当前位置:文档之家› 金属高温强度和塑性及其测定_20

金属高温强度和塑性及其测定_20

金属高温强度和塑性及其测定_20
金属高温强度和塑性及其测定_20

实验18 金属高温强度和塑性及其测定

一、实验目的

(1)了解材料的常规力学性能指标;

(2)了解典型金属材料的高温强度与塑性及其随温度的变化规律,以及高温脆化对材料热裂纹形成的影响;

(3)掌握用材料加工物理模拟设备,即动态热—力模拟机GLEEBLE1500D测定材料抗拉强度、屈服强度和塑性的原理;

(4)掌握GLEEBLE1500D实验机的简单操作与编程,了解其一般运用;

(5)测定不同钢种的拉伸强度及其塑性随温度的变化并进行比较;测定并分析变形速度对强度的影响规律。

二、实验原理

GLEEBLE1500D主机中的变压去对测定试样通电流,通过试样本身的电阻加热试样,时期按照设定的加热速度加热到测试温度。保温一段时间后,通过主机中的液压系统按照一定的加载速度给试样世家载荷并变形,直至试样断裂。由于试样两端由通水的冷却快加持,冷却快,所以整个试样在加热和保温过程中存在一定的温度梯度。但当试样足够长(90—1200mm)时,热电偶检测的中间部位约有8—18mm长的均温区,这样既可保证试样断裂发生在试样的中间部位,且测试所得强度能与检测温度对应。

三、实验步骤

(1)按要求打磨试样表面并在试样上作出相应标记,并在试样长度二分之一处按要求安装热电偶。

(2)按照《材料加工系列实验》附录7A的指导正确安装试样、编写程序及进行实验。(3)记录数据。并通过共享若干组实验数据,对其进行整理。

四、实验数据及数据处理

(1)实验数据汇总

表2 45#钢

表3 188不锈钢

(2)实验数据处理

①作出不同材料在不同温度和加载速度下的抗拉强度曲线

图1.1 A3钢在不同加载速度下的抗拉强度-温度曲线

图1.2 45#钢在不同加载速度下的抗拉强度-温度曲线

图1.3 188不锈钢在不同加载速度下的抗拉强度-温度曲线

通过以上三组曲线能够看出,三种不同材料的高温抗拉强度都服从一个共同的规律:在相同的温度下,加载速度越大,抗拉强度越高;在相同的加载速度下,温度越高,抗拉强度越低。对三种材料在相同条件下进行横向对比,可得出结论:高温抗拉强度由高到低依次为188不锈钢、A3钢、45#钢。

②计算断面收缩率,并作出不同材料在不同温度和加载速度下的断面收缩率曲线

图2.1 A3钢在不同加载速度下的断面收缩率-温度曲线

图2.2 45#钢在不同加载速度下的断面收缩率-温度曲线

图2.3 188不锈钢在不同加载速度下的断面收缩率-温度曲线

③计算断后伸长率,并作出不同材料在不同温度和加载速度下的断后伸长率曲线

图3.1 A3钢在不同加载速度下的断后伸长率

-温度曲线

图3.2 45#钢在不同加载速度下的断后伸长率-温度曲线

图3.3 188不锈钢在不同加载速度下的断后伸长率-温度曲线

通过以上曲线能够看出,三种材料在不同加载速度下的断面收缩率、断后伸长率随温度的变化规律较为复杂,较难有统一的概括。此处将能够观察到的规律描述为以下两点:

i.大部分情况下,这些材料的塑性指标随温度的变化不是简单的正相关或负相关的关系,而是在某个温度区间表现为正相关,在另一个温度区间又变为负相关,即极值点不一定是曲线的两个端点。

ii.大部分情况下,这些材料的塑性指标在两个加载速度下随温度的变化趋势正好相反,例如图 2.2,45#钢的断面收缩率在2mm/min的加载速度下随温度先增大后减小,而在10mm/min下则是随温度先减小后增大。

④作出应力-应变曲线

图4.1 A3钢在不同条件下的高温拉伸曲线

S t r e s s (M P a )

Strain

图4.2 45#钢在不同条件下的高温拉伸曲线

S t r e s s (M P a )

Strain

图4.3 188不锈钢在不同条件下的高温拉伸曲线

50

100

150

200

250

300

S t r e s s (M P a )

Strain

五、思考题

(1)从变形机理说明温度和加载速度或变形速度对于材料强度影响。

答:①温度的影响:在高温下材料院子扩散能力加强,材料中的空位增加,晶界滑移系也相应改变,同时材料变形机制增加,使得材料在高温条件下显现出强度降低的特性。

②加载速度的影响:加载速度越快,塑性变形的滑移面越不利于向外部加载方向转动,这样等同于滑移面阻力增加,并且此时形变硬化由于加载快而不能回复,阻碍继续塑性形变的阻力增大,便在宏观上就表现出了屈服强度的增大。

(2)试分析比较图18-1,图18-5,图18-8与图18-11中各种金属材料高温强度变化规律以及特点。

答:变化规律和特点可以分成以下三类。 ①大部分的碳钢、铬钼钢与奥氏体钢的强度极限在低温区随温度之上升会有明显的降低,在达到一定温度后,其强度极限随温度上升而下降的速率变得比较缓慢,而温度较高之后,强度极限随温度的升高下降的很快。

