当前位置:文档之家› 通信仿真

通信仿真

通信仿真
通信仿真

《通信系统仿真技术》

实验报告

学号:10050743X51

姓名:

实验一:SystemView操作环境的认识与操作

1.实验题目:SystemView操作环境的认识与操作

2.实验内容:正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)、平方分析、及其谱分析;并讨论定时窗口的设计对仿真结果的影响。

3.实验原理:在设计窗口中单击系统定时快捷功能按钮,根据仿真

结果设定相关参数。

采样点数=(终止时间-起止时间)×〔采样率〕+1

正玄信号S(t)=cos(wt)

其平方P(t)=cos(wt)*cos(wt)=[cos(2wt)+1]/2

P(t)频率是S(t)的二倍

4.实验仿真:

实验结论:SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真,是一个强有力的动态系统分析工具,能

满足从数字信号处理、滤波器设计、直到复杂的通信系统等不同层次

的设计、仿真要求。

实验二:学习系统参数的设定与图符的操作

实验题目:学习系统参数的设定与图符的操作

实验内容:将一正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)与高斯信号相加后观察输出波形及其频谱,由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。

实验原理:高斯信号就是信号的各种幅值出现的机会满足高斯分布的信号。当高斯信号不存在是正玄信号不失真,随着高斯信号的增加正玄信号的失真会越来越大。

实验仿真:

实验结论:恒参信道的干扰信号常用高斯白噪声信号来等效。

而无线信道是一种时变的衰落信道,其衰落特性主要表现为具有多普勒功率谱特性的快衰落和具有阴影效应的慢衰落。

实验三:接收计算器的使用及滤波器的设计

实验题目:接收计算器的使用及滤波器的设计

实验内容:1、正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)、及其平方分析窗口的接收计算器的使用;(实现3个以

上运算功能)。

2、单位冲激响应仿真、增益响应分析。;

3、Fir滤波器设计;模拟滤波器设计;(低通、高通、带通)实验原理:1当激励为单位冲激函数时,电路的零状态响应称为单位冲激响应,简称冲激响应。2滤波器特性可以用其频率响应来描述,按其特性的不同,可以分为低通滤波器,高通滤波器,带通滤波器和带阻滤、波器等。

实验仿真:正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)

V)、及其平方分析窗口的接收计算器的使用

单位冲激响应仿真、增益响应分析。

Fir滤波器设计;模拟滤波器设计;(低通、高通、带通)

实验结论:1通过中心频率f0,带宽BW,通带衰减,阻带衰减等参数即可确定滤波器的性能。

2滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该

频点以外的频

率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

实验四:仿真模拟线性调制系统

实验题目:仿真模拟线性调制系统

实验内容:1、学习AM调制原理

2、仿真AM调制、解调系统

要求:

(1)首先完成PDF中4.1节的仿真(要求调制信号频率为学

号),改变调制度,并观察输出波形(已调波)的变化。

(2)使用通信库中现成的双边带调幅图符重新完成4.1节中

的仿真(要求调制信号频率为学号)。改变调制度,并

观察输出波形(已调波)的变化。

实验原理:

在AM信号的解调器中,“低通滤波器”后边接“取”样判决器”可以大大提高解调输出的正确性,因为低通滤波器输出的是包含信道

畸变和噪声影响的模拟量,信号取值有很大模糊性,此时信号星座图中的信号点是发散的,这一点将在接下来的仿真分析结果中充分体现出来。取样判决的作用就是最大限度地消除各种不利因素,使信号星座图更加趋于理想AM的信号图。一般做法就是先在原信号上叠加一个直流信号,以保证信号f(t)+A>0。然后乘上一个高频的余弦信号,即得到g(t)=[f(t)+A]coswt。在频域上的效果就是将原信号的频谱移动到w处,以适合信道传输的最佳频率范围。g(t)的包络线即f(t)+A,用一个简单的包络检测电路就可以接收并还原信号了。

实验仿真:

实验结论:通过仿真实验可得调制在通信系统中的重要性。也可得到条幅波在波形上,幅度随基带信号的规律而呈正比的变化;在频谱结构上,他的频谱完全是基带信号频谱在频域内的简单搬移,这种搬移是线性的,因此,幅度调制又称为线性调制。

