深井回采巷道围岩破坏机理影响因素及FLAC3D模拟
- 格式:pdf
- 大小:783.23 KB
- 文档页数:3
井巷围岩压力的影响因素及围岩变形位移分析◎崔明臣(作者单位:七台河市桃山区应急管理局)矿压地下岩体在没受采掘影响前即为原岩体。
由于岩体自重应力和构造应力的作用,在其内部形成的应力即为原岩应力,并且形成平衡状态,岩体不会出现变形和位移,也不会出现破坏。
采掘生产破坏了原岩应力的平衡,造成岩体内部的应力重新形成,直到新的应力平衡状态的形成,出现了巷道围岩二次应力。
如果二次应力大于岩体强度极限,就会造成岩体变形松动,出现巷道顶板的下沉、片帮冒顶、底板鼓起等地压现象。
作用于围岩和支架上的力即为地压。
1、支承压力的分布规律对巷道稳定性的影响因其岩石强度包括地质和技术条件的不同,在岩体内开掘巷道后,岩体内的应力必然重新分布,它的变形、破坏和移动的形式也各有不同。
由于受岩石强度条件的影响,特别是支架的支撑作用阻碍了破碎岩块的冒落和破碎区的向外作用,使岩体深部抵抗破坏的能力增强,并且,破碎的岩块间的摩擦力出现一定的抵抗力量。
2、井巷围岩压力及其几个影响因素井巷地压主要包括变形地压和松动地压。
而变形地压又分为弹性变形压力和塑性变形压力。
弹性变形压力是在I、Ⅱ类稳定的坚硬砂岩或灰岩中掘巷道时,巷道两侧形成的支承压力,不能产生巷道失稳。
即使受采动影响,因其岩石强度较高,巷道围岩还处于弹性变形阶段,维护容易。
对支护形式的选择、支架参数的确定、支护施工的管理的要求不严,所以,弹性变形压力不是支护的对象。
原岩应力是导致围岩压力的根本原因,而它并非直接原因,支承压力才是导致巷道变形的直接原因。
因此,减小应力集中和防止采动影响是控制变形压力的直接关键性措施。
松动地压与变形地压不同,它是松动岩体的重量直接作用于支护结构上的荷载。
断面形状的巷道,都显现顶压大而侧压小,底部不显现。
出现松动地压的原因有地质和施工两种因素,地压在各种地层中都会发生。
在围岩为不稳定的煤、泥质砂岩或断层破碎带时,就是及时支护,也不可能阻止围岩移动和破坏,难以保证巷道稳定性。
FLAC-3D(ThreeDimensionalFastLagrangianAnalysisofContinua)是美国ItascaConsultingGouplnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时,发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1)承受荷载能力与变形分析:用于边坡稳定和基础设计(2)渐进破坏与坍塌反演:用于硬岩采矿和隧道设计(3)断层构造的影响研究:用于采矿设计(4)施加于地质体锚索支护所提供的支护力研究:岩锚和土钉的设计(5)排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究:挡土墙结构的地下水流动,和土体固结研究(6)粘性材料的蠕变特性:用于碳酸钾盐矿设计(7)陡滑面地质结构的动态加载:用于地震工程和矿山岩爆研究(8)爆炸荷载和振动的动态响应:用于隧道开挖和采矿活动(9)结构的地震感应:用于土坝设计(10)由于温度诱发荷载所导致的变形和结构的不稳定(11)大变形材料分析:用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型,总共包含了10种材料模型:(1)开挖模型null(2)3个弹性模型(各向同性,横观各向同性和正交各向同性弹性模型)(3)6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型,并且还允许指定材料参数的统计分布和变化梯度.还包含了节理单元,也称为界面单元,能够模拟两种或多种材料界面不同材料性质的间断特性.节理允许发生滑动或分离,因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格.还可以自动产生交岔结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z系统所确定,这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l)静力模式:这是FLAC-3D默认模式,通过动态松弛方法得静态解.(2)动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件,边界可以固定边界和自由边界.