当前位置:文档之家› 几种_淀粉酶系生产麦芽低聚糖工艺研究

几种_淀粉酶系生产麦芽低聚糖工艺研究

几种_淀粉酶系生产麦芽低聚糖工艺研究
几种_淀粉酶系生产麦芽低聚糖工艺研究

几种α-淀粉酶系生产麦芽低聚糖工艺研究

刘汉文 丁志香 仉超

(盐城市粮食化工厂 224001)

摘要:用三种α-淀粉酶系与普鲁兰酶协同糖化、精制、工业化生产出三种麦芽低聚糖浆。在现有酶源条件下,为生产麦芽低聚糖找到了捷径。

关键词:α-淀粉酶系;麦芽低聚糖;

麦芽三糖;熬温

0前言

低聚糖具有的生理功能和优异的可用理化性能,已引起世人瞩目,其研究开发成果斐然,在防病抗病、增进健康、延年益寿方面正发挥着其独特的功能性效应。低聚糖一般系指2~8个单糖以糖苷键联结而成的聚合体。麦芽低聚糖是一种混合糖,主要含麦芽糖、麦芽三糖、麦芽四糖、五糖、六糖等,产品甜度低、不粘牙、口感甚佳。麦芽三~五糖,尤其是麦芽三糖,能抑制人的肠道内分泌细菌毒素致人慢性中毒而衰老的产气夹膜梭菌生长,从而引起人们的极大兴趣,成为保健品与食品的基础原料,可广泛用于婴幼儿食品、老年食品及运动员专用饮料中。此外该糖浆因含葡萄糖低、粘度高、吸潮性低,可广泛适用于糖果特别是奶糖(不会龉齿)、泡泡糖(泡大、持久)、口香糖(久咀不化)、饮料、冷饮、巧克力、乳制品、糕点、咖啡伴侣、速溶饮料中。

我厂根据市场要求,采用市场上现有酶源,利用大米为原料,在现有的麦芽糖工艺条件基础上,分别采用α-淀粉酶和普鲁兰酶、真菌酶和普鲁兰酶、β-葡聚糖酶(Cereflo)和普鲁兰酶,试制生产出麦芽低聚糖浆。产品为无色透明粘稠液体,口感低甜味,用户反映良好,特别深受中外合资企业、外方独资企业的青睐。

1 原辅材料

碎米(本厂生产);

α-淀粉酶(无锡酶制剂厂);

耐高温α-淀粉酶(无锡酶制剂厂);

真菌酶(Fungamgl)(Novo Nordisk);

β-葡聚糖酶(Cereflo)(Novo Nordisk);

普鲁兰酶(Promozyme)(Novo Nordisk);

活性炭(福建南平化工炭素公司)。2 生产工艺

211 工艺流程

212 主要生产工艺说明

21211 调浆浓度的选择 浓度愈高、粘度愈大。浓度太低、浓缩时的蒸发量大、不经济;浓度太高,粘度则上升较大,并且淀粉乳液化后会产生较多的不溶性物质,这些物质主要是凝胶淀粉、淀粉与脂肪复合物,使过滤困难。本厂选择14~16°Be′。

21212 液化工艺的掌握 液化的目的使淀粉完全分散,在耐高温α-淀粉酶作用下,将淀粉完全均衡地水解成糊精、低聚糖等。为了改善过滤性能,提高麦芽低聚糖得率以及产品质量,有必要将淀粉-脂肪复合物全部破坏,并将其所含淀粉降解。直链淀粉-脂肪的螺旋结构真正进一步形成分子结晶的过程是发生在淀粉糊化的条件下,所以液化温度的选择至关重要,液化温度高,可保证淀粉完全分散,又可促使“淀粉颗粒”解体,但液化温度又是影响酶作用的主要因素之一,不可无限升高,本工艺选用98~100℃液化,保温后高压处理料液。压力处理,可达到灭酶和使“淀粉颗粒”完全分散,蛋白质凝聚的作用,本厂选用0113~0115MPa 处理5~10min,然后快速闪蒸冷却糖化。

21213 糖化酶的选择

2121311 用α-淀粉酶与1‰普鲁兰酶合并糖化,延长糖化时间,可生产出葡萄糖值20~40的麦芽低聚糖,聚合度2~6含量达60%~85%,熬温120℃左右。

2121312 Fungamy1是一种用一株经选择的米曲霉(Aspergillus Oryzae)菌株制备的真菌α-淀粉酶,该酶

?

1

3

?

食品科技 1999年第六期

水解直链淀粉和支链淀粉中1,4—

α-葡萄糖苷键。Fungamg 1于p H515、56~58℃糖化,开始时,生成大量的麦芽三糖,随着水解时间的延长,麦芽糖逐渐增多,控制好真菌酶的剂量和糖化时间,既使大分子糊精含量减至量低限度,又要保证麦芽三糖含量占主导地位,可制得DE 值38左右,熬温120℃左右的麦芽低聚糖浆。2121313 

Cereflo 是一种纯化的细菌β-葡聚酶制剂,

此酶是一种葡聚糖内酶,能使(1,4—β-葡聚糖、1,3—

β-葡聚糖)分解为3~5个葡萄糖单位的低聚糖,

此酶除具β-葡聚糖酶活力外,还有α-淀粉酶活力

,类似于工业上大家熟悉的由枯草杆菌得出的淀粉酶制剂。利用Cerelfo 酶与1‰普鲁兰酶合并糖化,糖化4~6h ,DE 值达38后,延长糖化时间,DE 基本保持不变,糖化10~12h 过滤速度与上述两酶相比,明显增快,产品为无色透明粘稠液体。熬温达125~130℃。21214 糖化液中所含杂质,经活性炭脱色去除后,尚有一部分盐类及胶体物质和离子型色素,需要用离子交换的方法去除,离子交换树脂具有离子交换和吸附作用。对于麦芽低聚糖,为了保证糖浆的熬煮温度,离交至关重要,对于阳→阴→阳→阴串联二级交换离交系统,离交糖液出柱p H 控制在415~510之间,电导达010001s/m ,保证杂质离子基本去除干净。

3 质量标准

三种α-淀粉酶系做出的麦芽低聚糖按Z BX31004-87液体葡萄糖及其试验方法检测,产品为

无色透明粘稠液体,口感低甜味,熬温在120℃以上。

取上述三种糖化剂生产出的糖浆样品进行高效液相色谱分析,色谱图如图1、图2、图3。

图1 α-淀粉酶+1‰普鲁兰酶糖化试样色谱图

4 结论

411 用三种α-淀粉酶系在高麦芽糖工艺路线基础

上,成功地用碎米为原料,工业化试制出麦芽低聚糖,

图2 真菌酶+1‰普鲁兰酶糖化试样色谱图

图3 Cereflo β-葡聚糖酶+1‰普鲁兰酶糖化试样色谱图

三种酶系做出的产品,DE 值、色泽、熬温都达到预想的

要求,经高效液相色谱分析,成品中麦芽三糖、四糖、五糖、六糖占50以上,尤其是三糖含量较高。412 由于DE 值较低,前二种酶系糖化液过滤相对困难,使用Cereflo 酶,既可使用其中的α-淀粉酶的作用,又可使β-葡聚糖获得彻底降解,从而增强了糖化液的过滤性能,提高了工作效率。

参考文献:

[1]张力田1淀粉糖1轻工业出版社,1981

(上接第34页)

今后蜂胶在食品贮藏加工中的应用提供了理论依据。

参考文献:

[1]夏平开1养蜂及蜂产品加工1新疆科技卫生出版

社,1993.251~338

[2]胡江疆1蜂胶提取物对细菌作用的实验研究1蜜

蜂杂志,1990,(10):3~5

[3]王南舟1蜂胶中抗菌活性物质的提取及其MIC

的测定1蜜蜂杂志,1989,(10):8~10

[4]董金甫,等1茶多酚(TPP )对8种致病菌最低抑制

浓度的研究1食品科学,1995,16(1):6~12

?