实验五:仿真模拟角度调制系统

实验题目:仿真模拟角度调制系统

实验内容:1、仿真角度调制系统。2、仿真角度解调系统。

实验原理:角度调制是频率调制和相位调制的总称。角度调制是使正弦载波信号的角度随着基带调制信号的幅度变化而改变。

也就是说,比如在调频信号中,载波信号的频率随着基带调制信号的幅度变化而改变。调制信号幅度变大时,载波信号的频率也变大(或变小),调制信号幅度变小时,载波信号的频率也变小(或变大);而在调相信号中;载波信号的相位随着基带调

制信号的幅度变化而改变。调制信号幅度变大时,载波信号的相

位也变大(或变小),调制信号幅度变小时,载波信号的相位也变小(或变大);实际上,在某种意义上,调频和调相是等同的,所以我们都称之为角度调制;而在这种调制方式中,载波的幅度保持不变(这就是FM叫做恒包络的原因)。

调频信号可以被看作调制信号在调制前先积分的调相信号。这意味着先对m(t)积分,再将结果作为调相器的输入即可得到调频信号。相反,先微分m(t),再将结果作为调频器的输入也可得到调相信号。在模拟蜂窝移动通信中,调频是更为普遍应用的角度调制,这是因为FM不管信号的幅度如何,抗干扰能力都很强,而在调幅中,正如前面所说的那样,抗干扰能力要弱得多。

有两种基本的方法来产生调频信号:直接法和间接法。在直接法中,载波的频率直接随着输入的调制信号的变化而改变。在间接法中,先用平衡调制器产生一个窄带调频信号,然后通过倍频的方式把载波频率提高到需要的水平。模拟移动通信技术中,我们采用的就是调频技术

实验仿真:

实验结论:调频信号可以被看作调制信号在调制前先积分的调相信号。这意味着先对m(t)积分,再将结果作为调相器的输入即可得到调频信号。相反,先微分m(t),再将结果作为调频器的输入

也可得到调相信号。在模拟蜂窝移动通信中,调频是更为普遍应用的角度调制,这是因为FM不管信号的幅度如何,抗干扰能力都很强,而在调幅中,正如前面所说的那样,抗干扰能力要弱得多。

实验六:仿真数字信号的基带传输

实验题目:仿真数字信号的基带传输

实验内容:1、掌握数字基带信号传输的无失真条件。

2、仿真数字信号的基带传输。

实验原理:基带传输系统的基本结构如图所示。它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。

实验仿真:

实验结论:基带传输系统的基本结构主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。

实验七:仿真数字信号的载波调制

实验题目:仿真数字信号的载波调制

实验内容:设计数字调制解调系统;(2ask、2fsk、2psk、2dpsk)

实验原理:1、2ask信号的解调方法有两种,非相干解调(包络检波)和相干解调(同步检测法)

2 、2fsk信号可看成是两个不同载频的2ask信号的叠加,

其解调原理是将2fsk信号分解为上下两路2ask信号分

别进行解调,然后进行判决。

3、2psk信号的解调通常采用相干解调法。

实验仿真:

实验结论:1. 2fsk 信号解调时,抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限。

2. 2psk 信号在载波恢复过程中,存在180度的相位模糊

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

通信原理课设-基于Systemview的通信系统的仿真

目录 第1章绪论 (1) 第2章 SystemView的基本介绍 (2) 第3章二进制振幅键控 2ASK (4) 3.1 2ASK调制系统 (4) 3.2 2ASK调制解调系统 (6) 3.3 2ASK系统仿真结果分析 (9) 第四章二进制频移键控 2FSK (10) 4.1 2FSK调制系统 (10) 4.2 2FSK调制解调系统 (12) 4.3 2FSK仿真结果分析 (17) 第5章二进制移相键控 2PSK (18) 5.1 2PSK调制系统 (18) 5.2 2PSK调制解调系统 (19) 5.3 2PSK仿真结果分析 (23) 第6章二进制差分移相键控 2DPSK (24) 6.1 2DPSK实验原理 (24) 6.2 2DPSK仿真结果分析 (29) 第7章实验总结 (30) 第8章参考文献 (30) 第9章谢辞 (32)

第1章绪论 通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 本次课程设计的目的是在学习以上三种调制的基础上,通过Systemview仿真软件,实现对2ASK,2FSK,2PSK,2DPSK等数字调制系统的仿真,同时对以上系统有深入的了解。 Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。 在此次课程设计之前,先学会熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。

移动通信系统OFDM系统仿真与实现(基于MATLAB)

