北师大版七年级数学上册第二章总结与复习
- 格式:ppt
- 大小:336.50 KB
- 文档页数:23
第二章有理数及其运算【知识与技能】掌握本章主要知识,会求一个数的相反数和绝对值、倒数,会比较有理数的大小,能灵活运用计算法则和运算律进行有理数的运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想、分类讨论思想、转化思想,加深对本章知识的理解【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用有理数的相关知识解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解感,加深理解1.相反数、绝对值、倒数相反数:如果一两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,数a的相反数为-a.绝对值:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值为|a|.绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.用字母表示是倒数:乘积为1的两个数互为倒数,数a的倒数为1a(a≠0).2.科学记数法一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.3.有理数的混合运算法则有理数的混合运算,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.4.有理数的运算律加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a·b=b·a乘法的结合律:(ab)c=a(bc)乘法的分配律:a(b+c)=ab+ac三、典例精析,复习新知例1在给出的数轴上,标出以下各数及它们的相反数:-1,2,0,52,-4.观察以上各数在数轴上的位置,解答下列问题:(1)写出以上各数和它们的相反数的绝对值.(2)比较表示在原点左边的各数的大小,并说明这些数的大小与其绝对值的关系. (3)若|x|=2,则x= .(4)若整数x满足1<|x|≤4,求x的值.解:(1)|-4|=4,|4|=4;|-52|=52,|52|=52;|-2|=2,|2|=2;|-1|=1,|1|=1;|0|=0.(2)-4<-52<-2<-1.负数的绝对值越大,其值越小.(3)由于|-2|=2,|2|=2,所以当|x|=2时,x=±2. (4)-4,-3,-2,2,3,4.×1011×109元×1010×109元【分析】科学记数法的表示形式为a×10n,表示时关键要正确确定a的值以及n的值,其中1≤a<10,n为整数的位数减1,故选C.例3计算(1)(-3-13)÷(-127)×2(2)-10+8÷(-2)2-(-4)×(-3)【分析】有理数混合运算要注意运算的顺序,确定先算什么,后算什么. 例4简算【分析】运用加法、乘法的运算律进行简算.例5小红爸爸上星期五买进某公司股票1000股,每股26元,下表为本周内每日股票的涨跌情况:(单位:元)(1)星期四收盘时,每股是多少元?(2)本周内每股最高是多少元?(3)如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?(不考虑手续费和交易税)解:(1)26+[(+4)+(+4.5)+(-1)+(-2.5)]=26+5=31(元)(2)26+(+4)+(+4.5)=34.5(元)(3)(+4)+(+4.5)+(-1)+(-2.5)+(-6)=-1每股亏1元,所以共亏损1000元.四、复习训练,巩固提高1.把下列各数填到相应的大括号内:-4,整数集合……正分数集合…非负整数集合…2.-13的相反数是,绝对值是,倒数是 .3.若|m|=4,|n|=3.且m+n<0,则m-n= .4.已知(x-3)2+|y+5|=0,则xy-y2= .5.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 .6.据某市统计局公布的第六次人口普查数据,该市常住人口760.57万人,其中760.57万人用科学记数法表示为()×105人×106人×107人×107人7.计算(1)-32-(-8)×(-1)5÷(-1)4;(2)[312-(79-1112+16)×36]÷58.现抽查10袋精盐,每代精盐的标准重量是100克,超过部分记为正,不足部分记为负,统计如下表:9.小明在玩“二十四点”游戏时抽到的四个数字是-9,6,2,3,你能写出三种不同的版式凑成24或-24吗?【教学说明】加强本章知识的应用,加深知识的理解,前几题由学生自主完成,第9题可由学生交流合作得出结论.【答案】1.整数集合{-4,+5,0,-1…}负有理数集合-9.(-9+2+3)×6=-246×2+3-(-9)=246×(-9)÷2+3=-24五、师生互动,课堂小结本节课你能完整地回顾本章所学的知识吗?你有哪些收获?还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,让学生自主交流与反思,对于学生的困惑和疑问,教师应及时指导.1.布置作业:从教材“复习题2”中选取.2.完成练习册中本章复习课的练习.本节课通过复习归纳本章内容,加深对本章知识的理解.通过例题与复习题训练,使学生解决问题的能力得到进一步的提高.检测内容:第二章 有理数及其运算得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.如果向北走6步记作+6,那么向南走8步记作( B ) A .+8步 B .-8步 C .+14步 D .-2步2.在2,-3,0,-1这四个数中,最小的数是( B ) A .2 B .-3 C .0 D .-13.下列说法中,正确的是( A )A .相反数等于它本身的数只有零B .倒数等于它本身的数只有1C .绝对值等于它本身的数只有零D .平方等于它本身的数只有14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是 (C)A .131 000B .0.131×104C .1.31×105D .13.1×1045.