玻璃纤维增强环氧树脂基复合材料
- 格式:ppt
- 大小:652.00 KB
- 文档页数:23
环氧树脂玻璃纤维板2013年12月27日王扣华FR-4, Epoxy glass fiber;玻纤板是以环氧树脂作粘合剂,以电子级玻璃纤维布作增强材料合成的复合材料,不含对人体有害石棉成份。
具有较高的机械性能和介电性能,较好的耐热性和耐潮性,有良好的加工性。
用于塑胶模具,注塑模具,机械制造,成型机,钻孔机,注塑机,电机,环氧板电绝缘性能稳定,平整度好,表面光滑,无凹坑,厚度公差稳定,适合应用于高性能电子绝缘要求的产品,如补强板,过锡炉耐高温板,碳膜片,精密游星测试架,电气(电器)设备绝缘隔板,绝缘垫板,变压器绝缘件,电机绝缘件,偏转线圈端子Growing Model±5℃≥340Mpa 230KJ/mΩ℃变压器油中,板厚1mm):℃变压器油中):≥40KV主要用于军工、通讯、电脑、数字电路、工业仪器仪表、汽车电路等电子产品。
此等级覆铜板应用广泛,各项技术性能指标全部满足上述电子产品的需要。
主要用于普通电脑、仪器仪表、高级家电产品及一般的电子产品。
此系列覆铜板应用比较广泛,各项性能指标都能满主要用于家电行业、电脑周边产品及普通电子产品(如玩具,计算器,游戏机主要用于普通的家电、电脑周边产品及一般的电子产品的需要,只适合制作普级覆铜板此等级覆铜板属低档产品。
但各项性能指标仍可满足普通的家电、电脑周边产品及一般的电子产品的需要,开发生产4产品。
其价格最具竞争性,性能价格比也比较此等级的板材相对要差些,质量稳定性较差,不适用于面积较大的线路板产100mmX200mm的产品。
它的价格最为低廉,应注意选择此等级覆铜板属于次级品板材,各项性能指标可以满足要求不高的电子产品需要,只适合制作线距、线宽、孔间距及-4产此系列产品是未来覆铜板环保方面发展趋势,其可以使用在军工、通讯、电脑、数字电路、工业仪器仪表、汽车电路等电子产品。
此等级产品质量完全达到世系列覆铜板此类产品本公司生产的有三种基材颜色,即白色,黑色及自然色。
玻璃纤维增强环氧树脂基复合材料的低温性能研究尹志娟;王丽雪;姜珊【摘要】对S玻璃纤维和E玻璃纤维增强环氧树脂基复合材料的常温和低温力学性能进行实验,结果表明:玻纤/环氧树脂单向复合材料力学性能随着纤维含量增加而增强,当纤维体积含量为50%时,复合材料具有较好的综合力学性能,且复合材料的强度随着温度的降低呈增加趋势.当温度降到76 K时材料的强度达到最高值,S玻纤/环氧复合材料的拉伸强度最高值可达2.1 GPa;E玻纤/环氧复合材料的最大拉伸强度也达到1.4 GPa.其原因是由于低温下玻璃纤维的横向收缩比树脂基体小,界面摩擦力得到增强,从而获得高的界面粘接强度.【期刊名称】《黑龙江工程学院学报(自然科学版)》【年(卷),期】2010(024)001【总页数】3页(P50-52)【关键词】环氧树脂;玻璃纤维;低温;力学性能【作者】尹志娟;王丽雪;姜珊【作者单位】黑龙江工程学院,材料与化学工程系,黑龙江,哈尔滨,150050;黑龙江工程学院,材料与化学工程系,黑龙江,哈尔滨,150050;黑龙江工程学院,材料与化学工程系,黑龙江,哈尔滨,150050【正文语种】中文【中图分类】TU599玻璃纤维增强树脂基复合材料由于具有高比强度、比模量,而且耐疲劳、耐腐蚀,最早用于飞机、火箭等,近年来在民用方面发展也很迅猛,在舰船、建筑和体育器械等领域得到应用,并且用量不断增加[1]。
其中,环氧树脂是先进复合材料中应用最广泛的树脂体系,它适用于多种成型工艺,可配制成不同配方,调节粘度范围大,以便适应不同的生产工艺。
它的贮存寿命长,固化时不释放挥发物,固化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,环氧树脂“统治”着高性能复合材料的市场。
值得指出的是,环氧树脂耐有机溶剂、耐碱性能比常用的酚醛与不饱和聚酯树脂好,但其耐水性、耐酸性差;固化后一般较脆,韧性较差[2-3]。
本文主要针对该复合材料的韧性较差问题进行研究,制备出玻璃纤维增强环氧树脂基复合材料,并研究其在不同温度下的力学性能,以便更系统地了解该材料的性能,扩大其应用领域。