②对于MnNiMo 钢,在低温区和高温区强度极限下降速度较为缓慢,而在中间的中温区下降速率较快。

③对于Ni-Co-Cr 合金,在低温区强度极限随温度的上升而缓慢降低,达到一定温度后下降速率变得较大。

(3)简述金属及其化合物的高温脆性对于热裂纹形成的影响。

答:当金属结晶接近完成时,晶粒间尚存在着很薄的液相层,该液相层的塑性很低。当由冷却不均匀而产生的拉伸变形超过临界值时,其即沿晶界液相层开裂。凝固裂纹常出现在

含硫、磷(有时含硅,碳)较多的碳钢焊缝中和单相奥氏体不锈钢、耐热钢、镍基合金及铝合金中。

六、实验总结

本次实验的原理部分简单易懂,现场操作虽说耗时较长但难度也不大,总体来说算是较为容易的一次实验。但即使如此,我们小组在实验中间还是出现了各种不该出现的问题,大部分是因为操作不够认真细致造成的,总结和分析如下:

(1)实验中由于一位组员(本人)在拉断钢条后将其拆卸的过程中不慎将用于冷却的铜块之一放置在了不显眼的地方,导致后一位组员错拿不匹配的两个铜块套在了钢条两端并固定,最终导致加热后钢条两端散热条件不同,使均温区偏离之前标定的区域,致使实验失败,该组员只好重新制作试样,因此额外花去了大量时间。这是我们组在本次实验中所犯的最大错误,这个教训告诉我们在今后的实验中要养成良好的习惯,用过的道具和器件应顺手放回原处,避免其他人因为错用道具导致实验出现不良状况。

(2)实验中部分人由于标定做的不够牢固,导致加热拉断后发现标定脱落,最终费尽周折通过辨别之前刻上去的划痕才勉强测量出了断后的标定区长度。这对于我们以后做类似的实验也有一定的借鉴意义。

(3)现场实验做完后,通过观察温度传感器的端头和断口的位置关系,同时结合软件生成的拉伸曲线能够看出,若传感器的两端都在断口的同侧,则拉伸曲线较为光滑;

反之,若断口两侧各分布一个,则曲线波动严重,精度降低。此外,传感器的两个端头满足在断口同侧的前提下,也不能在轴向距断口太远。这是因为即使是“均温区”实际上也存在轴向的温度梯度,只是不明显而已,因此如果测量点距断口过远,将导致测到的温度与断口处的温度产生不可忽略的偏差,也就是说断口处的实际温度将高于仪器所控制的目标温度,从而引起实验误差。综上,传感器较为合理的安装位置应该是:两根线不要接在钢条正中间,而应稍微偏离正中心且偏向同一侧即可,这样就不会产生上述的问题,保证了实验质量。(依据是实验后通过观察发现,钢条断口基本都位于正中间)

最后,感谢老师在实验中的悉心指导!另由于收到数据较晚,本组人员提交报告的时间都超过了期限,对由此给老师带来的不便深表歉意!

金属塑性成性原理考试资料

1、塑性:在外力的作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。 2、塑性成形:金属材料在一定的外力作用条件下,利用其塑性使其成形并获得一定力学性能的加工方法称为塑性成形也称塑性加工或压力加工。 3、塑性成形分为块料和板料成形,块料成型又分为一次加工和二次加工。 4、一次加工:生产原材料,加工方法包括轧制、挤压、和拉拔。 5、二次加工:生产零件或坯料,加工方法包括自由锻和模锻。 6、滑移:所谓滑移是指晶体在力的作用下,晶体的一部分沿一定的晶面和晶向,相对于晶体的另一部分发生相对移动或切变。 7、就金属的塑性变形能力来说,滑移方向的作用大于滑移面的作用。 8、滑移面对温度具有敏感性。 9、设拉力P 引起的拉伸力为σ,则在此滑移方向上的切应力分量为τ=σcos Φcos λ,令u=cos Φcos λ,若Φ=λ=45o,则u=u ax m =0.5 τ=τmax =σ/2 10、位错增值:由于晶体产生一个滑移带的位移量

需要上千个位错的移动,且当位错移至晶体表面产生一个原子间距的位移后,位错便消失,这样,为使塑性变形能不断进行,就必须有大量的位错出现,这就是在位错理论中所说的位错的增值。11、晶体中的滑移过程,实质就是位错的移动和增值过程,加工硬化的原因就是位错增值。 12、孪生:是晶体在切应力作用下,晶体的一部分沿着一定的晶面(孪生面)和一定的晶向(孪生方向)发生均匀切变。 13、晶间变形:晶间变形的主要方式是晶粒之间相互滑动和转动。…………晶间变形小,主要是因为晶间变形强度低。 14、塑性变形的特点:(1)各晶粒变形的不同时性(2)各晶粒变形的相互协调性(3)晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 (屈服强度)越大,δ越大,金属A晶粒越细,σ B 的塑性也越好。 15、冷塑性变形对金属组织和性能的影响:(一)组织的变化:1、晶粒形状的变化;2、晶粒内产生亚结构;3、晶粒位向改变;4、晶粒内部出现滑移带和孪生带。(二)性能的变化:金属的力学性能