23?1999年第六期 食品科技

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

低聚糖

低聚糖 一、概念 低聚糖又称为寡糖或寡聚糖。定义方式主要有以下几种: 1、低聚糖每分子水解成3~8个分子单糖的碳水化物称低聚糖,也有人把水解成3~10个,甚至20个分子单糖的碳水化物归入这一类。 2、低聚糖(或寡糖01igosaccharides)是指其分子结构由2-10个单糖分子以糖苷键相连接而成的糖类总称。 3、低聚糖麦芽三糖到麦芽八糖,都是α,D-葡萄糖以α-1→4和α-1→6糖苷键结合的。杂低聚糖匠结构比较复杂。分子量300-2000,界于单糖(葡萄糖、果糖、半乳糖)和多糖(纤维、淀粉)之间,又有二糖、三糖、四糖之分。 4、是由3-10个单糖构成的小分子多糖。 5、别名寡糖类或少糖类。通常,低聚糖是2—10个单糖以糖苷键连接的结合物,11个单糖以上的结合物则称为大糖类,100—2000个单糖结合物则称为多糖类。 二、分类 1、水解产生的所有糖分子都是葡萄糖的称麦芽糖低聚糖,由3个葡萄糖分子组成的叫麦芽三糖,四个葡萄糖分子组成的叫麦芽四糖等等。 2、水解时产生不止一种单糖,称杂低聚糖。如大豆中的杂低聚糖水解产生棉子糖和木苏糖等,人不易消化,无法利用。但机体自己合成的杂低聚糖,有很重要的生理功用。 三、常见低聚糖

其中较重要的有: 1、棉子糖:由葡萄糖、果糖和半乳糖组成。 2、水苏糖:由组成棉子糖的三糖再加上一个半乳糖组成。 以上两种主要存在于豆类食品中,因在肠道中不被消化吸收,产生气体和产物,可造成肠胀气;而有些寡糖可被肠道有意细菌利用,而促进这些菌群的增加而有保健作用。 四、作用机理: 功能性低聚糖之所以具有生理功能,是因为它能促进人体肠道内固有的有益细菌——双歧杆菌的增殖,从而抑制肠道内腐败菌的生长,减少有毒发酵产物的形成。由于双歧杆菌对氧、力、热和酸的高度敏感性,要想直接将它添加入食品中是相当困难的,但这对于低聚糖来说却是易于反掌。 五、分布 自然界中仅有少数几种植物含有天然的功能性低聚糖。例如,洋葱、大蒜、芒壳、天门冬、菊苣根和洋蓟等中含有低聚果糖,大豆中含有大豆低聚糖。 六、生理功能 1、促进机体肠道内有益菌的增殖 低聚糖由于其分子间结合位置及综合类型的特殊性,从而使它不被单胃动物自身分泌的消化酶吸收。但它进入肠道后段可作为营养物质被动物肠道内固定的有益菌消化利用。从而使有益菌大量增生,起到了有益菌增殖因子的作用。同时低聚糖产生的酸性物质可降低整个肠道的PH值,从而抑制了有害菌(如沙门氏菌等)的生长,提高动物的抗病能力。 2、结合吸收外源性病原菌(减少有毒发酵产物及有害细菌酶的产生) 许多病原菌的细胞表面含有键合碳水化合物的蛋白质,称为外源凝集素。它们可与消化道低聚糖结构的受体结合,使消化道附着在消化道粘膜表面,从而导致病原菌在肠道内大量繁殖后直接作用或产生毒素而导致病变。若选择合适的低聚糖,使之与外源凝集素结合,从而破坏细胞的识别,进而使病原菌不致于吸附到肠壁上,而低聚糖又有不被消化道内源酶分

探索淀粉酶对淀粉和蔗糖的作用(知识资料)

Sy-5 探索淀粉酶对淀粉和蔗糖的作用 酶:是活细胞产生的一类具有生物催化作用的有机物。酶的作用具有专一性。 一、实验原理 淀粉和蔗糖都是非还原糖。它们在酶的催化作用下都能水解成还原糖。还原糖能够与斐林试剂发生氧化还原反应,生成砖红色的氧化亚铜沉淀。 用淀粉酶分别催化淀粉和蔗糖的水解反应,再用斐林试剂鉴定溶液中有无还原糖,就可以看出淀粉酶是否只能催化特定的化学反应。 证明酶的专一性。 二、目的要求 1.初步学会探索酶催化特定化学反应的方法。 2.探索淀粉酶是否只能催化特定的化学反应。 三、重点与难点 1.重点 ①初步学会探索酶催化特定化学反应的方法--探索酶的特性之一(酶的专一性)的方法。 ②探索淀粉酶是否只能催化淀粉的反应。 2.难点 ①学会探索实验的设计方法和探索方法。 ②让学生学会探索实验的方法,培养学生独立实验能力和创新思维能力。 四、材料用具 质量分数为2%的新鲜的淀粉酶溶液。 试管,大烧杯,量筒,滴管,温度计,试管夹,三脚架,石棉网,酒精灯,火柴。 质量分数为3%的可溶性淀粉溶液,质量分数为3%的蔗糖溶液,斐林试剂,热水。 五、方法步骤(录象观察) 1.取材 2.实验过程 3.结论 序号项目试管 1 2 1 注入可溶性淀粉溶液2mL \ 2 注入蔗糖溶液\ 2mL 3 注入新鲜的淀粉酶溶液2mL 2mL