环氧树脂基复合材料的制备及其性能研究随着科学技术的发展,环氧树脂基复合材料在各个领域得到了越来越广泛的应用。
该材料具有优良的机械性能、高温耐力、抗腐蚀性能等特点,在各个工业领域中,如汽车制造、船舶制造、航空航天、建筑等都有着广泛的应用。
一、环氧树脂基复合材料是什么?环氧树脂基复合材料是由环氧树脂作为基体,添加聚丙烯酰胺、玻璃纤维等增强材料、填充材料以及添加剂制成的一种新型高分子复合材料。
其中,环氧树脂是一种聚合物,具有良好的机械性能和化学性能。
二、环氧树脂基复合材料的制备过程首先,将环氧树脂与固化剂混合,根据要求加入适量的催化剂、促进剂等。
然后,将制备好的树脂体系与增强材料混合,形成树脂基体。
接着,将填充材料和其他添加剂加入混合物中,再经过设备加工、成型等工艺步骤后,即可制备出环氧树脂基复合材料。
三、环氧树脂基复合材料的性能研究1. 机械性能环氧树脂基复合材料具有很高的强度和刚度,是比较理想的结构材料。
它的抗张强度、抗压强度、弯曲强度等都比普通的材料高出很多倍。
而且,它的疲劳寿命也很长,可以承受大量的往复载荷。
2. 热性能环氧树脂基复合材料具有很好的高温耐性能力,可以在50℃以下环境下长期使用。
同时,它还具有很好的绝缘性能,不易受到遭遇温度波动和横向冲击的影响。
这些特性,使得它广泛地用于电器和机械工程。
3. 抗腐蚀性能环氧树脂基复合材料具有很高的耐腐蚀性能,可以抵御从自然环境到各种化学溶液中的任何形式的腐蚀。
因此,在航空航天、化工、海洋工程等领域也有着广泛的应用。
四、总结环氧树脂基复合材料具有机械性能好、高温耐力、抗腐蚀性能强等特点,在各个工业领域的使用中具有广泛的应用前景。
其制备过程经过多个工艺步骤,并需要注意合理的配比和处理,可以制备出质量优良的环氧树脂基复合材料。
环氧玻璃钢树脂用途环氧玻璃钢树脂是一种由环氧树脂与玻璃纤维增强剂组成的复合材料。
它具有重量轻、强度高、耐腐蚀、易加工等特点,因此广泛应用于许多领域。
首先,环氧玻璃钢树脂在航空航天领域有重要的应用。
由于它具有优异的抗腐蚀性和耐热性能,可以用于制造飞机、火箭等飞行器的结构件,如机翼、舱门、导弹外壳等。
此外,由于它具有轻质高强度的特点,还可以用于制造飞机、火箭的翼梁、桁架等零部件,以减小飞行器的重量,提高其性能。
其次,环氧玻璃钢树脂在建筑领域也有广泛的应用。
由于它具有优异的抗腐蚀性能和耐候性,可以用于制造建筑物的外墙、屋顶、地板等,以提高建筑物的耐久性和美观性。
此外,由于它具有轻质高强度的特点,还可以用来制造楼梯、楼板、管道等构件,以减小建筑物的自重,提高其结构性能。
环氧玻璃钢树脂还在化工、电子、医疗器械等领域有着重要的应用。
由于它具有优异的耐腐蚀性和绝缘性能,可以用于制造化工设备、电子元器件的外壳、管道、阀门等。
此外,由于它具有良好的生物相容性,还可以用于制造医疗器械、人工器官等,在医疗领域发挥重要的作用。
环氧玻璃钢树脂还在交通运输领域有广泛的应用。
由于它具有轻质高强度的特点,可以用于制造汽车、火车等交通工具的结构件,如车身、车厢等,以减小交通工具的重量,提高其能效。
此外,由于它具有优异的抗腐蚀性能,还可以用于制造船舶、码头设施等,以提高其在海洋环境下的使用寿命。
最后,环氧玻璃钢树脂还在体育娱乐领域有着广泛的应用。
由于它具有良好的耐磨性和耐撞击性能,可以用于制造体育设施、游乐设备等,如体育场馆、游乐园的座椅、滑梯、攀岩墙等。
总之,环氧玻璃钢树脂由于其独特的性能,被广泛应用于航空航天、建筑、化工、电子、医疗、交通运输、体育娱乐等众多领域。
随着科技的不断发展和创新,它的应用领域还将不断扩大和深化。
玻璃纤维增强塑料(FRP)基础知识一.什么是复合材料指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。
二.什么是玻璃纤维增强塑料(FiberReinforcedPlastics)指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。
简称FRP由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。