OFDM系统仿真与实现 1. OFDM的应用意义 在近几年以,无线通信技术正在以前所未有的速度向前发展。由于用户对各种实时多媒体业务需求的增加和互联网技术的迅猛发展,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。随着人们对通信数据化、个人化和移动化的需求,OFDM技术在无线接入领域得到了广泛的应用。OFDM是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输技术结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB-T)、无线局域网等领域得到广泛应用。它将是4G移动通信的核心技术之一。 OFDM广泛用于各种数字传输和通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSL,数字音频广播(DAB)系统,数字视频广播(DVB)和HDTV地面传播系统。1999年,IEEE802.11a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM 接口和10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室、室外的各种应用场合。 OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而在上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本和功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还是采用了SC-FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD-CDM-OFDM的方案B3G/4G是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室和静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。 2. OFDM的原理研究与分析 2.1OFDM的关键技术 (1) 时域和频域同步 OFDM系统对定时和频率偏移敏感,特别是实际应用中与FDMA、TDMA和CDMA 等多址方式结合使用时,时域和频率同步显得尤为重要。

通信系统建模与仿真

《电子信息系统仿真》课程设计 级电子信息工程专业班级 题目FM调制解调系统设计与仿真 姓名学号 指导教师胡娟 二О一年月日

内容摘要 频率调制(FM)通常应用通信系统中。FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。 FM调制解调系统设计是对模拟通信系统主要原理和技术进行研究,理解FM系统调制解调的基本过程和相关知识,利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出对已调信号叠加噪声后信号,非相干解调后信号和解调基带信号的时域波形;最后绘出FM基带信号通过上述信道和调制和解调系统后的误码率与信噪比的关系,并通过与理论结果波形对比来分析该仿真调制与解调系统的正确性及噪声对信号解调的影响。在课程设计中,系统开发平台为Windows XP,使用工具软件为 7.0。在该平台运行程序完成了对FM调制和解调以及对叠加噪声后解调结果的观察。通过该课程设计,达到了实现FM信号通过噪声信道,调制和解调系统的仿真目的。了解FM调制解调系统的优点和缺点,对以后实际需要有很好的理论基础。 关键词 FM;解调;调制;M ATL AB仿真;抗噪性

一、M ATLAB软件简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。其特点是: (1) 可扩展性:Matlab最重要的特点是易于扩展,它允许用户自行建立指定功能的M文件。对于一个从事特定领域的工程师来说,不仅可利用Matlab所提供的函数及基本工具箱函数,还可方便地构造出专用的函数。从而大大扩展了其应用范围。当前支持Matlab的商用Toolbox(工具箱)有数百种之多。而由个人开发的Toolbox则不可计数。 (2) 易学易用性:Matlab不需要用户有高深的数学知识和程序设计能力,不需要用户深刻了解算法及编程技巧。 (3) 高效性:Matlab语句功能十分强大,一条语句可完成十分复杂的任务。如fft语句可完成对指定数据的快速傅里叶变换,这相当于上百条C语言语句的功能。它大大加快了工程技术人员从事软件开发的效率。据MathWorks公司声称,Matlab软件中所包含的Matlab 源代码相当于70万行C代码。

通信系统仿真经典.doc

题目基于SIMULINK的通信系统仿真 摘要 在模拟通信系统中,由模拟信源产生的携带信息的消息经过传感器转换成电信号,模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号;在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号。本文应用了幅度调制以及键控法产生调制与解调信号。 本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了AM、DSB、SSB、2ASK、2FSK、2PSK三种模拟信号和三种数字信号的调制与解调,以及用SIMULINK进行设计和仿真。首先我进行了两种通信系统的建模以及不同信号系统的原理研究,然后将学习总结出的相应理论与SIMULINK中丰富的模块相结合实现仿真系统的建模,并且调整参数直到仿真波形输出,观察效果,最终对设计结论进行总结。 关键词通信系统调制 SIMULINK

目录 1. 前言 (1) 1.1选题的意义和目的 (1) 1.2通信系统及其仿真技术 (2) 3. 现代通信系统的介绍 (7) 3.1通信系统的一般模型 (7) 3.2模拟通信系统模型和数字通信系统模型 (7) 3.2.1 模拟通信系统模型 (7) 3.2.2 数字通信系统模型 (8) 3.3模拟通信和数字通信的区别和优缺点 (9) 4. 通信系统的仿真原理及框图 (12) 4.1模拟通信系统的仿真原理 (12) 4.1.1 DSB信号的调制解调原理 (12) 4.2数字通信系统的仿真原理 (16) 4.2.1 ASK信号的调制解调原理 (16) 5. 通信系统仿真结果及分析 (21) 5.1模拟通信系统结果分析 (21) 5.1.1 DSB模拟通信系统 (21) 5.2仿真结果框图 (24) 5.2.1 DSB模拟系统仿真结果 (24) 5.3数字通信系统结果分析 (28) 5.3.1 ASK数字通信系统 (28) 5.4仿真结果框图 (35) 5.4.1 ASK数字系统仿真结果 (35)