动力计算可以与渗流问题相藕合.(3)蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型.(4)渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合.渗流服从各向同性达西定律,流体和孔隙介质均被看作可变形体.考虑非稳定流,将稳定流看作是非稳定流的特例.边界条件可以是固定孔隙压力或恒定流,可以模拟水源或深井.渗流计算可以与静力、动力或温度计算耦合,也可以单独计算.(5)温度模式:可以模拟材料中的瞬态热传导以及温度应力.温度计算可以与静力、动力或渗流计算藕合,也可单独计算.模拟多种结构形式(l)对于通常的岩体、土体或其他材料实体,用八节点六面体单元模拟.(2)FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元.可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3)FLAC-3D的网格中可以有界面,这种界面将计算网格分割为若干部分,界面两边的网格可以分离,也可以发生滑动,因此,界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化,边界条件可以是速度边界、应力边界,单元内部可以给定初始应力,节点可以给定初始位移、速度等,还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D内嵌语言FISHFLAC-3D具有强大内嵌语言FISH,使得用户可以定义新的变量或函数,以适应用户的特殊需要,例如,利用HSH做以下事情:(l)用户可以自定义材料的空间分布规律,如非线性分布等.(2)用户可以定义变量,追踪其变化规律并绘图表示或打印输出.(3)用户可以自己设计FLAC-3D内部没有的单元形态.(4)在数值试验中可以进行伺服控制.(5)用户可以指定特殊的边界条件.(6)自动进行参数分析(7)利用FLAC-3D内部定义的Fish变量或函数,用户可以获得计算过程中节点、单元参数,如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器,内部定义了多种单元形态,用户还可以利用FISH自定义单元形态,通过组合基本单元,可以生成非常复杂的三维网格,比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果,以对结果进行实时分析,图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等,可以给出计算域的任意截面上的变量图或等直线图,计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同,FLAC采用的是命令驱动方式.命令字控制着程序的运行.在必要时,尤其是绘图,还可以启动FLAc用户交互式图形界面.为了建立FLAC计算模型,必须进行以下三个方面的工作:(1)有限差分网格(2)本构特性与材料性质(3)边界条件与初始条件完成上述工作后,可以获得模型的初始平衡状态,也就是模拟开挖前的原岩应力状态.然后,进行工程开挖或改变边界条件来进行工程的响应分析,类似于FLAC的显式有限差分程序的问题求解.与传统的隐式求解程序不同,FLAC采用一种显式的时间步来求解代数方程.进行一系列计算步后达到问题的解.在FLAC中,达到问题所需的计算步能够通过程序或用户加以控制,但是,用户必须确定计算步是否已经达到问题的最终的解.后处理(一)用tecplot绘制曲线(1)第一主应力(2)xdisp、ydisp、zdisp、disp(二)用excel做曲线隧道(1)做地表沉降槽(zdisp)(2)地表横向位移(xdisp)(3)隧道中线竖向沉降曲线(zdisp)(4)提取位移矢量图,(5)显示初期支护结构内力(6)显示state(找塑性区)基坑(1)做地表沉降槽(zdisp)(2)提取位移矢量图,(3)显示初期支护结构内力(4)显示state(找塑性区)边坡(1)做安全系数和应变图模型最优化用FLAC3D解决问题时,为了得到最有效的分析使模型最优化是很重要的.(1)检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍.这个规则适用于平衡条件下的弹性问题.对于塑性问题,运行时间会有点改变,但是不会很大,但是如果发生塑性流动,这个时间将会大的多.