基于小波的多尺度字典学习ppt
- 格式:ppt
- 大小:806.50 KB
- 文档页数:19
第2章 多分辨分析2.1 多分辨分析-----MRA 2.1.1 多尺度空间[例2-1] 右图由(2)t φ和(21)t φ-的线性组合构成了()t φ,因此,我们说函数1,()k t φ,k =0,1生成了()t φ,或者说1,()k t φ包含了()t φ,即1,()k t φ⊃()t φ。
[例2-2]尺度函数,()(2)j j k t t k φφ=-, j =0,1,2,3;k =0,1,2, (21)-(这里暂对j 和k 的范围做了限制)形成了伸缩平移系统,其中j 不同,张成了不同的子空间,如图:3(2)t k φ-,k=0,1,…,7,张成了3V 子空间; 2(2)t k φ-,k=0,…,3,张成了2V 子空间;1(2)t k φ-,k=0,1,张成了1V 子空间;(2)t k φ-,k=0, 张成了0V 子空间。
由上图可见,3V ⊃2V ,2V ⊃1V ,1V ⊃0V ,即3V ⊃2V ⊃1V ⊃0V 。
0V 函数子空间 是当分辨率0j =,尺度为0221j ==时 ,由尺度函数()t k φ-的平移系统张成的函数子空间。
0V 中的任一函数0()f t 均可用()t k φ-的平移系统的线性组合表示1c紧支撑(有限个,其余为零K C )00) 0()f t =()k k Zc t k φ∈-∑,k c R ∈[例2-2] 下图是一个定义在区间[-1,4]上,所有不连续点仅在整数集中的分段常量函数波形。
(也可能在整数点处连续,但不连续点一定在整数点处。
)满足线性空间定义的两个运。
)而当10123,,,,c c c c c -均为零时,构成零向量),因此构成向量空间。
这个特定的,即由宽度为1=1/2j=01/2的5个基向量组成的基底所张成的向量空间,就是一个0V 子空间。
图示为由尺度函数组成的一组基例中波形给出的函数可表达为0()f t =10,100,010,120,230,3()()()()()c t c t c t c t c t φφφφφ--++++ 当K 遍历-1、0、1、2、3时,0,()k t φ构成了0V 子空间的一组标准正交基。