耐热金属材料发

耐热金属材料发

————————————————————————————————作者:————————————————————————————————日期: 2

3 耐热金属材料的发展 耐热金属材料是在高温下使用的金属材料。一般来说,加工硬化的金属被加热到某一温度以上,变形的晶格产生变化,发生再结晶,这个温度就是再结晶温度。金属的再结晶温度约为金属熔点温度的1/2(绝对温度)。耐热金属材料主成分金属的熔点和再结晶温度见表1。 金属材料承担保证结构件强度的作用,一般采用为提高强度添加合金元素的合金金属材料。合金金属材料的温度达到纯金属再结晶温度时不立即发生软化,例如,Ni 基超合金在大大超过纯金属Ni 再结晶温度(如在1000℃左右)的 条件下,可以连续使用数万小时。 1 耐热金属材料的特性要求 对耐热金属材料要求的特性是多种多样的,见表2。对不同用途的耐热金属材料所要求的特性是不同的,其中必须具备的特性是高温抗氧化性、耐蚀性、足够的强度以及加工性和低成本。广泛使用的高温金属材料是以Fe 、Ni 、Co 为主成分的合金。 1.1 抗氧化性和耐蚀性的耐热涂层 除了高温大气环境,还有多种高温环境下的氧化和腐蚀问题。这些氧化和腐蚀不仅是材料的表面现象,而且会深入到材料内部,特别是会发生沿晶界的晶界侵蚀现象。Fe 、Ni 、Co 在纯金属状态下,不具有足够的抗高温氧化性和高温耐蚀性。为满足不同的使用要求进行了大量的研究。 火力发电用钢的使用期限要求是10 万小时或10 年,按照这个 表1 耐热金属材料主成分金属的熔点和再结晶温度 金属 Mg Al Cu Ni Co Fe Ti Nb Mo W 熔点,℃ 650 660 1085 1455 1495 1583 1670 2469 2623 3422 再结晶温度,℃ 189 194 406 591 611 633 699 1098 1175 1575 表2 对耐热金属材料要求的特性 物理性能 熔点、密度、热传导率、热膨胀系数、扩散速度等 化学性能 在含有高温空气、水蒸气CO 、CO2、H2S 等的各种燃烧废气、熔融盐及其他环境下具有抗氧化性、耐蚀性和氧化层密着性等。 力学性能 高温下的强度、延性、韧性,蠕变强度、疲劳强度、、抗热疲劳性、抗热震性、在高温下长 期使用的稳定性等。 加工制造性 能够进行熔炼、铸造、锻造、轧制、焊接、烧结,制造成所要求的形状尺寸的部件。 经济性 原料费、加工费低廉,制造的工艺低成本化。

金属材料的塑性成形

第3章金属材料的塑性成形 概述 3.1金属塑性成形基础 3.2 常用的塑性成形方法 3.3 少、无切削的塑性成形方法3.4 常用的塑性成形金属材料

概述 金属塑性成形是利用金属材料所具有的塑性, 在外力作用下通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。由于外力多数情况下是以压力的形式出现的,因此也称为金属压力加工。 塑性成形的产品主要有原材料、毛坯和零件三大类。 金属塑性成形的基本生产方式有:轧制、拉拔、挤压、自由锻、模锻、板料冲压等。

塑性成形的特点及应用: (1)消除缺陷,改善组织,提高力学性能。 (2)材料的利用率高。 (3)较高的生产率。如利用多工位冷镦工艺加工内角螺钉,比用棒料切削加工工效提高约400倍。 (4)零件精度较高。应用先进的技术和设备,可实现少切削或无切削加工。如精密锻造的伞齿轮可不经切削加工直接使用。 但该方法不能加工脆性材料和形状特别复杂或体积特别大的零件或毛坯。 塑性成形加工在机械制造、军工、航空、轻工、家用电器等行业得到了广泛应用。例如,飞机上的塑性成形零件约占85%;汽车、拖拉机上的锻件占60%~80%。

3.1 金属塑性成形基础 3.1.1 单晶体和多晶体的塑性变形3.1.2 金属的塑性变形 3.1.3 塑性成形金属在加热时组织和 性能的变化 3.1.4 金属的塑性成形工艺基础

3.1.1单晶体和多晶体的塑性变形1.单晶体的塑性 变形 金属塑性变形最常 见的方式是滑移。 滑移是晶体在 切应力的作用下, 一部分沿一定的晶 面(亦称滑移面) 和晶向(也称滑移 方向)相对于另一 部分产生滑动。 晶体滑移变形示意图

金属材料的塑性

塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。字串2 编辑本段 金属材料的硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。

金属材料强度

金属材料强度:强度就是指材料在外力作用下抵抗变形与破坏得能力.主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭与抗剪强度. 塑性:材料在外力(静载)作用下产生永久变形而不被破坏得能力.主要指标为伸长率与断面收缩率。 硬度:材料抵抗更硬物体压入得能力.常用指标为布氏硬度、洛氏硬度与维氏硬度. 下列硬度指标就是否正确? HBS210-240 180-210HRCHRC29—25 450-480HBS钢得热处理:钢固态下,采用适当方法进行加热、保温与冷却,以改变钢得内部组织与结构,从而获得所需性能得一种工艺方法。 预先热处理:为消除坯料或半成品得某些缺陷或为后续得切削加工与最终热处理做组织准备得热处理。(退火、正火) 最终热处理:为使工件获得所要求得使用性能得热处理。 退火与正火得区别与选用:与退火相比、正火得冷却速度稍快,过冷度较大。 选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火. 2使用性能上考虑.对于亚共析钢,正火处理比退火处理具有更好得力学性能。如果零件得性能要求不就是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件得形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。 3 经济上考虑。正火比退火得生产周期短、耗料少、成本低、效率高、操作简便,因此在可能得条件下应采用正火。 钢淬火后为什么一定要回火,说明回火得种类及主要应用范围. 钢件经淬火后,虽然具有很高得硬度与强度,但脆性大,并且具有较大得淬火应力,因此在退火后,必须配以适当得回火. 种类及范围:高温回火:用于重要零件如轴、齿轮等。 中温回火:用于各种弹性元件及热锻模。 低温回火:用于各种工、模具钢及要求硬而耐磨得工件。 调制及特点:淬火后,加热到500-650度,保温后在空气中冷却。获得良好得综合力学性能,在保持高强度得同时,具有良好得塑、韧性,硬度为200—330HBS。