结论: 1号试管中出现砖红色沉淀,2号管无颜色变化。淀粉酶只能把淀粉水解成麦芽糖,不能水解蔗糖。验证了酶的专一性。 (1)做好本实验的关键是蔗糖的纯度和新鲜程度。这是因为蔗糖是非还原性糖,如果其中混有少量的葡萄糖或果糖,或蔗糖放置久了受细菌作用部分分解成单糖,则与斐林试剂共热时能生成砖红色沉淀,使人产生错觉。为了确保实验的成功,实验之前应先检验一下蔗糖的纯度。普通的细粒蔗糖往往由于部分水解而具有一些还原糖。可用市售大块冰糖,水洗去其表面葡萄糖得到纯净的蔗糖。 (2)实验中要将试管的下半部浸到37℃的温水中,因为淀粉酶在适宜的温度条件下催化能力最强。 (3)在实验中,质量分数为3%的蔗糖溶液要现配现用(以免被细菌污染变质),取唾液时一定要用清水漱口,以免食物残渣进入唾液中。 (4)制备的可溶性淀粉溶液,一定要完全冷却后才能使用,因为温度过高会使酶活性降低,甚至失去催化能力。 (5)实验中如果2号试管也产生了砖红色沉淀,可能的原因是: 蔗糖溶液放置的时间过长,蔗糖溶液中的微生物分解成还原性糖,从而影响实验效果。这时应临时配制蔗糖溶液。 另一个可能的原因是试管不干净,所以实验之前应将试管用清水再清洗一次,试管编号要醒目。 (6)实验步骤一定要按要求的程序进行,不可随意改变。 (7)如果实验中,自己的实验结果与理论上的预期结果不一致,应再设计实验,进行进一步的验证或找出问题所在。 Ⅲ实验理论 本实验是探索类实验。主要目的是通过研究淀粉酶对淀粉和蔗糖的水解作用是否都具有催化作用,探索酶催化化学反应的特点。本实验给我们的重要启示是:设计实验时,首先要从已知人手,确定何为实验变量(自变量),何为因变量,何为控制变量。 本实验的已知条件为题目,即“探索淀粉酶对淀粉和蔗糖的作用”。 从题目可知: ①淀粉、蔗糖水解的产物,水解的速率等变化的结果,即因变量。从因变量入手我们将推知自变量(实验变量)对其的影响程度或它们之间的关系。 ②淀粉、蔗糖在实验过程中的浓度、用量、淀粉酶的浓度、用量、水解过程的温度等都为控制变量,需遵循同时等量原则,以排除控制变量对2个水解反应的影响。 ③淀粉酶本身是实验变量。通过研究确定其分别对淀粉水解作用和蔗糖水解作用的影响。 在以上分析的基础上,再安排淀粉、蔗糖、水、淀粉酶、温度、酸碱度等各变量的“出场”顺序,想必会容易许多。 Ⅳ随堂演练 1.下列关于酶的叙述,不正确的是() A.酶的催化效率很高 B.酶是具有催化功能的蛋白质

血尿淀粉酶临床意义

血、尿淀粉酶检测的临床意义 贾思公 淀粉酶(AMY或AMS)全称是1,4-α-D-葡聚糖水解酶,催化淀粉及糖原水解,生成葡萄糖、麦芽糖及含有α1,6-糖苷键支链的糊精。淀粉酶主要由胰腺和唾液腺分泌,肺、肝、甲状腺、脂肪等组织亦含有此酶。 生理变异:成年人血中淀粉酶与性别、年龄、进食关系不大,新生儿淀粉酶缺乏,满月后才出现此酶,逐步升高,约在5岁时达到成年人水平,老年人淀粉酶开始下降,约低25%。 注意事项:血淀粉酶的检验结果与进食的关系并不大,因此检验前无需刻意空腹,但若有使用避孕药或者麻醉药等则可能使得测定的数值出现偏低的情况。 参考值:血清淀粉酶28—100u/L;尿液淀粉酶0—500u/L 临床意义:淀粉酶主要由唾液腺和胰腺分泌,可通过肾小球滤过。 (1)血清与尿中淀粉酶升高:流行性腮腺炎,特别是急性胰腺炎时,血和尿中淀粉酶显著增高。急性胰腺炎病人胰淀粉酶溢出胰腺外,迅速吸收入血,由尿排出,故血尿淀粉酶大为增加,是诊断本病的重要的化验检查。血清淀粉酶在发病后1~2小时即开始增高,8~12小时标本最有价值,至24小时达最高峰,并持续24~72小时,2~5日逐渐降至正常,而尿淀粉酶在发病后12~24小时开始增高,48小时达高峰,维持5~7天,下降缓慢。故胰腺炎后期测尿淀粉酶更有价值。一般情况下,血清淀粉酶在增高频率以及程度上都不及尿淀粉酶检测,当血清活性淀粉酶回归常态后,尿淀粉酶活性仍然可以持续6天左右,这也是尿淀粉酶检测的敏感度和特异度都高于血淀粉酶检测的原因所在。尿淀粉酶活性测定对于胰腺炎的诊

断非常有效,在患者未能及时就诊时更是如此,在条件允许的情况下,进行血尿淀粉酶联合测定效果更佳。对急性胰腺炎的诊断,血尿淀粉酶都有很高的敏感性。在遇到急腹症患者,特别是那些腹部持续剧痛,用解痉剂也无法缓解症状的病例,就应该及时给患者采取血尿点淀粉酶检测,如果病情不能确定,还可以采取CT 、B 超等手段辅助进行,早点确诊,以便下一步治疗。 急性阑尾炎、肠梗阻、胰腺癌、胆石症、溃疡病穿孔、慢性胰腺炎、胰腺癌、急性阑尾炎、肠梗阻、流行性腮腺炎、唾液腺化脓等血清淀粉酶均可升高,但升高幅度有限。肾功能障碍时,血淀粉酶升高,尿淀粉酶降低。 (2)血清与尿中淀粉酶降低:正常人血清中淀粉酶主要由肝脏产生,血清与尿淀粉酶同时减低主要见于肝炎、肝硬化、肝癌及急性和慢性胆囊炎等。肾功能障碍时血清淀粉酶也可降低。 血尿淀粉酶对于胰腺炎的诊断虽然很有效果,但也会存在一定的诊断不出甚至误诊的几率。胰腺炎是最为常见的急腹症,患者大多有持续性阵痛,与暴饮暴食和烟酒过度有一定关系。有一种以腹泻为主要症状的胆源性胰腺炎与急性肠胃炎临床症状极为相似,血尿淀粉酶也表现较高,容易误诊。胆结石的临床症状主要为腹疼、恶心以及呕吐、发热。常态下,存留于胰液中的胰蛋白是在十二指肠里,它变成活性胰蛋白酶需要胆汁中的肠激酶激活,这样才能够去消化蛋白质。急性胰腺炎很多都是由胆石症引起的,所以急性肠胃炎和胆结石在临床上极易被误诊为胰腺炎,需要重点关注。 总而言之,血尿淀粉酶的坚持是当前诊断胰腺炎的主要手段,其有效