这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。
三.FRP的基本构成基体(树脂)+增强材料+助剂+颜料+填料1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;氧化铝纤维;碳化硅纤维;玄武岩纤维等。
3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。
4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。
多数为色浆状态。
5.填料:重钙;轻钙;滑石粉(400目以上);水泥等。
PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。
PPR:聚丙烯。
PUR:泡沫。
PRE:聚苯醚。
尼龙:聚酰胺纤维。
FRP的发展过程:无法确定发明人。
四.FRP材料的特点:1.优点:(1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。
(2)耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。
正在取代碳钢;不锈钢;木材;有色金属等材料。
(3)电性能好:FRP是优良的绝缘材料,用于制造绝缘体,高频下仍能保持良好的介电性,微波透过性良好,广泛应用于雷达天线罩;微波通讯等行业。
树脂基复合材料
树脂基复合材料是一种性能优越的材料,由树脂基体和增强材料组成。
树脂基体通常是一种高分子化合物,如环氧树脂、聚丙烯、聚酰胺等,而增强材料可以是碳纤维、玻璃纤维等。
树脂基复合材料具有轻质、高强度、耐磨、耐腐蚀等优点,在航空航天、汽车制造、建筑等领域有广泛应用。
首先,树脂基复合材料具有轻质的特点。
由于树脂基体是一种轻质的高分子化合物,与金属相比,树脂基复合材料的密度较低。
这使得树脂基复合材料在航空航天等领域中得到广泛应用,能够减轻飞机、卫星等载具的重量,提高载具的性能。
其次,树脂基复合材料具有高强度的特点。
增强材料中的纤维是一种高强度的材料,能够提供较高的抗拉、抗压、抗剪强度。
而树脂基体的作用是将纤维固定在一起,形成一个更加坚固的结构。
因此,树脂基复合材料具有较高的强度,能够抵抗外力的作用,保证结构的稳定性。
此外,树脂基复合材料还具有耐磨、耐腐蚀的特点。
树脂基体能够起到保护纤维的作用,防止纤维受到磨损和腐蚀。
在汽车制造领域,使用树脂基复合材料能够延长汽车的使用寿命,提高汽车的耐久性。
在海洋工程中,树脂基复合材料可以取代传统的金属材料,有效解决腐蚀问题。
总之,树脂基复合材料具有轻质、高强度、耐磨、耐腐蚀等多种优点。
它在航空航天、汽车制造、建筑等领域有广泛应用,提高了产品的性能和使用寿命。
随着科技的不断发展,树脂基
复合材料的性能会进一步提升,为各个行业的发展带来更多的机遇和挑战。
树脂基复合材料名词解释树脂基复合材料是一类由树脂(resin)作为基体材料,通过与其他增强材料(如玻璃纤维、碳纤维等)混合形成的新型材料。
这种复合材料具有轻质、高强度、耐腐蚀等优点,因此在航空航天、汽车制造、建筑等领域得到广泛应用。
以下是树脂基复合材料相关的一些重要名词解释:1.树脂(Resin):树脂是树脂基复合材料的基体材料,一般为聚合物,如环氧树脂、不饱和聚酯树脂、酚醛树脂等。
树脂的选择会影响到复合材料的性能。
2.增强材料(Reinforcement):在树脂基复合材料中,增强材料起到增加材料强度和刚度的作用。
常用的增强材料包括玻璃纤维、碳纤维、芳纶纤维等。
3.层合板(Laminate):多层树脂基复合材料的构件,每一层由树脂和增强材料组成,通过层层叠加形成。
4.预浸料(Prepreg):预浸料是一种在生产过程中,树脂已经浸润到增强材料中的材料。
它通常在工厂中制备好,便于现场加工。
5.固化(Curing):树脂基复合材料在制备过程中,树脂需要固化(硬化),以形成最终的硬质结构。
这一过程通常通过加热或加入催化剂来实现。