金属塑性成型原理

第一章 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。 2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序; 成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。 Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。 第二章 3.试分析多晶体塑性变形的特点。 1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。 2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;每个晶粒至少要求有5个独立的滑移系启动才能保证。 3)晶粒与晶粒之间和晶粒部与晶界附近区域之间的变形的不均匀性。 Add: 4)滑移的传递,必须激发相邻晶粒的位错源。 5)多晶体的变形抗力比单晶体大,变形更不均匀。 6)塑性变形时,导致一些物理,化学性能的变化。 7)时间性。hcp系的多晶体金属与单晶体比较,前者具有明显的晶界阻滞效应和极高的加工硬化率,而在立方晶系金属中,多晶和单晶试样的应力—应变曲线就没有那么大的差别。 4.试分析晶粒大小对金属塑性和变形抗力的影响。

GLEEBLE实验1-高温强度.

GLEEBLE实验 实验一金属材料高温强度的测定 一.实验目的 (1)了解典型金属材料的高温强度与塑性及其随温度的变化规律。 (2)掌握用材料加工物理模拟设备即动态热-力学模拟试验机Gleeble3500测定材料抗拉强度、屈服强度和塑性的原理。 (3)掌握Gleeble 3500试验机的简单操作与编程.并了解其一般应用。 (4)测定不同钢种如20、45、40Cr和1Crl8Ni9不锈钢的拉伸强度及其塑性随温度的变化并进行比较;测定并分析变形速度对强度的影响规律。 二.概述 材料的力学性能在科学研究和工程应用中具有非常重要的作用。例如,数值模拟研究必须以力学性能为依据;负载结构的设计和材料热加工工艺方案(如焊接、锻压、热处理、表面改性等工艺)的制定必须以力学性能为基础等等。温度对材料的力学性能功能影响很大。高温强度和塑性是材料高温使用和热加工时需要考虑的重要力学性能指标,了解其测试方法及其随温度的变化规律,是对高温结构材料进行科学研究和应用的基础。本次实验主要研究金属材料高温短时拉伸的力学性能。

金属材料如钢材的强度和塑性由基体组织类型(如马氏体M,铁素体F,珠光体P,贝氏体B,奥氏体A)、晶粒大小、基体强化类型(固溶强化和弥散强化),以及与此有关的加工变形程度、热处理条件等决定,因此,不同类型的金属及其合金的强度和韧性及其随温度变化的规律存在明显区别,一般来讲,材料按高温强度由低到高的排列顺序为:碳素钢,低合金钢,高合金钢,不锈钢,镍基高温合金。 金属力学性能指标一般按金属材料室温拉伸试验方法(GB/T228-2002)和金属材料室温拉伸试验方法(GB/T4338-1995)进行测试。测试数据全面,但较繁琐。本实验用动态热-力学模拟试验机Gleeble快速测定金属材料的高温强度。 动态热-力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被测定试样通电流,通过试样本身的电阻热加热试样,使其按设定的加热速度加热到测试温度。保温一定时间后,通过主机中的液压系统按一定的加载速率给试样施加载荷使其变形,直至试样断裂。由于试样两端由通水的冷却块夹持,冷却快,所以整个试样在加热和保温过程中存在一定的温度梯度,中间段温度高,但当试样足够长(90~120mm)时,热电偶检测的中间部位约有8~18mm)长度的均温区,这样就能保证试样断裂发生在试样的中间部位,且测试所有强度能与检测温度对应。断面收缩率可以通过测定室温时的断面面积,并与原始截面面积进行比较而获得。 在材料种类和热处理状态一定的情况下,高温强度除受温度影响外,还与加载速度有直接关系。一般情况下,加载速率即变形速度越快,强度越高。动态热-力学模拟试验机Gleeble3500的简介见附件。

材料的高温蠕变

材料的高温蠕变 摘要:从蠕变的定义,金属材料在高温下蠕变的形成机理,相关的理论解释和材料蠕变的因素等几个方面阐述了材料的高温蠕变现象。其中也对多晶A12 O3陶瓷以及镁质耐火材料提高抗蠕变性能给予介绍,解释。 关键词:高温蠕变;蠕变机理;多晶A12 O 3陶瓷;抗蠕变性能 1引言 材料具有许多的性能,有的性能在材料的使用时是有利的,但有的性能在材料的使用时是不利的。由于蠕变的产生我们就不能笼统的说材料在高温下的性质是如何的,材料在高温条件下的性能与在常温下的性能不同,在高温下材料发生蠕变,因此,材料的高温蠕变使得材料在高温条件下使用时性能变差,影响了材料在高温条件下的使用。如果能提高材料在高温条件下的抗蠕变性能,能够改善材料在高温条件下使用的品质,使得材料的使用寿命延长,可以节省材料,避免浪费。高温蠕变理论是在对多种金属所做的完整的蠕变实验的基础上建立起来的,因此介绍材料的蠕变机理也是根据金属的蠕变机理来进行解释的。 我们是这样定义材料蠕变这个现象的,材料在高温下长时间承受恒温、恒载荷作用,缓慢产生塑性变形的现象。所以,蠕变是在恒定压力作用下,随着时间的延长而材料持续形变的过程。在高温条件下,材料都有着与常温下不同的蠕变行为。借助于高温作用和外力作用,材料的形变障碍得到克服,内部质点发生迁移,晶界相对移动,于是蠕变现象产生了。 2.1 蠕变阶段 材料的高温蠕变分为几个阶段,几个区域有着不同的变化。 图1 图1表示在三个不同的恒定应力作用下,材料的应变ε随时 间t变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段,