下列运算错误的是( D )A .-8-2×6=-20B .(-1)2 020+(-1)2 019=0 C .-(-3)2=-9 D .2÷43×34=26.若数轴上点A 表示的数是-3,则与点A 相距4个单位长度的点表示的数是( D ) A .±4 B .±1 C .-1或7 D .-7或17.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间是6月15日23时时,悉尼、纽约时间分别是( A )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时城市 悉尼 纽约 时差/时 +2 -13,第7题表),第9题图) ,第10题图)8.已知有理数a ,b ,c 均不为0,且abc >0,a >c ,ab <0,则下列结论正确的是( C )A .a <0,b <0,c <0B .a >0,b >0,c <0C .a >0,b <0,c <0D .a <0,b >0,c >09.有理数a ,b 在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a -b >0;③a +b >0;④1a +1b>0;⑤-a >-b.其中正确的个数有( C )A .1个B .2个C .3个D .4个10.一个自然数的3次方可以分裂成若干个连续数的和,例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;….若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是(C)A .37B .39C .41D .43二、填空题(每小题3分,共24分) 11.计算5+(-3)的结果为__2__.12.大于-4小于5的所有整数的和等于__4__.13.一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,此时这个点表示的数是__-4__.14.某日中午,气温由早晨的零下2 ℃上升了9 ℃,傍晚又下降了4 ℃,则这天傍晚的气温是__3__℃___.15.已知|x|=4,|y|=0.5,且xy <0,则xy的值为__-8__.16.对于任意有理数a ,b ,规定“*”是一种新的运算符号,且a*b =a 2+ab -a ,例如:2*3=22+2×3-2=8,根据上面的规定,则[(-3)*2]*(-5)的值为0.17.如图,在一条可以折叠的数轴上,A ,B 两点表示的数分别是-9,4,以点C 为折点,将此数轴向右对折,若点A 在点B 的右边,且A ,B 两点相距1,则C 点表示的数是-2.18.(2018·泰安)观察“田”字中各数之间的关系如下,则c 的值为270.1 2 2 33 64 75 12 8 137 22 16 239 40 32 4111 74 64 7515 c a b三、解答题(共66分)19.(8分)计算:(能简算的要简算)(1)9+5×(-3)-(-2)2÷4;解:原式=-7 (2)75719+|(-81521)+67719|-73521;解:原式=16(3)-22+8÷(-2)3-2×(18-12);解:原式=-414 (4)(-134)×15+212÷5+15×(-114).解:原式=-11020.(8分)将下列各数在数轴上表示出来,并用“<”连接: -(-1.5),0,-|-23|,-22,|-212|.解:-22<-|-23|<0<-(-1.5)<|-212|,数轴图略21.(9分)某铁矿码头将运进铁矿石记为正,运出铁矿石记为负,某天的记录如下:(单位:t )+100,-80,+300,+160,-200,-180,+80,-160.(1)当天铁矿石库存是增加了还是减少了?增加或减少了多少吨?(2)码头用载重量为20 t 的大卡车运送铁矿石,每次运费100元,问这一天共需运费多少元?解:(1)(+100)+(-80)+300+160+(-200)+(-180)+80+(-160)=20(t ).故当天铁矿石是增加了,增加了20 t(2)(|+100|+|-80|+|+300|+|+160|+|-200|+|-180|+|+80|+|-160|)÷20=63(次),故这天共需运费63×100=6 300(元)22.(9分)仔细分析右图,请你参考图中老师的讲解,用运算律简便运算:(1)997172×(-36); (2)(-115132)×(-4). 解:(1)原式=(100-172)×(-36)=100×(-36)-172×(-36)=-3 600+12=-3 59912(2)原式=(-115-132)×(-4)=(-115)×(-4)-132×(-4)=460+18=4601823.(10分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正,减产记为负):星期 一 二 三 四 五 六 日增减产值/个 +10 -12 -4 +8 -1 +6 0(1)根据记录的数据可知小明妈妈本周实际生产玩具147个;(2)该厂实行每日计件工资制,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.解:(2)147×5+(10+8+6)×3-(12+4+1)×3=756(元),故小明妈妈这一周的工资总额是756元(3)因为实行每周计件工资制时小明妈妈这一周的工资总额为147×5+7×3=756(元),所以在此方式下小明妈妈这一周的工资与按日计件的工资一样多24.(10分)观察下列各式的计算结果:①1-122=1-14=34=12×32 ;②1-132=1-19=89=23×43; ③1-142=1-116=1516=34×54;④ 1-152=1-125=2425=45×65; …(1)用你发现的规律填写下列式子的结果:①1-162=56×76;②1-1102=910×1110; (2)用你发现的规律计算:(1-122)×(1-132)×(1-142)×…×(1-12 0182)×(1-12 0192). 