6.热固性树脂(Thermosetting Resin):这类树脂在加热后会发生固化,形成硬而稳定的结构。
环氧树脂就是一种常见的热固性树脂。
7.热塑性树脂(Thermoplastic Resin):这类树脂在受热后可多次软化和固化,适用于多次成型。
聚酰亚胺树脂是一种常见的热塑性树脂。
8.复合材料的破坏模式:包括拉伸、压缩、剪切等多种破坏模式,根据应用需求选择合适的增强方向和层合结构。
树脂基复合材料的不同组合可以产生各种性能,使其成为许多工程应用中理想的材料之一。
树脂基、金属基、陶瓷基复合材料之间的相互比较汪涛1091900209摘要:本文主要介绍了树脂基复合材料(玻璃纤维增强环氧树脂),金属基复合材料(TiB2 / 铝基复合材料)以及陶瓷基复合材料(碳纤维增强碳化硅陶瓷基复合材料)之间组织性能及应用方面的相互比较。
正文(1)玻璃纤维增强环氧树脂与TiB2 / 铝基复合材料之间比较玻璃纤维增强树脂基复合材料由于具有高比强度、比模量, 而且耐疲劳、耐腐蚀, 最早用于飞机、火箭等, 近年来在民用方面发展也很迅猛, 在舰船、建筑和体育器械等领域得到应用, 并且用量不断增加。
其中, 环氧树脂是先进复合材料中应用最广泛的树脂体系, 它适用于多种成型工艺, 可配制成不同配方, 调节粘度范围大, 以便适应不同的生产工艺。
它的贮存寿命长, 固化时不释放挥发物, 固化收缩率低, 固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性, 因此, 环氧树脂?? 统治??着高性能复合材料的市场。
值得指出的是, 环氧树脂耐有机溶剂、耐碱性能比常用的酚醛与不饱和聚酯树脂好, 但其耐水性、耐酸性差; 固化后一般较脆, 韧性较差。
先进的金属基复合材料( MMC) 是目前材料领域的研究热点之一, 原位合成颗粒增强铝基复合材料由于具有密度低、颗粒细小、颗粒/ 基体界面洁净、制备工艺简单、微观结构均匀、成本低廉、应用范围广和工业化生产潜力大等许多优点而受到重视,同时它还具备较好的减振降噪性能, 所以对航空航天、汽车工业等来说, 是最具发展前途的新型结构功能材料之一。
力学性能:TiB2 / 铝基复合材料的疲劳破坏通常是没有明显预兆的突然性破坏,而玻璃纤维增强环氧树脂中的纤维与基体的界面能阻止材料受力所致的裂纹的扩展,因此其疲劳破坏总是从纤维的薄弱环节开始逐渐扩展到结合面上,破坏前有明显的预兆。
大多数金属的疲劳强度极限是其抗张强度的20%—50%,而碳纤维/聚酯复合材料的疲劳强度极限可为其抗张强度的70%—80%。
玻璃纤维增强材料的阻燃性能研究玻璃纤维增强材料是一种常用的复合材料,它将玻璃纤维的强度和刚性与树脂基体的韧性和耐腐蚀性相结合在许多工业领域,如航空、航天、汽车、电子和建筑等,这种材料都发挥着重要作用然而,在使用过程中,特别是在高温、高压和易燃环境下,材料的阻燃性能成为一个重要的考虑因素本文将详细讨论玻璃纤维增强材料的阻燃性能及其影响因素1. 玻璃纤维增强材料的基本组成玻璃纤维增强材料主要由玻璃纤维和树脂基体组成玻璃纤维是一种具有高强度、高模量和高耐热性的纤维材料,通常由硅酸盐玻璃制成树脂基体则是一种具有良好粘结性能和高韧性的聚合物,常用的有环氧树脂、聚酯树脂和酚醛树脂等2. 阻燃性能的定义和评价方法阻燃性能是指材料在火焰作用下的抗燃性和火焰传播抑制能力评价材料阻燃性能的方法有很多,如极限氧指数(LOI)、垂直燃烧测试、水平燃烧测试和烟密度测试等其中,极限氧指数是衡量材料阻燃性能最常用的方法之一,它表示材料在火焰作用下能维持燃烧的最小氧气浓度3. 