万吨α淀粉酶生产车间的设计

万吨α淀粉酶生产车间 的设计 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

8万t/a α-淀粉酶生产车间的设计 摘要:本设计为年产80,000t α-淀粉酶的工厂设计,其通过枯草杆菌液体深层发酵、沉淀法提取达到分离纯化出菌体中α-淀粉酶的目的。本设计分别对α-淀粉酶的性质、用途、工艺流程及生产原理都做了相关的阐述,并对有关的物料和热量也作了相应的衡算,以及对标准设备的选型和计算,还对工艺指标、安全问题和环境保护都做了详细的阐述。通过设计得出结论:年产8万吨α-淀粉酶发酵工厂,共有18个500m3发酵罐,每月均放罐180罐,发酵周期为72小时,总提取率为82%,理论α-淀粉酶产量为吨/罐,实际α-淀粉酶产量为吨/罐。每月应投入生产总成本为3993万元,根据目前市场价格,年利润为万元。 关键词:α-淀粉酶;工厂设计;效益分析;发酵;发酵罐 Plant Design of Sixty thousand t/a α-Amylase Abstract:This project is designed by a factory which produces 60,000t α-Amylase a achieves the aim of filtration and purification of the α-Amylase by using the deep ferment of hay bacillus and settling design not only respectively illustrate the quality,use,technological process and production principle but also make a materials and heat balance,the type selection and calculation of the standard equipment,further more,illustrate the technic

功能性低聚糖

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 功能性低聚糖属于寡糖,主要包括水苏糖、棉籽糖、乳酮糖、低聚果糖、低聚木糖、低聚半乳糖、低聚异麦芽糖、低聚龙胆糖、大豆低聚糖、壳聚糖等。由于人体胃肠道内没有水解它们的酶系统,因而它们不被消化吸收而直接进入大肠内。这种特性使得它们可以优先为双歧杆菌所利用.是双歧杆菌的增殖因子。本文介绍了几种常见的功能性低聚糖并阐述了其功能。 关键词功能性低聚糖,双歧杆菌,保健作用。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 引言 (3) 1功能低聚糖 (3) 1.1低聚异麦芽糖 (3) 1.2低聚半乳糖 (4) 1.3低聚果糖 (4) 1.4低聚木糖 (4) 1.5大豆低聚糖 (5) 2功能性低聚糖的直接功能 (5) 2.1抗龋齿 (5) 2.2降血脂、降胆固醇 (5) 2.3增殖双歧杆茵、优化肠道茵群 (6) 3功能性低聚糖由双歧杆菌引起的间接功能 (6) 3.1生物屏障作用与抗衰老功能性低聚糖可得到了大幅度提高 (6) 3.2 营养作用 (6) 3.3防止便秘功能 (6) 结语 (8) 致谢 (9) 参考文献 (10)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊引言 低聚糖集营养、保健、食疗于一体,广泛应用于食品、保健品、饮料、医药、饲料添加剂等领域。它是替代蔗糖的新型功能性糖源,是面向二十一世纪“未来型”新一代功效食品。是一种具有广泛适用范围和应用前景的新产品,近年来国际上颇为流行。美国、日本、欧洲等地均有规模化生产,我国低聚糖的开发和应用起于90年代中期,近几年发展迅猛。低聚糖(oligosaccharide)称寡糖,是由2—10个单糖通过糖苷键连接形成直链或支链的低度聚合糖。分子量约为300—2000,可分类为普通性低聚糖和功能性低聚糖两大类。普通性低聚糖包括蔗糖、麦芽糖、乳酸糖、海藻糖和麦芽三糖等,它们可被机体消化吸收;功能性低聚糖包括低聚异麦芽糖、大豆低聚糖、果糖低聚糖、低聚半乳糖、壳聚糖、壳低聚糖、低聚木糖等,因在人体肠道内不具备分解消化的酶系统,不能被人体胃酸和胃酶所降解,故不能消化吸收,而是直接进入小肠内为有益菌双歧杆菌所利用,对人体发挥独特的生理功能。本文主要是就功能性低聚糖做一个介绍,下面先来介绍一些功能性低聚糖。 1功能低聚糖 1.1低聚异麦芽糖 低聚异麦芽糖是指葡萄糖基以a一1,6糖苷键结合而成的、单糖数在2-6不等的一类低聚糖,它是一种支链、非发酵性低聚糖,又称分枝低聚糖或称寡聚葡萄糖,其英文缩写为IMO。低聚异麦芽糖的主要成分为异麦芽糖、潘糖、异麦芽三糖和异麦芽四糖占总糖的50%以上。低聚异麦芽糖分子中含有a一1,4键及a一1,6键,以及少量a一1,3键和a一1,2键。低聚异麦芽糖在酱油、清酒、酱类、蜂蜜及果葡糖浆中有少量存在,广泛存在于大麦、小麦和马铃薯等植物性饲料中,极少以游离状态存在于自然界。 IMO的甜度温和,为蔗糖的45%~50%,可代替部分蔗糖以降低食品甜度及改善食品风味。异麦芽三糖、四糖、五糖等随着聚合度的增加,甜度降低甚至消失。其黏度介于相同浓度的蔗糖与麦芽糖之间。其黏度比蔗糖高,更易于保持结构稳定;其黏度比麦芽糖低,食品加工时操作方便,且对糖果、糕点等的组织与物理性质无不良影响。同时,低聚异麦芽糖对酸和热的稳定性极强。将IMO添加到饮料、罐头及高温处理或低pH值食品中,其特性和生理功能不受影响。IMO具有良好的保湿性,对各种食品的湿润和品质的维持有较好的效果。它还能抑制蔗糖的结晶,防止淀粉类食品的回生,从而延长货架期。分子末端有还原基团,与蛋白质和氨基酸共热会发生美拉

a-淀粉酶发酵的生产工艺

武汉轻工大学 设计α-淀粉酶的发酵生产工艺 系部食品科学与工程学院 专业粮食工程 班级粮工1002 姓名郑开旭 学号100107502 指导教师易阳 2013年6月9日

设计α-淀粉酶发酵的生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α- 淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,同时做出了生产工艺流程图,详细的介绍了α-淀粉酶的生产工艺。 关键词:α-淀粉酶;工艺设计;发酵 正文: α-淀粉酶的生产工艺 1 α-淀粉酶的生产方法 1.1生产方法的选择 枯草杆菌BF7658是我国应用广泛的液化型α-淀粉酶菌种,国内普遍采用深层发酵法生产工业粗酶。我们从BF7658出发,用紫外光及化学药品反复交替诱变,选育适用于固体发酵的新菌体BF7658—1。该菌为短杆状,革兰氏阳性,两端钝园,在肉汁表面可生成菌膜,在培养基上菌落呈乳白色,表面光滑、湿润、略有光泽,用碘液试之,菌落周围呈透明圈。 ?固体培养枯草杆菌BF7658—1生产α-淀粉酶 将菌种接种于马铃薯琼脂斜面,37℃培养三天,然后转接到种子液体培养基上(豆饼粉、玉米粉、酵母膏、蛋白胨火碱、水等),摇瓶培养一定时间,当菌体进入对数生长期时,以0. 5%接种量接入固体培养基(麸皮、米糠、豆饼粉、火碱、水;ph=7左右,常压汽蒸一小时,冷却到38~40℃)在厚层通风制曲箱内,通风保持37~42℃,培养48小时出曲风干。 麸曲用1%食盐水3~4倍浸泡,3小时后过滤,调节滤液pH=8,加硫酸铵溶液沉淀酶,经离心,用浓酒精洗涤脱水,40℃烘干、磨粉即为成品。 ?深层发酵法生产α-淀粉酶