解:(2)原式=(12×32)×(23×43)×(34×54)×…×(2 0172 018×2 0192 018)×(2 0182 019×2 0202 019) = 12×32×23×43×…×2 0172 018×2 0192 018×2 0182 019×2 0202 019= 12×2 0202 019=1 0102 01925.(12分)【阅读理解】已知A ,B ,C 为数轴上的三点,若点C 在A ,B 两点之间,且它到点A 的距离是它到点B 的距离的3倍,那么我们就称点C 是{A ,B}的“奇点”.例如,如图①,点A 表示的数为-3,点B 表示的数为1,表示0的点C 到点A 的距离是3,到点B 的距离是1,那么点C 是{ A ,B }的“奇点”;又如,表示-2的点D 到点A 的距离是1,到点B 的距离是3,那么点D 就不是{A ,B }的“奇点”,但点D 是{B ,A}的“奇点”.【知识运用】(1)如图②,点M ,N 在数轴上的位置如图所示,则数__3__所表示的点是{M ,N }的“奇点”;数__-1__所表示的点是{N ,M }的“奇点”;(2)如图③,A ,B 为数轴上的两点,点A 所表示的数为-50,点B 所表示的数为30.现有一动点P 从点B 出发向左运动,则点P 运动到数轴上的什么位置时,P ,A ,B 三点中恰有一个点为其余两点的“奇点”?解:(2)点A 到点B 的距离为30-(-50)=80,当点P 为{A ,B }的“奇点”时,则点P 到点B 的距离为80÷(3+1)=20,所以此时点P 表示的数为30-20=10;当点P 为{B ,A }的“奇点”时,则点P 到点A 的距离为80÷(3+1)=20,所以此时点P 表示的数为-50+20=-30;当点A 为{B ,P }的“奇点”时,则点P 到点A 的距离为80÷3=803,此时点P 表示的数为-50-803=-2303; 当点A 为{P ,B }的“奇点”时,则点P 到点A 的距离为80×3=240,此时点P 表示的数为-50-240=-290.故点P 运动到数轴上表示数10或-30或-2303或-290的点所在的位置时,P ,A ,B 三点中恰有一个点为其余两点的“奇点”3.3 解一元一次方程(二)——去括号与去分母第1课时去括号【知识与技能】1.通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简洁明了,省时省力.2.掌握去括号解方程的方法.【过程与方法】培养学生分析问题、解决问题的能力.【情感态度】通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.【教学重点】在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想.【教学难点】弄清列方程解应用题的思想方法;用去括号解一元一次方程.一、情境导入,初步认识问题1我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编得又快又对.学生思考,根据自己对一元一次方程的理解程度自由编题.问题2解方程5(x-2)=8解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘.问题3某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000kW·h (千瓦·时),全年用电15万kW·h,这个工厂去年上半年每月平均用电是多少?(教材第93页问题1)【教学说明】给学生充分的交流空间,在学习过程中体会“取长补短”的含义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力.二、思考探究,获取新知【教学说明】上面栏目一中的问题3为教材中的问题,教师先提出上面的问题,让学生产生疑问,然后提出下面几个问题,对其进行分析和探究,以归纳出最后的结论.设问1:设上半年每月平均用电xkW·h,则下半年每月平均用电____kW·h;上半年共用电_____kW·h,下半年共用电______kW·h.【教学说明】教师引导学生寻找相等关系,列出方程.根据全年用电15万kW·h,列方程,得6x+6(x-2000)=150000.设问2:怎样使这个方程向x=a的形式转化呢?6x+6(x-2000)=150000↓去括号6x+6x-12000=150000↓移项6x+6x=150000+12000↓合并同类项12x=162000↓系数化为1x=13500设问3:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解答)【归纳结论】方程中有带括号的式子时,根据乘法分配律和去括号法则化简.(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号.)去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号.三、典例精析,掌握新知例1教材第94页例1.【教学说明】这道例题为教材中的例题,教师先讲解第(1)小题,教师在讲解过程中注意与学生互动,让学生说出每个步骤中应怎样计算.第(2)题可让学生上台板演,教师注意指导学生写的步骤是否完整.例2教材第94~95页例2.【分析】若设船在静水中的平均速度为x千米/时,则顺流的速度为___千米/时;逆流的速度为___千米/时.顺流的路程=___,逆流的路程___.相等关系为____________.思考:1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?2.怎样求甲乙两个码头之间的距离?【教学说明】这道题解答时通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引导,降低问题的难度,从而将难点锁定在找相等关系上,避免难点太多,造成无从下手,重点、难点不突出的情况.通过对问题1的交流讨论,使学生认识到将船在静水中的平均速度设为未知数x是最简洁、最优的情况,向学生渗透最优化思想.问题2是对例2的延伸和拓展,将问题设置在例2之后,利于学生形成正确的思维过程.教学时,教师先让学生自主完成空白部分,完成后组内交流.