对一个具体模型检查自己机子的计算速度很重要.一个简单的方法就是运行基准测试.然后基于区域数的改变,用这个速度评估具体模型的计算速度.(2)影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大.这些尺寸差异越大编码就越无效.在做详细分析前应该研究刚度差异的影响.例如,一个荷载作用下的刚性板,可以用一系列顶点固定的网格代替,并施以等速度.(记住FIX命令确定速度,而不是位移.)地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3)考虑网格划分的密度:FLAC3D使用常应变单元.如果应力/应变曲线倾斜度比较高,那么你将需要许多区域来代表多变的分区.通过运行划分密度不同的同一个问题来检查影响.FLAC3D应用常应变区域,因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格,尤其是重要区域网格的统一.避免长细比大于5:1的细长单元,并避免单元尺寸跳跃式变化(即应使用平滑的网格).应用GENERATE命令中的比率关键词,使细划分区域平滑过渡到粗划分区域.(4)自动发现平衡状态:默认情况下,当执行SOLVE命令时,系统将自动发现力的平衡.当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时,认为达到了平衡状态.注意一个网格顶点的力由内力(例如,由于重力)和外力(例如,由于所加的应力边界条件)共同引起.因为比率是没有尺寸的,所以对于有不同的单元体系的模型,在大多数情况下,不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SETratio命令施加.如果默认的比率限制不能为静力平衡提供一个足够精确的限制,那么应考虑可供选择的比率限制.默认的比率限制同样可用于热分析和流体分析的稳定状态求解.对于热分析,是对不平衡热流量和所加的热流量量级进行评估,而不是力.对于流体分析,对不平衡流度和所加流度量级进行评估.(5)考虑选择阻尼:对于静力分析,默认的阻尼是局部阻尼,对于消除大多数网格顶点的速度分量周期性为零时的动能很有效.这是因为质量的调节过程依赖于速度的改变.局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall1987).如果在求解最后状态,重要区域的网格海域的速度分量不为零,那么说明默认的阻尼对于达到平衡状态是不够的.有另外一种形式的阻尼,叫组合阻尼,相比局部阻尼可以使稳定状态达到更好的收敛,这时网格将发生明显的刚性移动.例如,求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生.使用SETmechanicaldampcombined命令来调用组合阻尼.组合阻尼对于减小动能方面不如局部阻尼有效,所以应注意使系统的动力激发最小化.可以用SETmechanicaldamplocal命令转换到默认阻尼.(6)检查模型反应:FLAC3D显示了一个相试的物理系统是怎样变化的.做一个简单的试验证明你在做你认为你在做的事情.例如,如果荷载和实体在几何尺寸上都是对称的,当然反应也是对称的.改变了模型以后,执行几个时步(假如,5或10步),证明初始反应是正确的,并且发生的位置是正确的.对应力或位移的期望值做一个估计,与FLAC3D的输出结果作比较.如果你对模型施加了一个猛烈的冲击,你将会得到猛烈的反应.如果你对模型作了一些看起来不合理的事情,你一定要等待奇怪的结果.如果在分析的一个给定阶段,得到了意外值,那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果.例如,除了一个角点速度很大外,一切都很合理,那么在你理解原因前不要继续下去.这种情况下,你可能没有给定适当的网格边界.(7)初始化变量:在模拟基坑开挖过程时,在达到目的前通常要初始化网格顶点位移.因为计算次序法则不要求位移,所以可以初始化位移,这只是由网格顶点的速度决定,并有益于用户初始化速度却是一件难事.如果设定网格顶点的速度为一常数,那么这些点在设置否则前保持不变.所以,不要为了清除这些网格的速度而简单的初始化它们为零...这将影响模拟结果.然而,有时设定速度为零是有用的(例如,消除所有的动能).(8)最小化静力分析的瞬时效应:对于连续性静力分析,经过许多阶段逐步接近结果是很重要的...即,当问题条件突然改变时,通过最小化瞬时波的影响,使结果更加“静力”.