又快是最理想的目标,但必须知道计算正确是前提条件,是最基本的要求,没有正确作基础的高速度是没有任何价值的。
所以,宁愿计算的速度慢一些,也要保证计算正确,提高计算的正确率。
2016中考数学答题技巧-提高解题效率的方法讲解为大家带来过了,希望大家能够掌握上面的内容,从而取得好的中考数学成绩。
中考压轴题解题技巧1. 哎呀呀,中考压轴题可别小瞧了它呀!比如说函数压轴题,那真像一座难爬的山。
咱得学会找关键点呀,就像爬山找好踩的石头一样。
分析已知条件,看看能推出啥,不就找到解题的路啦!比如给你个抛物线的解析式,你就得赶紧找出顶点之类的关键信息呀,这样不就能解决问题了嘛!2. 嘿,几何压轴题,这可是个硬茬子呢!就好像一场激烈的战斗。
遇到那种要证明的,先别急呀,仔细观察图形,就像侦探找线索一样。
比如说让你证明两个三角形全等,那你得找到对应的边和角相等呀。
多观察,多思考,别轻易就放弃呀,准能搞定!3. 哇塞,中考的压轴题里概率问题也很重要呢!这不就像抽奖一样嘛。
算各种可能性,要认真细致,不能马虎哦!比如扔骰子的问题,得把所有情况都想到呀,可不能漏了啥。
你想想,要是漏了一种可能,那不就全错啦!是不是得小心对待呀?4. 哟呵,代数压轴题有时候也挺让人头疼呢!但别怕呀,就把它当作一个小怪兽。
看到复杂的式子,别慌神,慢慢化简呀。
比如说那种多项式的问题,一项一项去整理,总能找到规律的。
别被它的外表吓住,咱勇敢挑战!5. 嘿呀,动态问题的压轴题可有意思啦!就像一场追逐赛。
动点一动,图形就变啦,要紧紧跟随它的变化呀。
比如说一个点在直线上运动,那它到另一个点的距离啥时候最短,你得好好想想呀。
抓住关键,就能突破啦!6. 哎呀,中考压轴题里的应用题也是要重视的哟!这就像是解决生活中的难题。
要认真读题,把那些条件都搞清楚呀。
比如算成本和利润的问题,每一个数字都要算对呀,不然就功亏一篑啦!千万别马虎呀!7. 哇哦,图形变换的压轴题也很有挑战性呢!就像在变魔术一样。
旋转啦、平移啦,看着复杂,其实也有规律的。
比如说一个图形旋转后会变成什么样,好好分析分析。
别被它变来变去弄晕啦,保持冷静就能找到答案啦!总之,中考压轴题并不可怕呀,只要我们用心去对待,仔细分析,掌握技巧,就一定能战胜它!。