教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.学生独立列方程并解方程,然后教师找部分学生板演并讲解思路,在这个过程中,教师应重点关注学生能否正确解方程.学生解答完方程后,教师采用追问的形式引导学生思考问题1、问题2.学生通过小组交流、讨论、质疑、分析设船在静水中的平均速度为x的理由.教师找学生口述思考2,关注学生能否用两种方法求距离.四、运用新知,深化理解1.教材第95页练习.2.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x).3.某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?4.一艘轮船往返于A、B两地之间,由A到B是顺水航行,由B到A是逆水航行.已知船在静水中的速度是每小时20km,由A到B用了6小时,由B到A所用的时间是由A到B 所用时间的1.5倍,求水流速度.【教学说明】以上几题一方面让学生掌握去括号解一元一次方程的方法,另一方面可锻炼学生解决问题的能力,其中1~3题都可让学生独立思考后上台板演.教师注意提醒学生应严格按教材步骤进行.(等学生熟练掌握之后可放松要求)在做第3题时提示学生可结合小学所学的“鸡兔同笼”问题进行思考.第4题与例2有些类似,可让学生比照后独立思考并解答.【答案】1.(1)x=2.(2)x=17 11.(3)x=6.(4)x=0.2.解:去中括号,得3x-6(x-1)+4(x+2)=3(18-x). 去小括号,得3x-6x+6+4x+8=54-3x.移项,得3x-6x+4x+3x=54-6-8.合并同类项,得4x=40.系数化为1,得x=10.3.解:设可坐4人的小船租了x条,则可坐6人的小船租了(8-x)条.根据题意,可列得方程:4x+6(8-x)=40.去括号,得4x+48-6x=40.移项,得4x-6x=40-48.合并同类项,得-2x=-8.系数化为1,得x=4.8-4=4(条)答:可坐4人的小船租了4条,可坐6人的小船也租了4条.4.解:设水的流速为xkm/h,可列出方程:(20+x)×6=(20-x)×6×1.5.去括号,得120+6x=180-9x.移项,得9x+6x=180-120.合并同类项,得15x=60.系数化为1,得x=4.答:水流速度为4km/h.五、师生互动,课堂小结通过以下问题引导学生回顾、小结:(1)通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获?(2)去括号解一元一次方程要注意什么?1.布置作业::从教材习题3.3中选取.2.完成练习册中本课时的练习.本课时教学可先让学生通过尝试和合作,归纳出去括号解方程的方法,鼓励学生探寻一题多解,然后比较找到最好方式,巩固去括号的认识.教学中突出应用意识,利用实际问题引出本节要学的知识点,用不同的问题为学生指明思考方向,时时提醒学生互相探讨寻找实际问题中等量关系的体会.。
北师大版七年级上册数学知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章有理数及其运算1、有理数的分类正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。
内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。
这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。
二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。
但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。
因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的加减乘除运算规则,能够熟练进行计算。
3.理解有理数的乘方运算规则,能够进行相应的计算。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则,特别是乘方运算。
五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。
2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。
3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。
4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。
5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。
6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。
7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。
8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。
教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。
针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。