使FLAC3D解决办法更加静态的方法有两种.(a)当突然发生一个变化时(例如,通过使区域值为零模拟开挖),设定强度性能为很高的值以得到静力平衡.然后为了确保不平衡力很低,设定性能为真实值,再计算,这样,由瞬时现象引起的失败就不会发生了.(b)当移动材料时,用FISH函数或表格记录来逐步减少荷载.(9)改变模型材料:FLAC3D对一个模拟中所用的材料数没有限制.这个准则已经尺寸化,允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10)运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用.这种问题的一个例子是深层矿业开挖:回填.此时大多数岩石受很高的原位应力区的影响(即,自重应力由于网孔尺寸的限制可以忽略不计),但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌.在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定...否则,整个网格在重力作用下将转动.如果你曾经注意到整个网格在重力加速度矢量方向发生转动,那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。
FLAC3D数值模型深度开发及能量分析法的实现及应用摘要:传统数值模拟分析,主要是分析应力云图、表面位移、塑性区分布,我们结合工作实际,额外提供一种新的分析方法,即能量法,该分析方法可用于巷道围岩的稳定分析、围岩冲倾向及冲击发生部位的预测、巷道锚杆锚索支护结构破坏的预测等方面,指导现场施工,优化巷道支护设计,可以模拟出围岩冲击倾向性指标值、预判巷道破坏部位,从而能够及时采取措施,预防支护失稳及围岩冲击破坏等灾害的发生。
关键词:FLAC3D;数值模型;开发;能量分析;应用前言弹塑性力学中,当弹性体受到外力作用后,不可避免地要产生变形,同时外力的势能也要发生变化。
当外力缓慢地(不致引起物体产生加速运动)加到物体上时,视作静力,便可略而不计系统的动能,同时也略去其他能量(如热能等)的消耗,则外力势能的变化就全部转化为应变能(一种势能)储存于物体的内部。
当巷道开挖前或工作面回采前,围岩处于自然平衡状态,即原岩应力状态,同时围岩内部存储的能量也处于平衡状态,即原始能量场,视作静态能量场,当开巷或回采资源后,破坏了原来的应力平衡,围岩内应力将会按照岩石介质的本构关系重新分布,形成新的平衡状态,即形成二次应力场,在围岩应力重新平衡过程中,围岩不可避免的产生应变,围岩内部能量场也重新分布,形成新的能量场。
随着计算机技术的快速发展,数值仿真方法成为一种重要的工程分析手段,本文通过FLAC3D数值分析软件内置编程语言,将弹塑性力学公式程序化,并通过FLAC3D图形显示模块,将巷道周围围岩的能量场可视化,从而分析开挖体周围的能量聚集状态,其结果可用于:巷道围岩的稳定分析、围岩冲击倾向及冲击发生部位的预测、巷道锚杆锚索支护结构破坏的预测等方面,指导现场施工,优化巷道支护设计,结合围岩冲击倾向性指标值预判巷道冲击可能和破坏部位,从而能够及时采取措施,预防支护失稳及围岩冲击破坏等灾害的发生。
1需要解决的技术问题首先是巷道围岩的稳定分析,其次是围岩冲倾向及冲击发生部位压的预测,第三就是对巷道锚杆锚索支护结构破坏的预测。
第二章沿空巷道围岩变形破坏机理及稳定性分析巷道围岩变形破坏是巷道失稳的外在表现,研究沿空巷道变形破坏机理是研究巷道失稳的前提与基础。
因此,本章通过通过理论分析、数值模拟结合现场观测研究沿空巷道围岩变形破坏特征,归纳出其影响因素,为研究沿空巷道失稳机理及巷道控制技术打下基础。
2.1沿空巷道围岩应力分布规律巷道表面位移、破坏表现为巷道顶底板及两帮的变形破坏,在沿空掘巷围岩结构中小煤柱的变形失稳是整个巷道变形失稳的重点,围岩结构的应力变化引起巷道的变形,因此有必要对沿空掘巷的围岩结构的应力变化进行深入分析。
有研究表明,沿空掘巷在掘进及回采期间巷道围岩应力表现出一定的规律性[24-27]。
(1)顶板①垂直应力在巷道的掘进期间,由于破坏了巷道原来的应力平衡状态,引起应力重新分布。
垂直应力沿着顶板层面呈现非均匀状态,巷道中部的垂直应力明显较低,而在煤帮附近应力较高,这是因为由于巷道开挖形成了类似于压力拱的结构存在。
在巷道从掘进到稳定期间,垂直应力在整个层面上都有不同程度的降低,这就造成了顶板的变形主要发生在中浅部围岩,且优以顶板的中部破坏严重。