玻璃纤维增强材料阻燃性能的影响因素3.1 树脂基体的种类树脂基体的种类对玻璃纤维增强材料的阻燃性能有很大影响一般来说,酚醛树脂的阻燃性能最好,聚酯树脂次之,环氧树脂最差这是因为酚醛树脂在燃烧过程中能形成炭层,有效地阻止氧气和热量传递,从而降低火焰传播速度3.2 玻璃纤维的含量玻璃纤维的含量也会影响材料的阻燃性能随着玻璃纤维含量的增加,材料的强度和刚性会提高,但同时也会降低阻燃性能这是因为玻璃纤维在燃烧过程中不易熔化,形成的炭层较厚,有利于阻止火焰传播因此,在设计和制备玻璃纤维增强材料时,需要在强度和阻燃性能之间进行权衡3.3 填料的添加填料是一种常用的阻燃手段,可以有效地提高材料的阻燃性能常用的填料有氢氧化镁、氢氧化铝和硅藻土等这些填料在燃烧过程中可以吸收大量的热量,降低火焰温度,同时形成的炭层可以阻止氧气和热量的传递此外,填料还可以与树脂基体反应,生成阻燃产物,进一步提高阻燃性能3.4 阻燃剂的添加阻燃剂是一种专门用于提高材料阻燃性能的添加剂,常见的有磷酸盐、卤代烃和磷酸酯等阻燃剂通过与树脂基体或填料发生化学反应,生成阻燃产物,从而降低材料的燃烧性能此外,阻燃剂还可以提高材料的热稳定性和氧稳定性,进一步改善阻燃性能4. 提高玻璃纤维增强材料阻燃性能的途径4.1 优化树脂基体的选择选择合适的树脂基体是提高玻璃纤维增强材料阻燃性能的关键在实际应用中,可以根据具体的使用环境和性能要求,选择酚醛树脂、聚酯树脂或环氧树脂等不同的树脂基体4.2 调整玻璃纤维含量在保证材料强度和刚性的前提下,适当降低玻璃纤维含量,可以提高阻燃性能同时,也可以通过使用短纤维或纤维表面处理等方法,提高玻璃纤维的阻燃性能4.3 添加填料和阻燃剂在玻璃纤维增强材料中添加适量的填料和阻燃剂,可以显著提高阻燃性能填料的添加可以降低火焰温度和热量传递,阻燃剂的添加可以生成阻燃产物,从而降低材料的燃烧性能5. 结论玻璃纤维增强材料的阻燃性能对于其在高温、高压和易燃环境下的应用至关重要本文从玻璃纤维增强材料的基本组成、阻燃性能的定义和评价方法、影响因素以及提高阻燃性能的途径等方面进行了详细讨论通过优化树脂基体的选择、调整玻璃纤维含量、添加填料和阻燃剂等方法,可以有效提高玻璃纤维增强材料的阻燃性能在实际应用中,需要根据具体的使用环境和性能要求,综合考虑各种因素,设计合适的玻璃纤维增强材料玻璃纤维增强材料作为一种重要的复合材料,广泛应用于航空、航天、汽车、电子和建筑等领域然而,在某些应用环境中,特别是在高温、高压和易燃环境下,材料的阻燃性能成为一个关键因素本文主要目的是探讨玻璃纤维增强材料的阻燃性能及其研究进展1. 玻璃纤维增强材料的基本组成玻璃纤维增强材料主要由玻璃纤维和树脂基体组成玻璃纤维作为一种具有高强度、高模量和高耐热性的纤维材料,通常由硅酸盐玻璃制成树脂基体则是一种具有良好粘结性能和高韧性的聚合物,常用的有环氧树脂、聚酯树脂和酚醛树脂等2. 阻燃性能的定义和评价方法阻燃性能是指材料在火焰作用下的抗燃性和火焰传播抑制能力评价材料阻燃性能的方法有很多,如极限氧指数(LOI)、垂直燃烧测试、水平燃烧测试和烟密度测试等其中,极限氧指数是衡量材料阻燃性能最常用的方法之一,它表示材料在火焰作用下能维持燃烧的最小氧气浓度3. 玻璃纤维增强材料阻燃性能的研究进展3.1 树脂基体的改进为了提高玻璃纤维增强材料的阻燃性能,研究者们对树脂基体进行了改进一方面,通过引入含卤、含磷等阻燃元素,开发出具有良好阻燃性能的树脂基体另一方面,研究者还通过引入纳米填料、金属氧化物等,提高树脂基体的热稳定性和氧稳定性,从而改善阻燃性能3.2 玻璃纤维的表面处理玻璃纤维的表面处理也是一种有效的提高阻燃性能的方法通过在玻璃纤维表面涂覆一层阻燃剂或防火剂,可以形成一层保护膜,防止火焰直接接触玻璃纤维,从而降低材料的燃烧性能此外,还可以通过接枝共聚、表面改性等方法,提高玻璃纤维与树脂基体的界面粘结强度,进一步提高阻燃性能3.3 阻燃体系的开发与应用为了提高玻璃纤维增强材料的阻燃性能,研究者们还开发了一系列阻燃体系这些阻燃体系通常由阻燃剂、填料和树脂基体组成通过合理设计阻燃剂的种类和含量,可以有效降低材料的燃烧性能同时,填料的添加可以降低火焰温度和热量传递,进一步提高阻燃性能4. 影响玻璃纤维增强材料阻燃性能的其他因素除了上述因素外,还有一些其他因素会影响玻璃纤维增强材料的阻燃性能例如,纤维的排列方式、材料的密度、制造工艺等通过优化这些因素,可以进一步提高材料的阻燃性能5. 结论玻璃纤维增强材料的阻燃性能对于其在高温、高压和易燃环境下的应用至关重要近年来,研究者们通过改进树脂基体、表面处理玻璃纤维、开发阻燃体系等方法,有效提高了玻璃纤维增强材料的阻燃性能然而,进一步提高材料的阻燃性能仍面临诸多挑战,需要继续深入研究在未来,玻璃纤维增强材料的阻燃性能研究将继续受到关注,以期为实际应用提供更优化的解决方案应用场合玻璃纤维增强材料的阻燃性能研究及其进展,为多种高风险燃烧环境下的应用提供了重要的材料支持以下是几个主要的应用场合:1.