1.内容构造特色本章是在小学非负有理数知识的基础上引进负数的.第一介绍有理数的基本看法,而后再学习有理数的运算,并用有理数的知识解决实质问题.本章知识的引入着重从实质情境下手,经过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的看法,初步浸透数形联合的数学思想,经过研究归纳的方式,追求有理数的加法、减法法例和运算律,经过研究规律的方式归纳总结有理数的乘、除法法例和运算律,在现实背景中理解有理数乘方的意义,经过 24 点游戏的建立,训练基本运算能力,培育思想能力,经过计算器的使用,既使学生解脱了繁琐的运算,同时又培育了学生研究数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,累积了初步的数感、符号感和基本的运算能力,本章将进一步研究有理数的有关知识并解决实质问题.教材经过现实生活供给的问题背景,给学生供给了归纳、猜想、考证、推理、计算、沟通等数学活动时机,使学生在活动中发现问题、研究规律,促使了学生对知识的理解和掌握.因此,本章内容在知识的掌握、数学思想方法的浸透、学习能力的培育等方面都是特别重要的.3.教课要点与难点教课要点:(1)有理数的看法,特别是有理数的分类、绝对值、相反数等的看法.(2)有理数大小的比较方法,研究有理数四则运算法例并娴熟计算.(3)用科学记数法表示数.(4)应用有理数的有关知识解决实质问题.教课难点:(1)有理数的看法和有理数的运算.(2)数形联合思想的应用.4.教课目的(1)在详细情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历研究有理数运算法例和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混杂运算 ( 以三步为主 ) ;理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实质问题.5.教课建议第一,教师应尽量从实质问题引入有理数的看法,借助风趣的情境和生活实例帮助学生理解看法,使学生正确地理解正数和负数是表示拥有相反意义的量.也可让学生自己从生活中找寻素材,加深理解;第二,进行有理数运算教课时,鼓舞学生自己研究运算法例和运算律,并在与伙伴沟通的过程中逐渐形成较为规范的解题格式.在该过程中,倡导算法多样化,教课时应减少繁难的笔算,对于出现的繁琐运算,鼓舞学生使用计算器;第三,要重视应用有理数及其运算解决实质问题的教课,让学生会用正负数表示实质问题中的量,能用运算的结果作出合理的解说,并给予实质意义.6.课时分派1 有理数1课时2数轴1课时3 绝对值 1 课时4有理数的加法 2 课时5 有理数的减法 1 课时6有理数的加减混杂运算 3 课时7 有理数的乘法 2 课时8有理数的除法 1 课时9 有理数的乘方 2 课时10科学记数法 1 课时11 有理数的混杂运算 1 课时12用计算器进行运算 1 课时1有理数教课要点与难点教课要点:1.理解并掌握有理数的看法.2.会用正、负数表示生活中拥有相反意义的量.教课难点:有理数的分类.学情剖析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟习,而且已经娴熟地掌握了非负有理数的四则运算法例及运算律,能规范条理地表述运算过程,初步拥有了有条理地思虑和书面表达能力,这些都为本章的学习确立了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,亲密数学与现实的联系,教材对重要的数学内容都是依照“问题情境——成立模型——解说与应用”的表达方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了优秀的数学思想习惯和应意图识,有了必定的解决问题的能力,同时学生在研究详细问题的过程中自主地参加、研究和沟通,具备了必定的主动参加、合作意识和初步的察看、剖析、抽象归纳的能力.教课目的1.了解正数与负数是从实质需要中产生的,并会判断一个数是正数仍是负数.2.会用正、负数表示拥有相反意义的量.3.在负数看法的形成过程中,培育学生的察看、归纳与归纳的能力.教课方法创建情境,以问题为载体给学生供给研究的空间,指引学生踊跃研究.经过小组沟通合作的形式,建立以教师为主导,学生为主体自主研究的讲堂学习环境,使学生在研究合作的过程中掌握知识,提升技术,形成自己的看法.教课过程一、引入新课设计说明教材例题切近学生生活实质,生动开朗,经过对该例设置问题串,由浅入深,指引学生在轻松熟习的氛围中进行思虑,既复习旧知,作好新知学习的铺垫,同时鼓舞学生勇敢想象,充足进行思虑、沟通.阅读教材本节开端部分的内容,回答以下问题:问题 1:你能很快地为这两个队排一下名次吗?你的依照是什么?学生排名次的依照可能不独一,如:数笑容的个数、计算总得分等,只需学生能充足思虑,正确表达出排名次的依照,就进行夸奖.问题 2:在达成表格后,你有什么发现?学生经过填“答错题的得分”这一栏,发现“- 3”“- 2”,这类数字是我们没有学过的数,它是什么数?表示什么意义?和我们从前学过的数有什么关系?——引入新课.教课说明以上问题从学生已有的知识下手,以问题为载体,自然理顺学生解决问题的思路,问题 1 和问题 2 对于开辟学生解题思想有很大帮助,使个性化思想获得鼓舞和发展,同时引入了新课的学习.实践证明,该设计调换了学生的踊跃性,成功引入了新课.二、讲解新课1.达标导学,初探新知经过上边的问题我们看到,生活中的有些量用我们从前学过的数不可以表示了,这些比0小的数,能够用带有“-”的数来表示.比方-10,我们读作“负10”.对于比 0 大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”经常能够省略.问题:“-”能够省略吗?为何?学生回答:不可以够省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组议论,理解新知生活中你见过带有“-”的数吗?设计说明安排一活的目的,主要了鼓舞学生自己找生活中的例子,并在求例的程中领会数的引入是生活的需要.同,能够依据需要,一些学生熟习的例睁开.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.2像 5,1.2 ,3⋯的数叫做正数,它都比0 大.在正数前方加上“-”的数叫做数,如-10,- 3,⋯1:正数和数有什么关系?依据学生对于拥有相反意的量的,使学生通数学模型的察、、归纳、沟通等数学活,一步理解怎用正、数表示生活中拥有相反意的量,掌握正、数的意,培育学生的正、数的数感.2: 0 是正数是数?学生的回答会多种多,甚至有的学生没法回答,里教明确告学生,引入数以后,“ 0”的意就不表示“没有”了,它是正、数的分界,是“基准”.3:“-”的数必定是数?学生回答有必定困.于正数和数的看法,要提示学生注意不要“+”的数就是正数,“-”的数就是数.