金属材料屈服强度的影响因素.

金属材料屈服强度及其影响因素 屈服强度是指材材料开始产生宏观塑性变形时的应力。对于屈服现象明显的材料,屈服强度就屈服点的应力—屈服值;对于屈服现象不明显的材料,通常将应力-应变曲线上以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 屈服强度通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。 影响屈服强度的因素 影响屈服强度的内在因素有: 1.金属本性及晶格类型——纯金属单晶体的屈服强度由位错运动时所受的阻力决定。这些阻力有晶格阻力和位错间交互作用产生的阻力之分。其中晶格力与位错宽度和柏氏矢量有关,而两者又与晶体结构有关。位错间交互产生的阻力包括平行位错间交互产生的阻力和运动位错与林位错交互产生的阻力。用公式表示:T=αGb/L,式中α为比例系数,又因为密度ρ与1/L2成正比,因此,T=αGb ρ1/2,由此可见,密度增加,屈服强度也随之增加。 2.晶粒大小和亚结构——晶粒大小的影响是晶界影响的反映,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,将使屈服强度提高。许多金属与合金的屈服强度与晶粒大小的关系均符合霍尔佩奇公式σ s =σ j +k y d-1/2,式中,σ j 是位错在基体金属中运动的总阻力,亦称摩擦阻力,它决定于 晶体结构和位错密度;k y 是度量晶界对强化贡献大小的钉扎常数,或表示滑移带端部的应力集中系数;d为晶粒平均尺寸。亚晶界的作用和晶界类似,也阻碍位错的运动。 3.溶质元素——纯金属中融入溶质原子形成间隙型或置换型固溶合金将会显著提高屈服强度,此即为固溶强化。这主要是由于溶质原子和溶剂原子直径不同,在溶质周围形成了晶格畸变应力场,该应力场产生交互作用,使位错运动受阻,从而提高屈服强度。 4.第二相——工程上的金属材料,其显微组织一般是多相的。第二相对屈服强度的影响与质点本身在金属材料屈服变形过程中能否变形有很大关系。据此可将第二相质点分为不可变形和可变形的两类。 根据位错理论,位错线只能绕过不可变形的第二相质点,为此,必须克服弯曲位错的线张力。不可变形第二相质点的金属材料,其屈服强度与流变应力就决定于第二相质点之间的间距。对于可变形的第二相质点,位错可以切过,使之同基体一起变形,由此也能提高屈服强度。 第二相的强化效果还与其尺寸、形状、数量和分布以及第二相与基体的强度、塑性相应硬化特性、两相间的晶体学配合和界面能等因素有关。在第二相体积比相同的情况下,长形质点显著影响位错运动,因而具有此种组织的金属材料,其屈服强度就比球状的高。 综上所述,表征金属微量塑性变形抗力的屈服强度是一个对成分、组织极其敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺可使屈服强度产生明显变化。

金属材料弹塑性参数测定(E、U、G等)

实验名称:金属材料弹塑性参数测定(E、U、G等) 传感器是一种测量装置,用来把有关的物理量转变成具有确定对应关系的电量输出,以满足对于信息的记录、显示、传输、存储、处理以及控制的要求。传感器是实现自动测量与控制的第一个环节,在生产实践和科学研究的各个领域中发挥着十分重要的作用。本实验要进行分析、设计、制作电阻应变式传感器,并利用电桥作为基本的测量电路,利用静态电阻应变仪作为放大与输出仪器。标定制作好的电阻应变式传感器。 一、实验目的 1.学习并掌握电阻应变式传感器的结构、原理和设计方法。 2.理解并掌握电阻应变式传感器的标定方法,建立标定的概念,学会相关仪器的使用方法。 3.复习掌握电阻应变片的筛选、粘贴、焊接、检验等操作方法。 4.测定材料的弹性模量E和泊松比u 二、实验设备与仪器等 1.静态电阻应变仪。 2.标定器、计算器、数字式万用表、游标卡尺、电烙铁、剥线钳等。 3.弹性元件等传感器母体。 4.电阻应变片、接线端子、导线、502胶、丙酮、焊锡、砂纸等。 5. 金属筒(R=48mm,r=40mm) 三.原理与方法 电阻应变测量法是实验应力分析中应用最广的一种方法。电阻应变测量方法测出的是构件上某一点处的应变,还需通过换算才能得到应力。根据不同的应力状态确定应变片贴片方位,有不同的换算公式。 测量电桥的基本特性和温度补偿 构件表面的应变测量主要是使用应变电测法,即将电阻应变片粘贴在构件表面,由电阻应变片将构件应变转换成电阻应变片的电阻变化,而应变片所产生的电阻变化是很微小的,通常用惠斯顿电桥方法来测量,惠斯顿电桥是由应变片作为桥臂而组成的桥路,作用是将应变片的电阻变化转化为电压或电流信号,从而得到构件表面的应变。在测量时,将应变片粘贴在各种弹性元件上,组成电桥,并利用电桥的特性提高读数应变的数值,或从复杂的受力构件中测出某一内力分量(如轴力、弯矩等)。利用电桥的基本特性正确地组成测量电桥。 测量电桥的基本特性 A B C D R1R 2 R4R3 U BD U