航空航天领域:在飞机和宇宙飞船的内部结构中,玻璃纤维增强材料因其高强度和良好的阻燃性能而得到广泛应用这些材料用于制造座椅、内饰、隔热层等,以确保乘客和机组人员的安全2.汽车工业:汽车内饰、引擎盖、保险杠等部件常用玻璃纤维增强材料制造,不仅因为其轻质高强,还因为其阻燃特性,能在汽车火灾事故中减少火势蔓延3.电子设备:电子设备中的散热器、外壳等部件,需要使用阻燃性好的材料以防止火灾事故玻璃纤维增强材料因其良好的热稳定性和阻燃性能,是这些应用的理想选择4.建筑行业:在建筑材料中,如屋顶、外墙、防火门等,使用阻燃的玻璃纤维增强材料可以提高建筑的安全性,尤其是在多层和高层建筑中5.化学品和容器:玻璃纤维增强材料还可用于制造化学品容器和管道,其阻燃性能可以减少火灾风险,保护人员和财产的安全注意事项在应用玻璃纤维增强材料时,需要注意以下几点:1.树脂基体的选择:不同的树脂基体具有不同的阻燃性能,因此在选择时需要根据具体应用的阻燃要求来确定2.玻璃纤维含量:虽然高含量的玻璃纤维可以提高材料的强度,但可能会降低阻燃性能因此,需要在强度和阻燃性能之间做出平衡3.填料和阻燃剂的添加:适量的填料和阻燃剂可以提高阻燃性能,但过量可能会影响材料的机械性能因此,需要精确控制添加量4.制造工艺:制造工艺对材料的最终性能有重要影响例如,固化温度和时间的不当选择可能会影响材料的阻燃性能5.环境因素:在不同的环境条件下,材料的阻燃性能可能会有所不同因此,需要考虑环境因素,如湿度、温度等6.成本效益分析:提高阻燃性能往往需要额外的材料成本和制造工艺复杂度,因此在设计和制造过程中需要进行成本效益分析7.测试和认证:在材料设计和制造过程中,应进行严格的测试来验证其阻燃性能,并确保满足相关的安全标准和认证要求8.持续研究与发展:阻燃技术是不断发展的,需要持续关注最新的研究进展,以便在未来的应用中采用更先进的技术玻璃纤维增强材料的阻燃性能对于其在不同领域的应用至关重要通过精确的材料选择、制造工艺控制和环境考量,可以在保证机械性能的同时,提高材料的阻燃性能,从而满足各种高风险燃烧环境下的安全需求同时,持续的研究与发展将有助于进一步提升材料的阻燃性能,为未来的应用提供更多的可能性。
树脂基复合材料
什么是树脂基复合材料?它是由以有机聚合物为基体的纤维增强材料,通常使用玻璃纤维、碳纤维、玄武岩纤维或者芳纶等纤维增强体。
树脂基复合材料在航空、汽车、海洋工业中有十分广泛的应用。
复合材料的树脂基体以热固性树脂为主。
早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。
60年代,美国在F-4、F-111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。
在导弹制造方面,到了50年代后期,美国中程潜地导弹“北极星A-2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A-3”,使壳体重量较钢制壳体轻50%,从而使“北极星A-3”导弹的射程由2700千米增加到4500千米。
到了70年代,采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。
碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到十分广泛的应用。
树脂基复合材料在航空涡扇发动机上的应用研究始于20世纪50年代,经过60余年的发展,GE、PW、RR以及MTU、SNECMA等公司投入了大量精力进行树脂基复合材料研发,取得了很大进展,已经将其工程化应用到现役航空涡扇发动机,并且还有进一步扩大应用量的趋势。
树脂基复合材料的服役温度一般不超过350℃。
因此,树脂基复合材料主要应用于航空发动机的冷端。
玻璃纤维增强复合材料的表面处理及涂装工艺玻璃纤维增强复合材料是种具有优异力学、物理、化学、热特性的新型材料,常被用于航空、汽车等领域的制造。