如-a不必定是数.但此不易引申太多.3.例理,稳固新知明通例的教课,要修业生能正确地表达出数所表示的意以及用正、数表示相反意的量;同,认识其实不是全部的基准都必0.教材例 (例):1:在以上 3 道中正数、数分表示什么量?2:每道的基准分是什么?1 依据学生的回答,上人常把零上的温度、上涨的高度、向的行程等定正的,而把零下的温度、降落的高度、向西的行程等与前方意相反的量定的; 2 要修业生注意其实不是全部的基准都必0,如第 1 小的基准静止不,第 2 小的基准一只球的准量,第 3 小的基准10 kg.明了学生更好地理解稳固正数和数是表示一意相反的量,在例解达成后及充,同通填空的形式范写格式,包含正、数的写及填空的位.通培育学生范地写.达成后教可提学生各中互相反意的量分是什么?基准分是什么?帮助学生更全面地理解本的要点.(1)海平面上的高度正,海平面下的深度,海平面下 150 米作 ________;(2)盈余 100 元作+ 100 元,那么100 元作 ________;(3)假如零上 5 ℃ 作+ 5 ℃,那么零下 5 ℃ 作 ________;(4)某运面粉 7.5 吨作+ 7.5 吨,那么运出 3.8 吨作 ________;(5)西两个相反方向,假如- 4 米表示一个物体向西运 4 米,那么+ 2 米表示________,物体原地不 ________;(6)向南走- 4 米,上是向 ________走了 ________米.4.小活,再探新知在大家分活,列我已学的数,而后将列的全部数适合地分红几,并明分的原因.有理数的分:正整数整数零有理数(按定)整数有理数(按性分数正分数分数正整数正数正分数)零整数数分数整数和分数称有理数.明有理数的看法是本的要点内容,通使学生充足理解有理数的分.2把以下各数填入相数集里:3,- 2,3.5 ,-3, 0,- 3.14 ,- 10%正数会合:⋯;数会合:⋯;整数会合:⋯;有理数会合:⋯.教课明本程通初探、理解、稳固、再探四个,使学生在教的引下,通的探、沟通、合作,自主地解决,稳固知.同的使学生的新知获得了及地稳固掌握,教课成效优秀.三、稳固提升明通三个,使学生本学程中易出和模糊的看法从不一样型加以理解,掌握解技巧.1.小学学的小数能否是有理数?属于分中的哪一?2.判断以下法能否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是数;(3)一个整数不是正整数就是整数;(4)一个分数不是正分数就是分数.3.一:一种商品的准价钱是200 元,但跟着季的化,商品的价钱可浮±10%.(1)±10%的含是什么?(2)你算出商品的最高价钱和最廉价钱;(3)假如以准价钱准,超准作“+”,低于准作“-”,商品价钱的浮范又能够怎表示?答案: 1.有限小数和无穷循小数都是有理数,属于分数;无穷不循小数不是有理数.2.第 (1) , (4) 法正确.3.(1) ±10%的含是在准的基上涨价或降价的幅度不超10%.(2) 最高价钱200+200×10%= 220( 元 ) ;最廉价钱200-200×10%= 180( 元 ) .(3)因 220- 200= 20( 元) ,200- 180= 20( 元 ) ,因此件商品涨价或降价的幅度不超 20元,因此件商品价钱的浮范又能够表示± 20 元.中考接:1.在一条东西向的跑道上,小亮先向东走了8 米,记作“+ 8 米”,又向西走了10 米,此时他的地点可记作()A.+2米B.-2米C.+18米D.-18米2.假如水库的水位高于标准水位 3 m时,记作+ 3 m,那么低于标准水位 2 m时,应记作()A.- 2 m B .- 1 m C .+ 1 m D .+ 2 m 答案: 1.B 2. A教课说明本过程仍旧先让学生独立思虑,再进行小组沟通的方式进行睁开.讲堂上鼓舞学生勇敢讲话,用自己的语言说明原因,进一步培育提升学生的思想表达能力.练习 1 对于有限小数和无穷循环小数都是分数,学生不可以很好的说明原因,考虑到为防止喧宾夺主,教课时可视学生状况适合解说.四、总结反省经过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为何要学习负数,学会了用正、负数表示生活中的拥有相反意义的一对量,还知道了有理数都包含哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易疑惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混杂和重复,应经过判断题或选择题的形式多加练习.评论与反省本节课设计为学生创建了轻松快乐地自主研究沟通的学习环境,四大环节的设计依照学生的认知规律,重在发掘学生潜力,给了学生更多的思虑空间.教课过程中着重发挥学生的主体作用,培育学生在学习互动过程中学会竞争与合作,加强团队相助合作精神.教课时向来让学生处于发现问题、提出猜想、沟通议论的状态中,用自己的思想方式形成自己对于问题独专门理解和认识 .。
北师大版2020-2021学年度七年级数学上册第二章有理数及其运算期末综合复习题(含答案)一、选择题1.(2分)下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数2.(2分)下列各对数中,数值相等的是()A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣(﹣3)2与﹣(﹣2)33.(2分)在﹣5,﹣,﹣3.5,﹣0.01,﹣2,﹣212各数中,最大的数是()A.﹣12B.﹣C.﹣0.01D.﹣54.(2分)如果一个数的平方与这个数的差等于0,那么这个数只能是()A.0B.﹣1C.1D.0或15.(2分)绝对值大于或等于1,而小于4的所有的正整数的和是()A.8B.7C.6D.56.(2分)计算(﹣2)100+(﹣2)101所得的结果是()A.﹣2100B.﹣1C.﹣2D.21007.(2分)比﹣7.1大,而比1小的整数的个数是()A.6B.7C.8D.98.(2分)计算2000﹣(2001+|2000﹣2001|)的结果为()A.﹣2B.﹣2001C.﹣1D.20009.(2分)下列代数式中,值一定是正数的是()A.x2B.|﹣x+1|C.