新型金属材料

新型金属材料 1、金属材料的结构与一般特性 用于土木、建筑工程的金属材料主要有:①建筑钢材的使用量最大,其产品形式有型材、板材、管材和线材; ②不锈钢主要用于厨房设备、卫生洁具和建筑装饰; ③铝及铝合金质量轻,耐腐蚀性强,装饰性能好,主要用于门窗、室内外装修、装饰; ④幕墙材料和金属器具; ⑤铜的价格较贵,只限于建筑五金、门窗和家具的装饰或金属器件,用量很少。 (1)金属材料的结构 在结晶粒子的内部,金属原子按照一定的规律在三维方向上呈规则排列,其排列规律可以用空间格子来描述,叫做晶格。 熔点:1535℃,呈液态;

1535-1390℃:体心立方晶格,称为δ-Fe; 1390-910℃:面心立方晶格,称为γ-Fe,伴随着体积收缩; <910℃:体心立方晶格,称为α-Fe,伴随着体积膨胀。 同一种类的金属在不同的温度下其晶格排列方式可能不同,这种现象叫做金属的同素异构体。利用金属在不同温度下的同素异构性,可对金属进行热加工处理,以获得不同性质的金属材料。 绝大多数晶体都是10-100μm的晶粒组成的多晶体,晶粒之间的界面叫做晶界面。特殊热处理后可变小。晶粒越细小,晶界的面积越大,材料受力时的韧性、变形均匀性和抵抗破坏的性能越好,合金化也是一个途径。

按添加元素的位置分为: ①侵入型固溶体; ②置换型固溶体; ③析出物。 晶体的有序排列遭到破坏,晶格缺陷的形式有点缺陷、线缺陷和面缺陷等。将间隙原子或置换原子地加入到金属材料结构中,就形成了材料固溶强化;位错的存在降低金属材料的强度,降低2-3个数量级,同时提高金属的塑性变形性能;晶界面越多,金属的强度越高、性能均匀性越好。 (2)建筑钢材的成分及其对性能的影响 ①钢材的主要化学成分是铁元素和碳元素,其中碳元素的含量在0.02%-2.0%的范围; ②如果碳含量大于2.0%则称为生铁,生铁坚硬,但呈脆性,不能承受冲击荷载的作用③钢材根据含碳量的多少分为低碳钢、中碳

浅谈金属材料的塑性

浅谈金属材料的塑性 什么是金属材料的塑性? 塑性是材料在某种给定载荷下产生永久变形而不破坏的能力。对大多数的工程材料,当其应力低于弹性极限时, 产生的变形在外力去除后全部消除,材料恢复原状。这种情况下,应力的应变关系是线性的,表现为弹性行为。而应力超过弹性极限后,发生的变形包括弹性变形和塑性变形两部分,塑性变形不可逆。 而金属材料的塑性是指金属在载荷外力的作用下,产生塑性变形而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用延伸率(δ)和断面收缩率(ψ)两个指标来衡量。延伸率计算公式为δ=[(L1-L0)/L0]x100%;断面收缩率计算公式为ψ=[(F0-F1)/F0]x100%。金属材料在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。金属材料的塑性有什么用? 在前面两个公式中不难看出δ与ψ值越大,金属材料的延伸率和断面收缩率愈大,则该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。同时起始塑性变形抗力和继续塑性变形抗力决定了金属材料硬度值,塑性变形抗力越高,材料的强度越高,硬度值也就越高。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。