基于Matlab的CDMA通信系统仿真

1 绪论 1.1课题背景及目的 20世纪60年代以来,随着民用通信事业的发展,频带拥挤问题日益突出。CDMA(Code Diveision Multiple Access,码分多址)通信,在使用相同频率资源的情况下,理论上CDMA移动网比模拟网容量大20倍,实际使用中比模拟网大10倍,比GSM要大4~5倍,所以在通信领域中起着非常重要的作用。CDMA的基本原理是利用互相正交(或尽可能正交)的不同编码,分配给不同用户调制信号,实现多用户同时使用同一频率接入系统和网络的通信。由于利用互相正交(或尽可能正交)的编码去调制信号,会将原信号的频谱带宽扩展,因此,这种通信方式,又称为扩频通信。本论文所完成的CDMA通信仿真系统,是结合CDMA的实际通信情况,利用MATLAB的通信工具箱—SIMULINK组建出完整的CDMA通信系统,完成整体设计方案,实现完整的发送到接收的端到端的CDMA 无线通信系统的建模、仿真和分析。教学实践表明,该系统的完成使得比较抽象的概念得以直接表示,烦琐的计算得以大大简化,提高上机效率,在通信原理课程教学中起到良好的辅助作用。 1.2课题研究方法 为了研究CDMA通信系统的通信方式,我们对两种扩频码(m序列和正交gold 序列)经过衰落信道后再解扩,通过比较两种扩频码的误比特率与信噪比的关系得出用来扩频的PN码哪种更好。使其更符合CDMA通信的抗干扰能力强的要求和实现多用户同时在同一频率互不干扰进行通信而误比特率性能不随着用户数的增加而恶化这样的目的进行仿真实验。

2 CDMA基础及原理 CDMA多址技术的原理是基于扩频技术,即将需传送的具有一定信号带宽的信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端由使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。 2.1扩频通信 扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息所需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接受、解扩及恢复所传信息数据。 2.1.1 扩频通信理论基础 香农公式:C=Wlog2(1+S/N) 1、在给定的传输速率C不变的条件下,频带宽度W和信噪比S/N是可以互换的。即可通过增加频带宽度的方法,在较低的信噪比情况下,传输信息。 2、扩展频谱换取信噪比要求的降低,正是扩频通信的重要特点,并由此为扩频通信的应用奠定了基础。 2.1.2 扩频通信系统的分类 (1)直接序列扩频(DS) (2) 跳频扩频(FH) (3) 跳时扩频(TH) (4)混合方式(以上三种基本方式的不同组合) 在实际的CDMA系统中,直接序列扩频得到了广泛的认可和应用,所以,在本次实验中主要研究直接序列扩频技术。

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

通信原理实验二

实验二:PCM系统仿真 班级:学号:姓名:实验室: 实验时间:指导老师: 实验目的: 1、掌握脉冲编码调制原理; 2、理解量化级数、量化方法与量化信噪比的关系。 3、理解非均匀量化的优点。 实验内容: 对模拟信号进行抽样和均匀量化,改变量化级数和信号大小,根据MATLAB仿真获得量化误差和量化信噪比。 实验步骤: 1) 产生一个周期的正弦波x(t) = cos (2 * pi *t ),以1000Hz频率进行采样,并进行8级均匀量化,用plot函数在同一张图上绘出原信号和量化后的信号。代码及图见附录。 2) 以32Hz的抽样频率对x(t)进行抽样,并进行8级均匀量化。绘出正弦波波形(用plot函数)、样值图,量化后的样值图、量化误差图(后三个用stem函数)。代码及图见附录。 3) 以2000Hz对x(t)进行采样,改变量化级数,分别仿真得到编码位数为2~8位时的量化信噪比,绘出量化信噪比随编码位数变化的曲线。另外绘出理论的量化信噪比曲线进行比较。代码及图见附录。 4)在编码位数为8和12时采用均匀量化,在输入信号衰减为0~50 dB时,以均匀间隔5 dB仿真得到均匀量化的量化信噪比,绘出量化信噪比随信号衰减变化的图形。注意,输入信号减小时,量化范围不变;抽样频率为2000 Hz。代码及图见附录。 实验思考题: 1.图2-3表明均匀量化信噪比与量化级数(或编码位数)的关系是怎样的? 答:量化信噪比随着量化级数的增加而提高,当量化级数较小是不能满足通信质量的要求。 2.分析图2-5,A律压缩量化相比均匀量化的优势是什么? 答:量化信噪比随着量化级数的增加而提高,当量化级数较小是不能满足通信质量的要求 心得体会:

移动通信仿真实验

移动通信仿真实验报告 一、实验目的 通过仿真,加深对移动通信中电波传播的路径损耗和阴影衰落的理解; 通过仿真,掌握蜂窝网中频率复用、同频干扰等基本概念,加深对载波干扰比的理解; 二、实验原理 1.无线信道的衰落 无线信道的衰落通常分为大尺度衰落和小尺度衰落。 大尺度衰落是由移动通信信道路径上的固定障碍物(建筑物、山丘、树林等)的阴影引起的,衰减特性一般服从d?n律,其中n称为路径损耗指数,平均信号衰落和关于平均衰落的变化具有对数正态分布的特征。大尺度衰落主要影响到无线区的覆盖区域。 小尺度衰落由移动台运动和地点的变化而产生,主要特征是多径。多径产生时间扩散,引起符号间码间干扰;运动产生多普勒频移,引起信号随机调频。多径衰落严重影响信号传输质量,并且不可避免,只能采用抗衰落技术减少其影响。 1)阴影衰落 在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象。由于这种原因造成的衰落也叫“阴影效应”或“阴影衰落”。在阴影衰落的情况下,移动台被建筑物所遮挡,它收到的信号是各种绕射,反射,散射波的合成。所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,阴影衰落一般表示为电波传播距离r的m次幂与表示阴影损耗的正态对数分量的乘积。移动用户和基站 间距离为r时,传播路径损耗和阴影衰落可以表示为 l r,ξ=r m×10ξ10 式中,ξ是由于阴影产生的对数损耗(单位为dB),ξ~N(0,σ)。当用dB表示时,上式变为 10lg l r,ξ=10m lg r+ξ 式中m称为路径损耗指数,实验数据表明m=4,σ=8 dB是合理的。

simulink通信系统建模与仿真

通信系统建模与仿真课程设计 2008 级通信工程专业0813072 班级 题目基于SIMULINK的2ASK频带传输系统的仿真姓名李春艳学号081307211 指导教师胡娟闫利超贾晓兰 2011年6月1日

1 任务书 试建立一个ASK 频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行ASK 调制后再送入加性高斯白噪声(AWGN )信道传输,在接收端对其进行ASK 解调以恢复原信号,观察还原是否成功,改变AWGN 信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。另外,对发送信号和接收信号的功率谱进行估计。 2 二进制振幅键控(2ASK )的理论分析 2.1 2ASK 调制原理 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。 设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P ,发送1符号的概率为1-P ,且相互独立。该二进 wct nTs t ang wct t s t sASK cos ])([cos )()(∑-== 制符号序列可表示为 其中: ?? ?=10an 0是以概率p 出现,而1是以概率1-p 出现。 二进制振幅键控信号时间波型如图1 所示。 由图1 可以看出,2ASK 信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK 信号)。 二进制振幅键控信号的产生方法如图2 所示,图(a)是采用模拟相乘的方法实现, 图(b)是采用数字键控的方法实现。 由图1 可以看出,2ASK 信号与模拟调制中的AM 信号类似。所以,对2ASK 信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图3 所示。2ASK 信号非相干解调过程的时间波形如图4 所示。