(﹣x)2+2D.﹣x2+110.(2分)已知8.62=73.96,若x2=0.7396,则x的值等于()A.86B.8.6C.±0.86D.±86二、填空题11.(2分)一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为,地下第一层记作,数﹣2的实际意义为,数+9的实际意义为.12.(2分)如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为.13.(2分)有一张纸的厚度为0.1mm,若将它连续对折10次后,它的厚度为mm.14.(2分)()2=16,(﹣)3=.15.(2分)数轴上和原点的距离等于的点表示的有理数是.16.(2分)计算(﹣1)6+(﹣1)7=.17.(2分)如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=.18.(2分)+5.7的相反数与﹣7.1的绝对值的和是.19.(2分)已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.三、计算题20.(32分)计算:(1);(2)﹣82+72÷36;(3);(4);(5);(6);(7)2(x﹣3)﹣3(﹣x+1);(8)﹣a+2(a﹣1)﹣(3a+5).四、解答题(本题共6小题,每题5分,共30分)21.(5分)一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?22.(5分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数将四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,﹣6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1),(2),(3).另有四个有理数3,﹣5,7,﹣13,可通过运算式使其结果等于24.23.(5分)下表列出了几个国外几个城市与北京的时差(带正号的表示同一时刻比北京的时间早的时数)现在北京时间是上午8:00,(1)求现在纽约和东京时间是多少?(2)彬彬想给远在巴黎的舅舅打电话,你认为合适吗?说明理由.城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣1424.(5分)画一条数轴,并在数轴上表示:3.5和它的相反数,﹣和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.25.(5分)体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩记录,其中“+”表示成绩大于15秒.﹣0.87+1﹣1.20﹣0.7+0.6﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?26.(5分)有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=,a3=,a4=,a5=.由你发现的规律,请计算a2004是多少?五、提高题(10分)27.(10分)如图是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.参考答案:一、选择题:1.(2分)下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是正整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选:D.2.(2分)下列各对数中,数值相等的是()A.﹣27与(﹣2)7B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣(﹣3)2与﹣(﹣2)3解:A、根据有理数乘方的法则可知,(﹣2)7=﹣27,故A选项符合题意;B、﹣32=﹣9,(﹣3)2=9,故B选项不符合题意;C、﹣3×23=﹣24,﹣32×2=﹣18,故C选项不符合题意;D、﹣(﹣3)2=﹣9,﹣(﹣2)3=8,故D选项不符合题意.故选:A.3.(2分)在﹣5,﹣,﹣3.5,﹣0.01,﹣2,﹣212各数中,最大的数是()A.﹣12B.﹣C.﹣0.01D.﹣5解:﹣212<﹣5<﹣3.5<﹣2<﹣<﹣0.01.故选:C.4.(2分)如果一个数的平方与这个数的差等于0,那么这个数只能是()A.0B.﹣1C.1D.0或1解:平方等于本身的数是0和1,则这个数是0或1.故选:D.5.(2分)绝对值大于或等于1,而小于4的所有的正整数的和是()A.8B.7C.6D.5解:根据题意,得:符合题意的正整数为1,2,3,∴它们的和是1+2+3=6.故选:C.6.(2分)计算(﹣2)100+(﹣2)101所得的结果是()A.﹣2100B.﹣1C.﹣2D.2100解:(﹣2)100+(﹣2)101=(﹣2)100+(﹣2)100×(﹣2)=(﹣2)100×(1﹣2)=2100×(﹣1)=﹣2100.故选:A.7.(2分)比﹣7.1大,而比1小的整数的个数是()A.6B.7C.8D.9解:比﹣7.1大,而比1小的整数的个数有﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,共8个,故选:C.8.(2分)计算2000﹣(2001+|2000﹣2001|)的结果为()A.﹣2B.﹣2001C.﹣1D.2000解:原式=2000﹣(2001+1)=2000﹣2002=﹣2,故选:A.9.(2分)下列代数式中,值一定是正数的是()A.x2B.|﹣x+1|C.(﹣x)2+2D.﹣x2+1解:x2,|﹣x+1|是一个非负数,但不一定是正数,﹣x2+1只有当x<1时才是正数,(﹣x)2+2前面的偶次方一定是非负数,再加上2一定是正数,故选C.10.(2分)已知8.62=73.96,若x2=0.7396,则x的值等于()A.86B.8.6C.±0.86D.±86解:∵8.62=73.96,x2=0.7396,∴x=±0.86.故选:C.二、填空题11.