金属塑性

1、什么是金属塑性?什么是塑性成型?塑性成型有何特点? 塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。利用金属在一定的外力作用下产生塑性变形,并获得具有一定形状、尺寸和机械性能的材料、毛坯或零件的加工方法,称为金属的塑性成形(也称压力加工)。塑性成型特点:1组织、性能好2材料利用率高3尺寸精度高4生产率高,易实现连续化、自动化、高速、大批量生产 不足:设备较庞大,相对能耗较高,成本较高2试述塑性成型的一般分类? 一、板料成型:1、一次加工:1)轧制2)挤压3)拉拔2、二次加工:1)自由锻2)模锻二、块料成型:1、分离工序:1)冲裁2)落料2、成型工序:1)弯曲2)拉深三、按温度分:热成型、冷成型、温成型3、试简述滑移和孪生两种变形机理的主要区别?滑移与孪生的比较相同点:通过位错运动实现;两者都不改变晶体结构类型区别:1)晶体中的位向滑移:晶体中已滑移部分与未滑移部分的位向相同孪生:已孪生部分(孪晶)和未孪生部分(基体)的位向不同,两部分之间具有特定的位向关系(镜面对称)2)变形机制:滑移是全位错运动的结果;孪生是部分位错3)对塑性变形的贡献:总变形量大;孪生(小)4)变形应力:近似临界分切应力;高于临界分切应力5)变形条件:一般情况下,先发生滑移变形;滑移变形难以进行时,或晶体对称度很低、变形温度较低、加载速率较高,发生孪生变形4、试分析多晶体塑性变形的特点?(1)各晶粒变形的不同时性首先在位向有利、滑移系上切应力分量已优先达到临界值的晶粒内发生2)各晶粒变形的相互协调性晶粒的变形需要相互协调配合,才能保持晶粒之间的连续性,即变形不是孤立和任意的。(3)变形的不均匀性软位向的晶粒先变形,硬位向的晶粒后变形,其结果必然是各晶粒变形量的差异,这是由多晶体的结构特点所决定的。5、什么是加工硬化?加工硬化产生的原因?加工硬化对塑性加工有何利弊?1)加工硬化:塑性变形时,随着内部组织结构变化,金属金属强度、硬度增加,而塑性、韧性降低的现象。2)加工硬化是位错与交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错纠缠等障碍。以致形成细胞亚状结构,是位错难以越过这些障碍而被限制在一定的范围内运动。金属要继续变形,就要不断外力,才能克服强大的交互作用。3)有利的方面:1、是金属强化的重要途径2、对不能用热处理方法强化的材料,借助冷塑性变形来提高其力学性能。3、对改善板料成型性能有积极的意义。不利的一面:金属塑性下降、变形抗力升高、继续变形越来越困难;对高硬化速率的多道次成形,需增加中间退火来消除加工硬化,降低了生产效率、提高成本6、什么是动态再结晶?影响动态再结晶的因素有哪些?1)动态在结晶:是在热塑性变形过程发生的再结晶。2)影响因素:位错能的高低,晶界迁移的难易程度、应变速率、变形温度等有关。7、什么是动态回复?为什么说动态回复是热塑变形的主要软化机制?动态回复:在热塑性变形过程中发生的回复。原因: 层错能高,变形时扩展位错的宽度窄、集束容易,位错的交滑移和攀移容易进行,位错容易在滑移面间转移,而使异号位错互相抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平8、与常规塑性变形相比,超塑性变形具有哪些主要特征?1、大伸长率,高达百分之几千2、无缩颈,拉伸时变现均匀的截面缩小,断面收缩率甚至可接近100%3、低流动应力,仅(几个—几十个)N/mm,对应变速率非常敏感4、具有极好的流动性和充填性,加工复杂精确的零件。9、什么是细晶超塑性?什么是相变超塑性?细晶超塑性:一定恒温,应变速率和晶粒度都满足要求,呈现的超塑性相变超塑性:要求具有相变或同素异构转变,一定的外力下,金属或合金在相变温度附近反复加热和冷却,经过一定的循环次数后,获得很大的伸长率。10、超塑性变形的力学方程中的m的物理意义是什么?m值指的是应变速率敏感指数:反应材料抗局部收缩或产生均匀拉深变形的能力。 11、什么是塑性?什么是塑性指标?为什么说塑性指标只具有相对意义?1)塑性:是金属在外力作用下产生永久变形而不破坏其完整性的能力。2)塑性指标:金属在破坏前产生的

金属材料的力学性能

课题: 3.1.1金属材料的力学性能 课型:复习课授课时间:2015.9.6 课时分配:共 2 课时 教学目标:1、掌握金属材料力学性能的分类及用途 2、理解金属材料各种力学性能指标的表达方式及测定方法 3、了解金属材料力学性能的实际应用 教学重点:1、强度指标的定义与分类 2、硬度指标的定义与分类 教学难点:金属的各力学指标的概念、测量方法 教学过程: 【案例导入】 在进行机械制造时,首先进入技术准备阶段。在技术技术准 备中,要完成相关的工作。这些工作中,有一项是非常重要的, 那就是选择材料。那么怎么选择材料呢?首先得研究常见的材料 的性质,只有掌握了材料的特征性质才能顺利进行选材。那么材 料的性质有哪些呢? 【教学内容】 3.1.1金属材料的力学性能 力学性能是指金属材料在受外力作用时所反映出来的性能。 力学性能指标,是选择、使用金属材料的重要依据。 金属材料的力学性能主要有:强度、塑性、硬度、冲击韧度 和疲劳强度等。 1、强度 强度是在外力作用 备注

下,材料抵抗塑性变形和断 裂的能力。 按作用力性质不同, 强度可分为屈服点(屈服强 度)、抗拉强度、抗压 强度、抗弯强度、抗剪 强度等。 在工程上常用来表 示金属材料强度的指标 有屈服强度和抗拉强 度。 (1)屈服点 当载荷增达到Fs 时,拉伸曲线出现了平 台,即试样所承受 的载荷几乎不变,但产生了不断增加的塑性变形,这种现象称 为屈服。 屈服点是指在外力作用下开始产生明显塑性变形的最小 应力。用ós 表示。 ós= (MPa ) 式中:Fs —试样产生明显塑性变形时所受的最小载荷,即 拉伸曲线中S 点所对应的外力(N ) Ao —试样的原始截面积(mm2) (2)抗拉强度 抗拉强度是金属材料断裂前所承受的最大应力,故又称强 度极限。常用ób 来表示。 ób= (MPa ) Ao Fs Ao Fb