通信原理仿真实例

第一部分 随机过程 1. 观察零均值高斯信号的自相关函数,相互独立的高斯信号的互相关函数,具有给定相关系数,1 ρρ≤的高斯信号的波形 产生两个具有相同方差2 σ的不相关的零均值高斯随机过程X 和Y ,令Z X ρ=+ ,X 和Z 即为具有相关系数ρ的两高斯随机过程。 ++ 证明:[][]0[]0E X E Y E Z ==?= 2222222222 2 2[][](1)[]2[](1)[][][][][][](1)[][] XZ X Z D Z D X D Y XY COV XZ E XZ E X E Z E XZ E X E XY E XZ ρρρσρσσρρρσρσρρσσσ =+-+=+-==-?==+-== == 2. 仿真窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围?f 内,满足?f << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。窄带随机过程可以用一个零均值高斯白噪声通过一个带通滤波器得到,等效为一个幅度和相位缓慢变化的正弦波,表示式: ()()cos[()],()0c t a t t t a t ξξξξω?=+≥ a ξ (t ) - 随机包络, ?ξ (t ) - 随机相位 ,ωc - 中心角频率 窄带随机过程表示式展开: ()()cos ()sin c c s c t t t t t ξξωξω=- ()()cos ()c t a t t ξξξ?=- ξ(t )的同相分量 ()()sin ()s t a t t ξξξ?=- ξ(t )的正交分量 若E [ξ(t )] = 0,[()]0[()]0 c s E t E t ξξ==, 222 c s ξσσσ==——ξ(t ) 、 ξc (t )和ξs (t )具有相同的平均功率或方差 a ξ服从参数为σξ的瑞利(Rayleigh )分布: 22 2 ()exp() (0)2a a f a a ξ ξξξξ ξ σσ= - ≥

直扩通信系统基本原理与仿真

直扩通信系统基本原理与仿真 摘要:扩频通信技术是现代通信系统中的一种新兴的通信方式,其较强的抗干扰、抗衰落和抗多径性能以及频谱利用率高、多址通信等诸多优点越来越为人们所认识,并被广泛地应用于军事通信和民用通信的各个领域,从而推动了通信事业的发展。在扩频通信中,最常用的一种调制方式是直接序列扩频。本文阐述了扩频通信的基本概念,并且着重介绍了直接序列扩频(Direct Sequence Spread Spectrum)通信系统的基本原理,分析了其主要性能指标,通过MATLAB软件仿真直接序列扩频通信系统,得到了在不同干扰下系统的误码性能,根据仿真结果,给出了关于扩频通信系统性能的一些结论,最后,对扩频技术发展提出了一些有益的设想。 【关键词】直接序列扩频误码性能扩频多址抗干扰 Abstract:Spread spectrum communication technology is a emerging communication methodof modern communication systems.This communication method has the excellent properties: the strong anti-jamming , anti-fading and multipath performance and high spectrum efficiency , multiple access communications. And more and more people knowmany other advantages , and it is widely used in various fields of military and civilian communications traffic.It promotes the development of all undertakings. In spread spectrum communications , the most commonly method to be used is direct sequence spread spectrum modulation. This paper describes the basic concepts of spread spectrum communications , and focuses on the basic principles of direct sequence spread spectrum communication system, then analyzes its key performance indicators. We use MATLAB software for direct sequence spread spectrum communication system to conduct simulation, then system error performance can be obtained under different conditions of interference. Finally, according to the simulation results, I give some conclusions about the performance spread spectrum communication system, and put forward some useful ideas of spread spectrum technology. 【Keyword】Direct Sequence Spread SpectrumBER performanceSSMAAnti-jamming performance 1绪论 1.1扩频通信引入背景 美国在20世纪50 年代中期,就开始了对扩频通信的研究,当时主要侧重在空间探测、卫星侦察和军用通信等方面。以后随着民用通信的频带拥挤日益严重,又由于近代微电子技术、信号处理技术、大规模集成电路和计算机技术的快速发展,而且与扩频通信有关的器件的成本大大地降低,从而进一步推动了扩频通信在民用领域的发展,而且也使扩频通信的理论和技术得到了进一步的发展。目前在军事上,它已经广泛应用于各种战略和战术通信的系统中,成为电子战中反干扰的一种重要的手段。 扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。扩频技术在军事应用上的最成功的范例可以以美国和俄国的全球卫星定位系统(GPS和GLONASS)以及美军的联合战术分布系统(JTIDS)为代表,GPS和GLONASS在民用上也都得到了广泛的应用,这些系统的技术基础就是扩频技术。扩频的码分多址技术应用于蜂窝移动通信中时,大大降低了噪声和衰落的影响,同时还避免了

通信主流仿真软件

通信系统主流仿真软件简介 学号: 姓名: 专业:

Systemvue(原System View) System View 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,System View 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 在2005年Elanix被美国安捷伦(Agilent)公司收购,把软件名字改为SystemVue,由原先的SystemView1.0,SystemView4.5,SystemView5.0,SystemView.6.0,再到后来的SystemView2005,SystemVue2007,SystemVue2008.功能也逐步的的完善,有开始的具有基本的仿真功能到后来的增加了DSP库,第二代,第三代移动通讯,蓝牙库的完善,实例仿真的范围的拓展,眼图相位噪声处理的完善。随着科技的发展,人类创造出来的智慧也在不断升值。 ELANIX公司位于CALIFORNIA州,公司总裁和创建人PATRICK J.READY博士拥有先进的信号处理器的美国和国际专利权,是一位信号处理和通信方面的改革者。ELANIX公司的技术力量雄厚,其设计工作可以依据使用的处理器及其环境的状况,使用DSP,MP'S,ASIC,VLSI神经网络和其他当前领先的技术。包括所有的用于商业和军用的信号处理在内,公司在理论分析,软件开发,仿真与测试,硬件设计和微处理器等方面有广泛的经验。 SystemView的特点 1.真正的动态系统仿真器; 2.直觉样本数据(Z域)和连续的Laplace域系统详细说明; 3.多速率系统和并行的平行系统; 4.时间连续和时间离散的混合系统;

通信原理(虚拟仿真实验)

实验五双极性不归零码 一、实验目的 1.掌握双极性不归零码的基本特征 2.掌握双极性不归零码的波形及功率谱的测量方法 3.学会用示波器和功率谱分析仪对信号进行分析 二、实验仪器 1.序列码产生器 2.单极性不归零码编码器 3.双极性不归零码编码器 4.示波器 5.功率谱分析仪 三、实验原理 双极性不归零码是用正电平和负电平分别表示二进制码1和0的 码型,它与双极性归零码类似,但双极性非归零码的波形在整个码元持续期间电平保持不变.双极性非归零码的特点是:从统计平均来看,该码型信号在1和0的数目各占一半时无直流分量,并且接收时判决电平为0,容易设置并且稳定,因此抗干扰能力强.此外,可以在电缆等无接地的传输线上传输,因此双极性非归零码应用极广.双极性非归零码常用于低速数字通信.双极性码的主要缺点是:与单极性非归零码一样,不能直接从双极性非归零码中提取同步信号,并且1码和0码不等概时,仍有直流成分。 四、实验步骤

1.按照图3.5-1 所示实验框图搭建实验环境。 2.设置参数:设置序列码产生器序列数N=128;观察其波形及功率谱。 3.调节序列数N 分别等于6 4.256,重复步骤2. 图3.5-1 双极性不归零码实验框图 实验五步骤2图 N=128

实验五步骤3图N=64 N=256

六、实验报告 (1)分析双极性不归零码波形及功率谱。 (2)总结双极性不归零码的波形及功率谱的测量方法。 实验六 一、实验目的 1.掌握双极性归零码的基本特征 2.掌握双极性归零码的波形及功率谱的测量方法 3.学会用示波器和功率谱分析仪对信号进行分析 二、实验仪器 1.序列码产生器 2.单极性不归零码编码器 3.双极性归零码编码器

移动通信系统课设_OFDM系统仿真设计

移动通信系统课程设计报告 OFDM系统仿真 —— 目录 移动通信系统课程设计报告 (1) (一)题目要求: (2) (二)相关原理: (2) 1)OFDM: (2) 2)QPSK调制: (3) 3)导频与均衡: (3) 4)循环前缀: (3) 5)分组交织: (4) (三)基本思路: (4) (四)结果: (10) 1)软解码与硬解码情况下不同信噪比的误码率: (10) 2)不同信噪比下译码相位图: (11) (五)总结体会: (12) (六)分工合作: (13) (七)程序代码: (13)

(一)题目要求: 1)OFDM128路传输; 2)QPSK调制 3)AWGN信道 4)3径或4径瑞利衰落信道 (二)相关原理: 1)OFDM: 将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号 可以通过在接收端采用相关技术来分开,这样可以减少子信道 之间的相互干扰(ISI) 。每个子信道上的信号带宽小于信道的 相关带宽,因此每个子信道上可以看成平坦性衰落,从而可以 消除码间串扰,而且由于每个子信道的带宽仅仅是原信道带宽 的一小部分,信道均衡变得相对容易。

2) QPSK 调制: 将每两个相连比特组在一起形成双比特码元,它的四种状态用4个不同的相位表示; 3) 导频与均衡: 在OFDM 信息序列中插入已知的导频序列()x n ,通过信道后将其提取得()y n ,做频域除法得传输函数[][]z =[] Y z H X z ,再通过线性插值后得到每个信道频率响应,均衡滤波传输函数[]1E [] z H z =; 4) 循环前缀: 循环前缀(Cyclic Prefix, CP)是将OFDM 符号尾部的信号搬移到头部构成的。用来消去码间干扰,通常取长度g T τ≥(τ为信道冲激响应持续时间)