而对于玻璃纤维增强复合材料进行表面处理和涂装是十分必要的,可以有效地改善材料的外观和性能,也能提高其耐用性和稳定性。
本文将介绍玻璃纤维增强复合材料的表面处理和涂装工艺,以及其实现的优点和应用。
一、表面处理工艺1、材料清洗表面处理第一步是进行清洗,以去除材料表面的油脂、尘土和其他污渍。
尤其这一步极其关键,过程中不能出现任何失误,否则会影响后续表面处理的效果。
常用的清洗方法有溶液清洗、高压水清洗、喷雾清洗等。
清洗后,使用风扇、热空气或其他干燥器具对表面进行烘干,以确保表面完全干燥。
2、表面粗化和研磨粗糙表面有助于附着力和表面涂层的牢固度。
针对不同的表面要求,可采用喷砂、砂纸、钢丝刷等方法进行表面粗糙度控制。
需要注意的是,过度研磨可能会使表面产生损伤,造成表面的非均匀性和腐蚀等不良后果。
3、产品预处理产品预处理是一项必需的表面处理过程,在这个过程中需要进行去水、酸洗、放镀等操作,以满足表面涂装或镀层的要求。
常用的处理方法有碱洗、电解处理等。
二、涂装工艺涂装工艺是表面处理的下一步,需要根据不同需求制定相应的处理方法和材质选择。
具体的工艺流程有:1、底涂(基涂料)底涂能够为表面提供化学稳定性、抗水解性和耐磨性等特性,能够产生沉积于材料表面的薄膜。
底涂料的选择是根据复合材料的种类、表面应力、耐久性、抗剥离等特征进行选择。
2、面涂面涂是涂装工艺的最后一步,主要目的是提供更美观的表面外观和增强耐久性。
不同的面涂材料有不同的特点,可以根据实际需求进行选择,如丙烯酸、环氧树脂等。
三、优点与应用1、优点玻璃纤维增强复合材料的表面处理和涂装能够有效提高其外观和性能,使其具有更好的耐久性和稳定性。
此外,表面处理和涂装工艺也可以为产业界提供更多的选择,从而推动玻璃纤维增强复合材料在更广泛的领域中得到广泛应用。
第44卷 第7期 2017年7月天 津 科 技TIANJIN SCIENCE & TECHNOLOGYV ol.44 No.7Jul. 2017收稿日期:2017-06-19管理与创新树脂含量对玻璃纤维增强环氧树脂复合材料力学性能的影响吴海亮(东方电气(天津)风电叶片工程有限公司 天津300480)摘 要:采用真空袋压手糊成型工艺制作不同树脂含量的复合材料样板,测试其力学性能。
结果表明,随着树脂含量的变化,玻璃纤维增强环氧树脂复合材料的拉伸强度和模量均先逐渐增加,当树脂含量在28%~32%时,强度和模量均趋于稳定,后随着树脂含量的上升,强度和模量均有下降,剪切性能也呈现上升趋势。
关键词:树脂含量 力学性能 影响中图分类号:TU599 文献标志码:A 文章编号:1006-8945(2017)07-0021-02Effect of Resin Content on Mechanical Properties of Glass Fiber ReinforcedEpoxy Resin CompositesWU Hailiang(DongFang Electric (Tianjin )Wind Turbine Blade Engineerring Co.,Ltd.,Tianjin 300480,China )Abstract :Composite models with different resin contents were prepared by vacuum bag pressing and hand paste process ,and their mechanical properties were tested .The results show that with the change of resin content ,the tensile strength and E modulus of reinforced glass fiber of epoxy resin composite material first gradually increase and then tend to be stable when it is in the range of 28%~32%.Then ,following the increase of resin content ,both strength and modulus decrease but the shear performance strengthens.Key words :resin content ;mechanical properties ;effect0 引 言玻璃纤维增强复合材料以其高比强度、高比模量、良好的抗疲劳性、独特的可设计性等特性,在结构材料领域应用广泛,尤其是在近些年兴起的风电叶片行业。