金属材料的塑性成形

第一章金属材料的塑性成形 1.1 概述 金属材料的塑性成形又称金属压力加工,它是指在外力作用下,使金属材料产生预期的塑性变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 金属材料固态成形的基本条件:一是成形的金属必须具备可塑性;二是外力的作用。 一、金属塑性成形的方法: (1)轧制将金属材料通过轧机上两上相对回转轧辊之间的空隙,进行压延变形成为型材的加工方法。如图所示:压机开坯、轧板、轧圆钢等。 图1.1 轧制 (2)挤压将金属置于一封闭的挤压模内,用强大的挤压力将金属从模孔中挤出成形的方法。 图1.2 挤压 (3)拉拔将金属坯料拉过拉拔模模孔,而使金属拔长、其断面与模孔相同的加工方法。 图1.3 拉拔 (4)自由锻造将加热后的金属坯料置于上下砧铁之间受冲击力或压力而变形的加工方法。 图1.4 自由锻造

(5)模型锻造(模锻)将加热后的金属坯料置于具有一定形状的锻造模具模膛内,金属毛坯受冲击力或压力的作用而变形的加工方法。 图1.5 模锻 (6)板料冲压金属板料在冲压模之间受压产生分离或变形而形成产品的加工方法。 图1.6 板料冲压 按金属固态成形时的温度,其成形过程分为两大类: (1)冷变形过程金属在塑性变形时的温度低于该金属的再结晶温度。 冷变形的特征——金属变形后产生加工硬化。 (2)热变形过程金属在塑性变形时的温度高于该金属的再结晶温度。 热变形的特征——金属变形后会再结晶,塑性好,消除内部缺陷,产生纤维组织。 金属塑性加工的特点: (1)材料利用率高 (2)生产效率高 (3)产品质量高,性能好,缺陷少。 (4)加工精度和成形极限有限。 (5)模具、设备费用高。 利用金属固态塑性成形过程可获得强度高、性能好的产品,生产率高、材料消耗少。但该方法投资大,能耗大,成形件的形状和大小受到一定限制。 二、金属塑性成形过程的理论基础 1、金属塑性变形的能力 金属塑性变形的实质——金属塑性变形是金属晶体每个晶粒内部的变形(晶内变形)和晶粒间的相对移动、晶粒的转动(晶界变形)的综合结果。 金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得毛坯或零件的难易程度。 可锻性用金属的塑性指标(延伸系数δ和断面减缩率Ψ)和变形抗力来综合衡量。 影响金属塑性的因素: (1)金属本身的性质——纯金属塑性优于合金;铁、铝、铜、镍、金、银塑性好;金属内部为单相组织塑性好;晶粒均匀细小塑性好。 (2)变形的加工条件 1)变形温度↑,塑性↑; 2)变形速度的影响; 3)压状态为三向压应力时塑性最好。

2-1 金属材料的力学性能(强度、塑性)

山东省轻工工程学校教案13/14学年第2学期课程名称:金属工艺学任课教师:赵坤东 15班级12大专数控4 周次周节次周二1、2第二周日期2012年2月25日 讲授章节金属材料的力学性能(强度、塑性) 教学目标1.掌握金属材料拉伸过程的3个基本阶段 2.金属的强度、塑性的2个指标 重点难点1、金属屈服强度的理解 2、塑性的2个指标 教具多媒体 课型类型新授时 间 分 配 组织教学2分 复习旧课8分 讲授新课45分 教学方法讲授法巩固新课20分布置作业 5分 复习内容 教师授课内容与过程学生活动内容

【组织教学】:检查班级出勤人数 【新授新课】: 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形,以至断裂。材料在外力作用下所表现的一些性能(如强度、刚度、韧性等),称为材料的力学性能。 无论何种固体材料,其内部原子之间都存在相互平衡的原子结合力的相互作用。当工件材料受外力作用时,原来的平衡状态受到破坏,材料中任何一个小单元与其邻近的各小单元之间就诱发了新的力,称为内力。在单位截面上的内力,称为应力,以σ表示。材料在外力作用下引起形状和尺寸改变,称为变形,包括弹性变形(卸载后可恢复原来形状和尺寸)和塑性变形(卸载后不能完全恢复原来形状和尺寸)。 当载荷性质、环境温度与介质等外在因素改变时,对材料力学性能的要求也不同。金属材料的力学性能主要是指强度、刚度、硬度、塑性和韧性等。 一、强度指标 金属的强度是金属抵抗永久变形和断裂的能力。它是按GB228 一87 规定,把一定尺寸和形状的金属试样(图1 一1 )装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可测出该金属的拉伸曲线(图1 一2 )。在拉伸曲线上可以确定以下性能指标。 图2-1 钢的标准拉伸试棒图2-2 退火低碳、中碳和高碳钢的拉伸曲线 a)拉断前 b)拉断后(外力F-变形量△l曲线与应力σ-应变ε曲线形状相似, 只是坐标不同) 1.弹性极限从图2-2可以看出,不同性质材料的拉伸曲线形状是不相同的。拉伸曲线的oe线段是直线,这一部分试棒变形量△l与外力F 成正比。当除去外力后,试棒恢复到原来尺寸,称这一阶段的变形为弹性变形。外力Fe 是使试棒只产生弹性变形的最大载荷。 无论何种材料,内部原子之间都具有相互平衡的原子力相互作用,以保持其固定的形状。当受到外力时,原来的平衡被破坏,其中任何一个小单元都和邻近的各个小单元之间诱发了新的力(内力),材料单位截面上的这种力称为应力,用符号σ表示。提问 导入 认真听、记笔记

相关主题
文本预览
相关文档 最新文档