通信系统建模与仿真基于Simulink的基带传输系统的仿真设计

通信系统建模与仿真课程设计 题目基于Simulink的基带传输系统的仿真 2013年6月14日 1任务书 试建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器

为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps。 (1)设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。 (2)要求观察接收信号眼图,说明眼图意义与影响因素,改变影响眼图的参数,观察是否有变化。 (3)设计定时提取系统,说明定时提取的原理,观察定时提取脉冲的波形,说明其正确性。 2基带系统的理论分析(1.基带系统传输模型和工作原理;2.基带系统设计中的码间干扰和噪声干扰以及解决方案,3.定时提取原理) 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图 1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声和频率特性不理想而对数字信号造成损害,使得接收端得到的波形与发送的波形具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号在规定的时刻(由定时脉冲控制)进行抽样,获得

simulink模拟通信系统仿真及仿真流程

基于Simulink的通信系统建模与仿真 ——模拟通信系统 姓名:XX 完成时间:XX年XX月XX日

一、实验原理(调制、解调的原理框图及说明) AM调制 AM调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。AM调制原理框图如下 AM信号的时域和频域的表达式分别为 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。 AM解调 AM信号的解调是把接收到的已调信号还原为调制信号。 AM信号的解调方法有两种:相干解调和包络检波解调。 AM相干解调原理框图如下。相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。 AM包络检波解调原理框图如下。AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成。 DSB调制 在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号 中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB)。DSB调制原理框图如下

DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为 DSB解调 DSB只能进行相干解调,其原理框图与AM信号相干解调时完全相同,如图 SSB调制 SSB调制分为滤波法和相移法。 滤波法SSB调制原理框图如下所示。图中的为单边带滤波器。产生SSB信号最直观方法的是,将设计成具有理想高通特性或理想低通特性的单边带滤波器,从而只让所需的一个边带通过,而滤除另一个边带。产生上边带信号时即为,产生下边带信号时即为。 滤波法SSB调制的频域表达式 相移法SSB调制的原理框图如下。图中,为希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移。

通信系统设计仿真软件

通信系统设计仿真软件

安捷伦科技有限公司 目录 插图列表 (3) 1 ADS对于通信系统设计仿真的意义 (4) 2 ADS设计仿真软件的优点 (4) 2.1 集成的自顶向下的系统设计 (4) 2.2 灵活的设计环境 (5) 2.3 优化系统架构 (5) 2.4 灵活快速地建立DSP算法 (6) 2.5 快速准确地建立射频模型 (6) 2.6 通过优化得到最佳的系统性能 (7) 2.7 利用已有的用户自定义模型 (7) 2.8 ADS软件与测量仪表连接加快从设计到现实的转变 (7) 2.8.1 据硬件测试建立仿真模型 (7) 2.8.2 尽早进行验证实验,降低系统集成风险 (7) 2.8.3 创建新的测试能力 (8) 2.8.4通信信道,干扰测试 (8) 3 ADS加速B3G/4G通信系统研发 (10) 3.1 ADS具有可以灵活产生各种制式的信号源的能力 (10) 3.2 ADS具有可以仿真MIMO 信道的能力 (10) 3.3 ADS具有仿真空-时(Spacing-time coding)编码性能的能力 (11) 3.4 ADS具有给用户提供Test Bench的能力 (11) 3.5 与仪器的互联 (11) 4 ADS在RF系统设计流程中的地位 (12) 4.1 系统级设计与仿真 (12) 4.1.1 分析并设定RF系统设计指标 (12) 4.1.2 研究并选择恰当的RF拓扑结构 (13) 4.1.3 定义功能模块并进行RF系统性能优化 (13) 4.2 电路级设计与仿真 (14) 4.2.1 研究选择合适的电路拓扑结构 (14) 4.2.2 器件选型与建模 (14) 4.2.3 关键模块设计与电路级仿真 (14) 4.2.4 综合仿真验证RF系统性能 (14) 4.2.5 各独立模块制作与测试 (14) 4.3 集成测试 (14) 4.3.1组合各个单独电路模块 (14) 4.3.2 调试 (14) 4.3.3修改系统指标(如果需要) (15) 4.3.4重新定义项目目标(如果需要) (15)

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

相关主题
文本预览
相关文档 最新文档