低聚半乳糖(GOS)与低聚果糖(FOS)及低聚异麦芽糖(IMO)

低聚半乳糖(GOS)与低聚果糖(FOS)及低聚异麦芽糖(IMO) (2010-07-14 17:06:27) 转载▼ 标签: 分类:低聚糖 养生 低聚半乳糖 低聚果糖 中国 低聚异麦芽糖 低聚木糖 杂谈 林文章(台湾)云浮市新金山生物科技有限公司技术总监 叶满香(中国)云浮市新金山生物科技有限公司研发经理 奥立佛(德国)澳州国立大学生物博士 蔡依瑾(澳大利亚) 澳州国立大学生化博士 摘要 无论是理化性质还是生理特性,结果显示低聚半乳糖(GOS)具有较强的耐酸性、耐热性、有效地被双歧杆B菌和乳酸杆A菌同时利用,是超强的双歧因子。 关键词低聚半乳糖、低聚异麦芽糖、低聚果糖 本文主要对低聚半乳糖(Galacto-oligosaccharides,GOS)、低聚异麦芽糖 (Isomalto-oligosaccharides,IMO)和低聚果糖(Fructo-oligosaccharides,FOS)三种低聚糖的理化、生理等特性进行比较。 1理化性质 1.1原料及甜度之比较(表1) 低聚半乳糖的甜度约砂糖甜度的35%左右。

1.2粘度比较(图1) 低聚半乳糖的粘度相对IMO和FOS略高 图1 1.3水活性比较(图2) 低聚半乳糖的水活性比IMO、FOS的水活性低,能抑制微生物增长繁殖。

图2 1.4耐酸性比较(图3)各温度维持15min,溶液浓度12w/v。 低聚半乳糖具有较强的耐酸性,在较强的酸性下其组成分不会分解。但低聚果糖却非常不耐酸,在较强酸性条件下其组成分迅速分解。 图3 1.5热稳定性比较(图4) 低聚半乳糖在中性条件下,中性条件下在100℃加热3小时,或120℃加热30分钟,在酸性pH值3.0条件下,160 ℃加热10分钟其组成分不会分解,但是低聚果糖却迅速地分解。

低聚糖的肠道生理作用

低聚糖的肠道生理作用 浅谈低聚果糖的生理作用 低聚糖或称寡糖,是由2~10个单糖通过糖苷键连接形成直链或支链的低度聚合糖,分功能性低聚糖(functionaloligosaccharide)和普通低聚糖两大类。功能性低聚糖现在研究认为包括水苏糖、棉籽糖、异麦芽酮糖、乳酮糖、低聚果糖、低聚木糖、低聚半乳糖、低聚异麦芽糖、低聚异麦芽酮糖、低聚龙胆糖、大豆低聚糖、低聚壳聚糖等。人体肠道内没有水解它们(除异麦芽酮糖外)的酶系统,因而它们不被消化吸收而直接进入大肠内优先为双歧杆菌所利用,是双歧杆菌的增殖因子。另外,这些低聚糖均带有不同程度的甜味(除低聚龙胆糖外),一般甜度相当于蔗糖的30%~60%,可以作为食品的调味料。 秘的人常服用泄药,有时效果会变差,并会削弱肠的机能。但如果每天都摄取低聚糖能否会安全呢?提出这样的疑问也是可以理解的。 低聚糖是用我们日常所食用的天然植物精制而成的,不是化学合成物质。而且是自古就作为食物食用的大家所熟悉的食品。其作用主要是成为肠内双歧杆菌的食料、增加双歧杆菌的数量。即使是摄取多了,也只是使粪便变软些。并且,好像也有人摄取多了低聚糖肚子发胀,但继续食用也就变得习惯了,软便和胀肚子也就逐渐消失。可以说低聚糖用途十分广泛,下面就其用途和前景介绍一下。 具有各种用途的低聚糖 “得了病才发现健康的重要”这句话经常听到。 但现实是,整天公务缠身,也就疏于健康管理,所以有很多人处于既不能说是病,但身体状况又不太好的亚健康状态。这种人如果稍不留意就容易得病。因此如何从亚健康状态恢复到健康,并保持健康,这在预防医学看来是一个很重大的课题。 现在,如何提高人体的生理机能和免疫力已引起人们的极大重视,健康食品也一个接一个地推出。提高双歧杆菌活性的低聚糖,也就在这种背景下应运而生了。 低聚糖因甜度是砂糖的70%[注],所以是一种清爽的甜味剂,而且具有耐酸耐高温,长期保存不变质的特性。这种特性在食品加工上是非常有利的,能够在很广的范围内得到利用。已经用低聚糖开发出的食品有,儿童用人工乳、酸奶、清凉饮料、口香糖、汉堡和蛋糕等。 不会使血糖值上升——糖尿病患者可以放心地服用 服用低聚糖,会使健康状态产生什么样的变化呢? 原耕三先生等人曾用他们研发的低聚糖做了人体消化的实验。

益生菌,益生元与异麦芽低聚糖

益生菌,益生元与异麦芽低聚糖 在我们体内,肠道中存在着100种以上的100兆个细菌。这些细菌既有对人体健 康有益的,也有危害健康的,即一般所说的“有益菌”(也叫益生菌)和“有害菌”。人体肠道内的益生菌主要有双歧杆菌、嗜乳酸杆菌等,它们在人体中的数量,已经成 为衡量机体健康的标志之一。 而益生元(Prebiotics)则是一种膳食补充剂,通过选择性的刺激一种或少数种菌落中的细菌的生长与活性而对寄主产生有益的影响从而改善寄主健康的不可被消化的 食品成分(Gibson and Roberfroid,1995)。 一般可以这么认为,益生元给益生菌提供“食物”,能够被肠道内有益细菌分解吸收,促进有益细菌生长繁殖。大家所熟悉的双歧因子就是促进肠内双歧杆菌生长的益生元。 成功的益生元应是在通过上消化道时,大部分不被消化而能被肠道菌群所发酵的。最重要的是它只是刺激有益菌群的生长,而不是有潜在致病性或腐败活性的有害 细菌。益生元主要包括各种寡糖类物质(Oligosaccharides)或称低聚糖(由2~ 10个分子单糖组成)。更概括的说法是功能性低聚糖。 异麦芽低聚糖又称分歧低聚糖,是一种应用广泛的功能性低聚糖。它可促使人体内的双歧杆菌显著增殖,具水溶性膳食纤维功能,热值低、防龋齿等特性,食后不影响血糖,是现代人理想的益生元。 益生元有多厉害?看下面的数据就知道了。据立健三清提供的数据显示,人体摄入异麦芽低聚糖后,能促使人体内的有益菌,特别是双歧杆菌增殖10—100倍。