(2分)一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为+1,地下第一层记作﹣1,数﹣2的实际意义为地下2层,数+9的实际意义为地上10层.解:规定向上为正,则向下为负,所以2楼表示的是以地面为基准向上2层,所以记为+1,地下第一层记作﹣1,﹣2表示的实际意义是地下2层,+9的实际意义为地上10层;故答案为:+1,﹣1,地下2层,地上10层.12.(2分)如果数轴上的点A对应有理数为﹣2,那么与A点相距3个单位长度的点所对应的有理数为1或﹣5.解:如图所示:与A点相距3个单位长度的点所对应的有理数为1或﹣5.13.(2分)有一张纸的厚度为0.1mm,若将它连续对折10次后,它的厚度为102.4mm.解:对折10次后的厚度为0.1×210=102.4mm.故答案为:102.4.14.(2分)(±4)2=16,(﹣)3=﹣.解:易得,±4的2次方是16,(﹣)×(﹣)×(﹣)=﹣.故应填:±4,﹣.15.(2分)数轴上和原点的距离等于的点表示的有理数是±.解:如图所示:数轴上和原点的距离等于的点表示的有理数是±.16.(2分)计算(﹣1)6+(﹣1)7=0.解:(﹣1)6+(﹣1)7=1+(﹣1)=0.17.(2分)如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=3.解:∵ab=1,c+d=0,m=﹣1,∴2ab﹣(c+d)+m2=2﹣0+1=3.18.(2分)+5.7的相反数与﹣7.1的绝对值的和是 1.4.解:﹣(+5.7)+|﹣7.1|=﹣5.7+7.1=1.4.故答案是1.4.19.(2分)已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车.解:51÷4=12…3,故至多能装配12辆汽车.故答案是12.三、计算题20.(32分)计算:(1);(2)﹣82+72÷36;(3);(4);(5);(6);(7)2(x﹣3)﹣3(﹣x+1);(8)﹣a+2(a﹣1)﹣(3a+5).解:(1)=(8﹣5)+(﹣0.25+0.25)=3+0=3;(2)﹣82+72÷36=﹣82+2=﹣80;(3)=×÷10=;(4)=25×(﹣﹣)=25×0=0;(5)=﹣79×+×(﹣29)=(﹣79﹣29)×=﹣108×=﹣48;(6)=﹣1﹣÷3×[3﹣9]=﹣1﹣÷3×[﹣6]=﹣1+1=0;(7)2(x﹣3)﹣3(﹣x+1)=2x﹣6+3x﹣3=5x﹣9;(8)﹣a+2(a﹣1)﹣(3a+5)=﹣a+2a﹣2﹣3a﹣5=﹣2a﹣7.四、解答题21.(5分)一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?解:设这个山峰的高度是x米,根据题意得:4﹣×0.8=2,解得:x=250.答:这个山峰有250米.22.(5分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数将四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,﹣6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1)3×(10﹣6+4),(2)4﹣[10×(﹣6)÷3];,(3)3×(10﹣4)﹣(﹣6).另有四个有理数3,﹣5,7,﹣13,可通过运算式{7+[﹣5×(﹣13)]}÷3使其结果等于24.解:3×(10﹣6+4)=24,4﹣[10×(﹣6)÷3]=24,3×(10﹣4)﹣(﹣6)=24,故答案为:(1)3×(10﹣6+4);(2)4﹣[10×(﹣6)÷3];(3)3×(10﹣4)﹣(﹣6);另有四个有理数3,﹣5,7,﹣13,可通过运算式{7+[﹣5×(﹣13)]}÷3使其结果等于24,故答案为:{7+[﹣5×(﹣13)]}÷3.23.(5分)下表列出了几个国外几个城市与北京的时差(带正号的表示同一时刻比北京的时间早的时数)现在北京时间是上午8:00,(1)求现在纽约和东京时间是多少?(2)彬彬想给远在巴黎的舅舅打电话,你认为合适吗?说明理由.城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14解:(1)∵现在北京时间是上午8:00,又因为与纽约相差﹣13个小时,∴要倒回13个小时,为昨天晚上七点;又因为与东京相差+1个小时,∴8+1=9,∴现在东京时间为:上午九点.(2)彬彬想给远在巴黎的舅舅打电话,巴黎与北京相差﹣7个小时,∴巴黎现在是夜里1点,故人都在睡觉不合适打电话.24.(5分)画一条数轴,并在数轴上表示:3.5和它的相反数,﹣和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.解:3.5的相反数是﹣3.5;﹣的倒数是﹣2;绝对值等于3的数为±3;最大的负整数是﹣1,它的平方是1.如图所示:﹣3.5<﹣3<﹣2<﹣1<﹣<1<3<3.5.25.(5分)体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩记录,其中“+”表示成绩大于15秒.﹣0.87+1﹣1.20﹣0.7+0.6﹣0.4﹣0.1问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?解:(1)根据题意可知达标人数为6人,达标率==75%.答:(1)这个小组男生的达标率为75%;(2)15+=15+=14.79125(秒).答:这个小组男生的平均成绩是14.79125秒.26.(5分)有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.试计算:a2=2,a3=﹣1,a4=,a5=2.由你发现的规律,请计算a2004是多少?解:由题意得:a2==2,a3==﹣1,a4==,a5==2,…可以发现,2,﹣1这三个数反复出现.∵2004÷3=668,其余数为0,∴a2004=a3=﹣1;故答案为:2,﹣1,,2.五、提高题27.(10分)如图是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.解:如图所示:。