纤维增强树脂基复合材料的制备工艺(一)纤维增强树脂基复合材料的制备工艺简介纤维增强树脂基复合材料是一种常见的工程材料,具有轻质、高强度、高模量、良好的防腐性等特点,广泛应用于航空、汽车、建筑等领域。
本文将介绍其主要制备工艺。
原材料准备制备纤维增强树脂基复合材料的主要材料包括树脂、增强纤维和添加剂。
其中,树脂一般选择环氧树脂、聚酯树脂或酚醛树脂等;增强纤维可选择碳纤维、玻璃纤维等;添加剂包括固化剂、助剂等。
制备工艺预处理首先,将增强纤维剪裁成所需的尺寸,然后进行预处理。
预处理包括去除纤维表面的杂质、涂覆分散剂等步骤,以提高树脂的渗透性和纤维与树脂的结合力。
近干法制备在近干法制备中,先将树脂和固化剂按一定比例混合。
然后,将预处理后的增强纤维逐层压放在模具内,并将树脂混合料均匀涂布于纤维上,直至最后一层纤维。
最后,将模具放入高温高压的加热器中,使树脂固化。
涂覆法制备在涂覆法制备中,先将树脂和固化剂按一定比例混合。
然后,将预处理后的增强纤维放在滚涂机上,在涂布机器的作用下,将树脂混合料均匀涂布于纤维上。
最后,将涂布后的增强纤维烘干,使其固化。
结语纤维增强树脂基复合材料制备工艺繁多,具体制备过程会根据不同的复合材料种类、用途、性能要求而有所不同。
需要在实践中不断摸索。
质量控制在纤维增强树脂基复合材料的制备过程中,需要对质量进行严格的控制,以保证最终产品的性能达到要求。
主要控制点包括:•材料的选择和检验:注意材料的选择和质量,确保符合要求。
•工艺参数的控制:包括涂布厚度、固化时间和温度等工艺参数的控制,通过实验确定最佳的工艺参数。
•质量检验:纤维增强树脂基复合材料的质量检验包括外观检查、尺寸精度、强度和硬度等性能的检测。
应用纤维增强树脂基复合材料在航空、汽车、建筑等领域中的应用广泛。
例如:•航空:应用于飞机的机身、尾椎、翅膀等,能够减轻重量、提高强度和硬度。
•汽车:应用于车身和发动机罩等部件,使汽车具有更好的车体刚性、噪音隔绝和燃油经济性。
玻璃纤维复合材料玻璃纤维复合材料是一种将玻璃纤维与树脂等基体材料复合而成的材料。
玻璃纤维复合材料具有轻质、高强度、耐腐蚀、绝缘等特性,广泛应用于汽车制造、航空航天、建筑等领域。
玻璃纤维复合材料的主要组成部分是玻璃纤维增强剂和树脂基体材料。
玻璃纤维增强剂是由玻璃纤维直接制成,具有很高的强度和刚度。
树脂基体材料常用的有环氧树脂、聚酯树脂等,具有良好的耐腐蚀性和耐热性。
玻璃纤维复合材料的制造过程包括纤维制备、纤维浸渍、成型和硬化等步骤。
首先,将玻璃纤维进行熔制和拉伸,得到一定长度的纤维束。
然后,将纤维束浸入树脂浆料中,使纤维充分浸渍。
接下来,将浸渍的纤维束进行成型,常见的有手工层叠法、注塑法等。
最后,通过加热或使用光固化剂进行硬化,使得树脂固化成硬的连续相,形成最终的复合材料。
玻璃纤维复合材料具有许多优点。
首先,它具有很高的强度与刚度,重量却很轻,比重约为钢的四分之一,可以减轻结构负荷。
其次,它具有很好的耐腐蚀性,可以在各种恶劣环境下使用。
此外,玻璃纤维具有很好的绝缘性能,可以用于电气设备的绝缘保护。
另外,玻璃纤维复合材料还具有吸音、隔热等特点,适用于建筑内外墙的装饰材料。
然而,玻璃纤维复合材料也有一些缺点。
首先,它对湿气非常敏感,在湿润环境下容易吸水,导致强度降低。
其次,由于玻璃纤维本身是脆性的,因此在受到冲击时容易破碎。
此外,制造过程中需要使用大量的能源,产生环境污染。
总的来说,玻璃纤维复合材料是一种重要的材料,具有广泛的应用前景。
随着科学技术的不断发展,对于玻璃纤维复合材料的研究和应用也将不断深入,为各行各业提供更多更好的解决方案。