上图是养肠专家——立健三清冲剂提炼异麦芽低聚糖的过程和原理。从表格中可以看出,在服用异麦芽低聚糖后,人体肠道双歧杆菌的显著增长繁殖。给肠道补充益生元,其实就是给人体提供正能量,让肠道自然增殖原生益生菌,最终达到保健养生的目的。

关于麦芽糊精和低聚麦芽糖

关于麦芽糊精和低聚麦芽糖 1、低聚麦芽糖的甜度 如以蔗糖的甜度为100 ,各种低聚麦芽糖的甜度分别为:G7 =5 、G6 =10 、G5 =17 、G4 =20 、G3 =32 、G2 =44 、葡萄糖(G )=70 。随着聚合度的增加,甜度在减少,G4 以上只能感觉到甜味,但味质良好。低甜度特性是一种现代人追求的口感,这是一种良好的性质,和其他各种食品混合也不会对口味产生恶劣影响,而且能够大量的使用。 2 、低聚麦芽糖的粘度 各种麦芽低聚糖的粘度与糖浓度有相应的关系,G3 以上与G2 以下的粘度特性存在着明显的差异,G2 的粘度特性与蔗糖相同,G3 以上者具有较高的粘性。后者可使用于具有布丁感的食品中。 3 、低聚麦芽糖的保湿性 4、低聚麦芽糖的水分活度水分活度在食品保藏中担负着重要的角色。水分活度在0.95 以下,革兰氏阴性杆菌便停止发育,而乳酸杆菌等细菌的繁殖具有优势;水分活度在0.88 以下,细菌和酵母停止发育,而霉菌能够生长;水分活度在0.80 以下,除耐干性的霉菌外,都不能生长;水分活度在微生物则全不能生长。因此,如在低水分活度下保藏,,室温下也能起到抑制微生物的作用,可以长时间的保持食品的品质。水分活度(Aw )以P/P0 表示(P: 水溶液的蒸气压,P0 :纯水的蒸气压),溶质吸入的水分子越多,则Aw 越小。在糖浓度为70 %时,随着聚合度的增加,水分活度是逐渐增大的,葡萄糖、麦芽糖、麦芽三糖、麦芽四糖在20 ℃时的Aw 分别为0.75 、0.82 、0.89 、0.915 。所以,对于低聚麦芽糖要在相当大的糖浓度时才能发挥静菌效果。根据我们实验检测结果表明:浓度在75 %时,室温下保存两年,产品仍然无色透明,质量没起什么变化,经液相色谱分析,其组成无变化。 三、低聚麦芽糖的生理功能和人体健康 麦芽低聚糖有滋补营养性,它们能延长供能,强化机体耐力和做功能力,易消化吸收,是一种低甜度、低渗透压的新型甜味剂。当人们经劳动或长时间剧烈运动后,体力消耗大,往往会出现出汗、脱水、体内能源贮备减少、血糖降低、体温升高、肌肉神经传导受到影响、脑功能紊乱等一系列生理上的变化。如服用

血尿淀粉酶临床意义

血、尿淀粉酶检测得临床意义 贾思公 淀粉酶(AMY或AMS)全称就是1,4—α-D-葡聚糖水解酶,催化淀粉及糖原水解,生成葡萄糖、麦芽糖及含有α1,6—糖苷键支链得糊精。淀粉酶主要由胰腺与唾液腺分泌,肺、肝、甲状腺、脂肪等组织亦含有此酶。 生理变异:成年人血中淀粉酶与性别、年龄、进食关系不大,新生儿淀粉酶缺乏,满月后才出现此酶,逐步升高,约在5岁时达到成年人水平,老年人淀粉酶开始下降,约低25%。 注意事项:血淀粉酶得检验结果与进食得关系并不大,因此检验前无需刻意空腹,但若有使用避孕药或者麻醉药等则可能使得测定得数值出现偏低得情况。 参考值:血清淀粉酶28—100u/L;尿液淀粉酶0-500u/L 临床意义:淀粉酶主要由唾液腺与胰腺分泌,可通过肾小球滤过。 (1)血清与尿中淀粉酶升高:流行性腮腺炎,特别就是急性胰腺炎时,血与尿中淀粉酶显著增高。急性胰腺炎病人胰淀粉酶溢出胰腺外,迅速吸收入血,由尿排出,故血尿淀粉酶大为增加,就是诊断本病得重要得化验检查。血清淀粉酶在发病后1~2小时即开始增高,8~12小时标本最有价值,至24小时达最高峰,并持续24~72小时,2~5日逐渐降至正常,而尿淀粉酶在发病后12~24小时开始增高,48小时达高峰,维持5~7天,下降缓慢。故胰腺炎后期测尿淀粉酶更有价值。一般情况下,血清淀粉酶在增高频率以及程度上都不及尿淀粉酶检测,当血清活性淀粉酶回归常态后,尿淀粉酶活性仍然可以持续6天左右,这也就是尿淀粉酶检测得敏感度与特异度都高于血淀粉酶检测得原因所在。尿淀粉酶活性测定对于胰

腺炎得诊断非常有效,在患者未能及时就诊时更就是如此,在条件允许得情况下,进行血尿淀粉酶联合测定效果更佳.对急性胰腺炎得诊断,血尿淀粉酶都有很高得敏感性。在遇到急腹症患者,特别就是那些腹部持续剧痛,用解痉剂也无法缓解症状得病例,就应该及时给患者采取血尿点淀粉酶检测,如果病情不能确定,还可以采取CT 、B 超等手段辅助进行,早点确诊,以便下一步治疗。 急性阑尾炎、肠梗阻、胰腺癌、胆石症、溃疡病穿孔、慢性胰腺炎、胰腺癌、急性阑尾炎、肠梗阻、流行性腮腺炎、唾液腺化脓等血清淀粉酶均可升高,但升高幅度有限。肾功能障碍时,血淀粉酶升高,尿淀粉酶降低. (2)血清与尿中淀粉酶降低:正常人血清中淀粉酶主要由肝脏产生,血清与尿淀粉酶同时减低主要见于肝炎、肝硬化、肝癌及急性与慢性胆囊炎等。肾功能障碍时血清淀粉酶也可降低。 血尿淀粉酶对于胰腺炎得诊断虽然很有效果,但也会存在一定得诊断不出甚至误诊得几率。胰腺炎就是最为常见得急腹症,患者大多有持续性阵痛,与暴饮暴食与烟酒过度有一定关系.有一种以腹泻为主要症状得胆源性胰腺炎与急性肠胃炎临床症状极为相似,血尿淀粉酶也表现较高,容易误诊。胆结石得临床症状主要为腹疼、恶心以及呕吐、发热。常态下,存留于胰液中得胰蛋白就是在十二指肠里,它变成活性胰蛋白酶需要胆汁中得肠激酶激活,这样才能够去消化蛋白质。急性胰腺炎很多都就是由胆石症引起得, 所以急性肠胃炎与胆结石在临床上极易被误诊为胰腺炎,需要重点关注。 总而言之,血尿淀粉酶得坚持就是当前诊断胰腺炎得主要手段,其有效率高,操作也较为简便,能够更为快捷得发现胰腺炎患者,便于对症治

淀粉酶对淀粉和蔗糖的水解作用

淀粉酶对淀粉和蔗糖的水解作用 一、教学目的 l.初步学会探索酶催化特定化学反应的方法。 2.探索是否只能催化特定的化学反应。 二、教学建议 在本实验的教学中,教师应注意以下几点。 1.实验课前,教师应当布置学生预习实验指导。学生通过预习,可以理解实验原理,了解实验的目的要求和方法步骤,避免实验时边看书边做实验的情况发生。 2.实验过程中,教师应提醒学生注意以下几点。 (1)制备的可溶性淀粉溶液,必须完全冷却后才能使用,如果用刚煮沸的可溶性淀粉溶液进行实验,就会因温度过高而破坏淀粉酶的活性。 (2)两支试管保温时,应控制在60℃左右,低于50℃或高于75℃,都会降低化学反应的速度。 (3)如果2号试管也产生了砖红色沉淀,可以考虑以下原因。 ①蔗糖溶液放置的时间是否过长。因为蔗糖溶液放置时间过长,蔗糖容易被溶液中的微生物分解成还原性糖,影响实验的结果。这时应改用现配制的蔗糖溶液。 ②试管是否干净。如果上一个班的同学做完实验后未能将试管清洗干净,这次实验又接着用,就可能出现这种情况。为此,教师必须要求学生在实验结束后,一定要将试管洗刷干净,并倒置控干。教师在实验前应对试管统一进行检查,以杜绝上述情况的发生。 ③蔗糖本身是否纯净。如果蔗糖不纯,就可能出现产生砖红色沉淀的现象。为保证蔗糖纯净,实验前教师可先配制少量的蔗糖溶液,并用斐林试剂检验一下,确无砖红色沉淀产生,则为纯净蔗糖。 三、参考资料 淀粉溶液的配制取2g淀粉酶(粉剂),放入烧杯中,边搅拌边加入98mL蒸馏水,搅拌均匀后备用。

淀粉酶简介本实验为定性实验,因此,不必使用纯的淀粉酶。淀粉酶在一般的化学试剂商店就可以买到,有的酿酒厂也有出售,买回后放在冰箱冷藏室中可保存几年。 替换材料容易购买到菊糖的学校,最好用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖。用菊糖与淀粉进行对比实验,更具有说服力。 1、实验目的 (1)初步学会探索酶催化特定化学反应的方法。 (2)探索淀粉酶是否只能催化特定的化学反应。 2、实验原理 淀粉和蔗糖都没有还原性,也就是都不能使斐林试剂还原,所以都不能与斐林试剂发生反应。唾液淀粉酶将淀粉水解成的麦芽糖则具有还原性,能够使斐林试剂还原,生成砖红色的沉淀。蔗糖水解产生的葡萄糖和果糖都具有还原性,但唾液淀粉酶不能将蔗糖水解。 试验中可以用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖,用菊糖与淀粉进行对比实验,更具有说服力。 3、实验材料 质量分数分别为3%的可溶性淀粉溶液和蔗糖溶液;质量分数为2%的新鲜淀粉酶(化学试剂商店有售)溶液。 4、试剂与仪器 斐林试剂(也可以用班氏试剂)试管、大烧杯、量筒、滴管、温度计、试管夹、三脚架、石棉网、酒精灯、火柴。 5、实验方法与步骤 (1)取两支洁净的试管,编上号,然后向1号注入2mL可溶性淀粉溶液和2mL新鲜淀粉酶溶液。向2号注入2mL蔗糖溶液和2mL新鲜淀粉酶溶液。 (2)轻轻振荡这两支试管,使试管内的液体混合均匀,然后将试管的下半部浸到60℃左右的热水中,保温5min。 (3)取出试管,各加入2mL斐林试剂(边加入斐林试剂,边轻轻振荡这两支试管,以便使试管内的物质混合均匀)。 (4)将两支试管的下半部放进盛有热水的大烧杯中,用酒精灯加热,煮沸并保持1min。 (5)观察并记录两支试管内的变化。

葡萄糖淀粉酶生产工艺图

葡萄糖淀粉酶生产工艺图 淀粉糖是指以淀粉为原料经水解、精制或再经深加工而获得的糖制品。淀粉分子是由成千上万个葡萄糖分子(C6H12O6)连接而成,一个葡萄糖分子有6个碳原子,与下一个葡萄糖分子相连时有三种连法:一是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连;二是第6个碳原子与下一个葡萄糖分子的第1个碳原子相连;三是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连,同时第6个碳原子与另一个葡萄糖分子的第1个碳原子相连。全部葡萄糖分子都以第一种连法连接的是直链淀粉,自然界很少存在;全部葡萄糖分子都以第二种连法连接无法形成长链,形不成淀粉;葡萄糖分子以三种连法混合连成的淀粉分子是自然界存在的淀粉的主流,其中以第三种连法连接的部位形成支叉,所以叫支链淀粉。 果糖与葡萄糖一样都是单糖,果糖的分子式也是C6H12O6,属于葡萄糖的同分异构体,通过异构酶的作用,葡萄糖的醛基变成酮基即得到果糖。蔗糖、麦芽糖及异麦芽糖都属于双糖,一个葡萄糖的第4个碳原子另一个葡萄糖分子的第1个碳原子相连即为麦芽糖,一个葡萄糖的第6个碳原子另一个葡萄糖分子的第1个碳原子相连即为异麦芽糖,而蔗糖则由一个葡萄糖分子与一个果糖分子连接而成。三个葡萄糖分子相连而成的三糖有麦芽三糖和潘糖。4~8个葡萄糖连成的短链糖品叫低聚糖,9个以上葡萄糖连成的中分子物质叫做糊精,其甜味已经不明显,大量的葡萄糖连在一起就形成了淀粉或者形成更大分子量的纤维素。 以淀粉为原料选用不同的酶来水解或控制不同的水解程度可以得到不同的淀粉糖品。以诺维信酶制剂为例: 1、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE6~10,经精制和喷雾干燥后可以制得糊精制品; 2、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE40~50,可以获得食品行业常用的葡萄糖浆; 3、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE99.5~101,可以得到葡萄糖含量97%以上的糖液。经过精制后在50℃以下结晶可以制取一水结晶葡萄糖,在50℃以上结晶可以制取无水结晶葡萄糖; 4、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用真菌淀粉酶FUNGAMYL 800L糖化到DE45~48,可以获得麦芽糖含量50~55%的普通麦芽糖浆; 5、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用β-淀粉酶Novozym WBA和普鲁兰酶Promozyme(适于水解糖链的支叉部位)糖化到DE43~46,可以获得麦芽糖含量60%以上的高麦芽糖浆或芽糖含量70%以上的超高麦芽糖浆。 以葡萄糖为原料,经固定化异构酶Sweetzyme IT异构化可以获得糖分组成中果糖约占42%的F42果葡糖浆,F42果葡糖浆经色谱分离可以获得糖分组成中果糖最多约占90%的F90超高果糖浆,F90超高果糖浆还可以通过结晶制得结晶果糖。 以葡萄糖为原料,经高压加氢可以制得山梨醇,通过结晶可以制得结晶山梨醇。

低聚糖功能&常见的低聚糖

低聚糖的保健作用 (1)改善人体内微生态环境,有利于双歧杆菌和其它有益菌的增殖,经代谢产生有机酸使肠内 pH值降低,抑制肠内沙门氏菌和腐败菌的生长,调节胃肠功能,抑制肠内腐败物质,改变大便性状,防治便秘,并增加维生素合成,提高人体免疫功能。(2)低聚糖类似水溶性植物纤维,能改善血脂代谢,降低血液中胆固醇和甘油三酯的含量; (3)低聚糖属非胰岛素所依赖,不会使血糖升高,适合于高血糖人群和糖尿病人食用 (4)由于难被唾液酶和小肠消化酶水解,发热量很低,很少转化为脂肪; (5)不被龋齿菌形成基质,也没有凝结菌体作用,可防龋齿。 因此,低聚糖作为一种食物配料被广泛应用于乳制品、乳酸菌饮料、双歧杆菌酸奶、谷物食品和保健食品中,尤其是应用于婴幼儿和老年人的食品中。在保健食品系列中,也有单独以低聚糖为原料而制成的口服液,直接用来调节肠道菌群、润肠通便、调节血脂、调节免疫等。 常见的低聚糖 名称主要成份与结合类型主要用途 麦芽低聚糖葡萄糖(α—1,4糖苷键结合) 滋补营养性,抗菌性 低聚异麦芽糖葡萄糖(α—1,6糖苷键结合)防龋齿,促进双歧杆菌增殖 环状糊精葡萄糖(环状α—1,4糖苷键结合)低热值,防止胆固醇蓄积 龙胆二糖葡萄糖(β—1,6糖苷键结合),苦味能形成包装接体 偶联糖(Coup ling sugar) 葡萄糖(α—1,4糖苷键结合),蔗糖防龋齿 果糖低聚糖果糖(β—1,2糖苷键结合),蔗糖促进双歧杆菌增殖潘糖葡萄糖(α—1,6糖苷键结合),果糖防龋齿 海藻糖葡萄糖(α—1,1糖苷键结合),果糖防龋齿,优质甜味 蔗糖低聚糖葡萄糖(α—1,6糖苷键结合),蔗糖等防龋齿,促进双歧杆菌增殖 牛乳低聚糖半乳糖(β—1,4苷键结合),葡萄糖骨架防龋齿,促进双歧杆菌增殖 壳质低聚糖乙酰氨基葡萄糖(β—1,4苷键结合),蔗糖抗肿瘤性大豆低聚糖关乳糖(α—1,6糖苷键结合),蔗糖促进双歧杆菌增殖

淀粉酶

淀粉酶说明 宁波北仑雅旭化工有限公司优质生产商,α-淀粉酶的厂家电话,α-淀粉酶的CAS号,α-淀粉酶的详细说明,α-淀粉酶最新报价,α-淀粉酶的价格,α-淀粉酶的作用,α-淀粉酶厂家总代理,α-淀粉酶厂家最新报价,α-淀粉酶的添加量,α-淀粉酶的分子式、α-淀粉酶的分子量。 英文:a-Amylase活力:1万CAS:9000-90-2。 概述:中温α-淀粉酶采用枯草芽孢杆菌(Bacillus Subtilis)经深层发酵提炼而成。广泛应用于酒精、啤酒、味精、淀粉糖、发酵工业的液化以及纺织、印染退浆等。 原理:能水解淀粉分子中的α-1.4葡萄糖苷键,任意切断成长短不一的短链糊精及少量的低分子糖类,直链淀粉和支链淀粉均以无规则的形式进行分解,从而使淀粉糊的粘度迅速下降,即“液化”作用,故又称液化酶。 产品特性:1、热稳定性:在60οC以下较为稳定,最适作用温度60 -70οC,可适用于最高达90οC的液化过程。2、PH稳定性:在PH6.0-7.0时较稳定,最适PH6.0,PH5.0以下失活严重。3、钙离子浓度对酶活力的影响:钙离子对酶活力的稳定性有提高作用,没有钙离子,酶活力完全丧失。 应用方法:1、在饴糖、酶法味精上的应用淀粉浆浓度为16-17B,调PH至6.2-6.4,并加入0.2%氯化钙(按原料重量计算),然后将淀粉酶加入淀粉浆中(每克原料用酶6-8个单位),充分混合后,加热至85 -90οC,液化30分钟左右。 2、在啤酒生产上的应用使用大米、玉米为辅料时先磨粉通过40目以上筛孔,在糊化锅中调浆后加淀粉酶,加酶量在6个单位/克原料左右,在85 -90οC液化30分钟。 3、在纺织品退浆上的应用使用精制的液体淀粉酶作为退浆剂,适用于不耐高温的丝绸、化纤、棉毛织品的退浆工艺,加酶量在0.2%(2000u/g)左右,在水浴50 -80οC 20-40分钟。 4、其它工业一般控制在加酶量在每克淀粉6-8个酶活力单位,钙离子浓度150ppm。 储存:本品系生物活性物质,日光、温度、湿度要引起酶失活。应防止太阳直晒,宜放在低温干燥处。 真菌α—淀粉酶是由曲霉属微生物发酵产生的一种α—淀粉酶。与细菌α—淀粉酶不同的是,真菌α—淀粉酶的最适作用温度为55℃左右,超过60℃开始失活;其水解淀粉的产物主要是高含量的麦芽糖和一些低聚糖及少量的葡萄糖。而细菌α—淀粉酶最适作用温度高(中温α—淀粉酶70~80℃,耐高温α—淀粉酶为95~105℃),水解淀粉的主要产物是糊精。因此,细菌α—淀粉酶只能用于发酵工业,而真菌α—淀粉酶则广泛地应用于淀粉糖浆、低聚糖、啤酒、烘焙食品、面制品等的生产,具有十分广阔的市场前景。 真菌α-淀粉酶 概述: 真菌α - 淀粉酶是由米曲酶瓦尔( Aspergillus oryzal var )发酵、精制提取而成的一种食品级α - 淀粉酶。 该酶为内切型淀粉酶,可以迅速水解直链和支链淀粉水溶液内部的α -1.4 糖苷键,生成大量的麦芽糖及少量的麦芽三糖、葡萄糖和其它寡聚糖。 该酶主要用于高麦芽糖浆的生产,也可用于啤酒等行业。 酶的应用方法: 真菌α - 淀粉酶主要应用于高麦芽糖浆的生产。最佳的糖化条件取决于 PH 、温度、底物浓度和酶制剂加量。各应用厂家根据自己的条件决定最佳工艺条件,一般建议使用方法如下: PH 5.0-5.5 ,反应温度 50 -60 οC ,酶制剂加量 0.15 -0.30kg / 吨干淀粉,糖化时 间 12-24 小时。

相关主题
文本预览
相关文档 最新文档