②水平应力在受到本工作面采动影响时,水平应力有明显的上升。
顶板中应力的明显上升,由于压曲作用的存在,致使巷道中垂直应力增大,顶板将在大范围内下沉和变形。
(1)小煤柱帮掘巷前靠近上工作面采空区部分为破碎区,靠近巷道部分为原来承受高压的弹性区与塑性区,掘巷后煤体应力急剧降低,发生破坏而卸载,产生向巷道方向的位移。
①垂直应力在小煤柱与巷道顶板的交界处,垂直应力呈现基本一致性,靠近采空区一侧的煤体因破坏而卸载,应力水平较低。
靠近巷道一侧煤体应力相对较高,垂直应力明显集中,受回采时影响达到最大值。
②水平应力沿小煤柱宽度方向,应力分布呈现明显的区域性,从靠近采空区侧依次分为破裂区、塑性区和弹性区。
具体见图2-1,在煤柱两侧存在破裂区,应力承载能力小。
在巷道掘进及稳定期间,水平应力沿煤柱高度方向上的分布呈现一致性,应力集中程度较低,在受本工作面采动影响时,在煤柱高度范围内水平应力均有不同程度增加的趋势。
深埋隧洞围岩变形破坏规律的数值模拟
深埋隧洞是工程中一种广泛应用的地下工程结构,它的安全性和稳定性是保障工程质
量的重要指标。
深埋隧洞在建设过程中,其周围的围岩受到较大的应力影响,极易发生变
形和破坏。
因此,了解深埋隧洞围岩变形破坏规律对于设计和施工具有重要的意义。
传统的试验研究费时费力,且难以精确仿真复杂的地下工程场景,因此采用数值模拟
方法研究深埋隧洞围岩变形破坏规律具有重要的意义。
本文将基于数值模拟方法,探究深
埋隧洞围岩的变形破坏规律。
首先,根据实际情况确定模型参数,包括模型尺寸、模型材料的力学参数、荷载方式
和边界条件等。
然后,采用有限元方法建立深埋隧洞围岩的数值模型,并进行计算。
在计
算的过程中,基于力学分析理论,考虑了围岩的强度、变形特性和岩土体之间的相互作用
等因素。
最后,对计算结果进行分析和解释,以获得深埋隧洞围岩的变形破坏规律。
基于数值模拟方法的研究表明:隧洞开挖后,围岩中出现明显的应力集中和应变分布,其最大值与洞体中心的距离有关系。
当应力超过岩石强度时,围岩就会发生破坏。
在深埋隧洞围岩的变形破坏过程中,岩土体之间的相互作用起着至关重要的作用。
众
所周知,隧洞开挖后,洞囵内外的土体产生不同的应力和变形,其中较大的变形不仅会造
成深层土体的灌缝、滑动等失稳现象,还会导致地表沉降、建筑物破坏等不良后果。
为减轻这些不良后果,规避隧洞地震等灾害,我们需要了解深埋隧洞围岩的变形和破
坏规律。
通过数值模拟方法的研究,我们能更加准确地分析数值结果,并为今后制定有效
预防措施提供科学的依据。
FLAC3D在地下矿山采场稳定性分析中的应用摘要:在地下矿山生产体系中,矿体开挖的动态作业,会使得矿体应力平衡状态受到破话,在应力重新分布后,应力作用更加明显,因此对采场稳定性产生影响。
本文基于地下矿山采场失稳机理,说明FLAC3D在采场稳定性分析中的具体应用,并明确分析结论,以此为相关工作开展提供参考。
关键词:FLAC3D;矿山采场;稳定性分析FLAC3D是基于二维有限差分程序拓展而来,主要用于土质、岩石等材料三维结构受力特性模拟和塑性流动分析的软件。
基于模拟塑性破坏和塑性流动的准确分析,采用动态运动方程分析方法,能够较为快速、便捷的分析各种场景下特定材料三维结构受力情况。
在地下矿山生产中,做好采场稳定性分析,结合分析结果做好支护处理,是确保采场运行稳定、有效提升生产安全水平的基本保障。
1、地下矿山采场失稳机理1.1 采场围岩变形特性在地下矿山采场作业流程中,围岩内垂直方向的应力会明显大于水平方向应力,在顶板围岩除,拉应力作用较为显著。
而在拉应力超出极限并在继续开采作用下,必然会使得顶板及拐角部位发生裂隙现象[1]。
在支护不到位情形下,则会出现变形破坏甚至是塌落现象。
而在水平方向大于垂直方向应力时,顶板围岩则是受剪应力作用较为显著,使得围岩结构出现松动、错动或膨胀等现象,也会对造成围岩破坏,对生产运行安全产生影响。
1.2 采场失稳模式矿山采场失稳是地下矿山生产安全影响较为明显的问题,依据围岩变形特征和生产管理情况,失稳现象主要有三种模式:(1)顶板围岩局部位置为出现失稳,但矿柱能够保持稳定状态;(2)矿柱出现失稳现象,但顶板围岩依然较为稳定;(3)顶板和矿柱同时出现失稳现象。
虽然这三种模式的表现形式有所差异,但是在其中任何一种失稳现象发生时,都会由于进一步发展而造成采场整体稳定性不足,因此利用先进技术对采场进行稳定性分析,为支护设计处理提供精准参考,是生产安全管理工作需要关注的重点内容[2]。
采动影响下回采巷道变形破坏数值模拟
林海峰
【期刊名称】《内蒙古煤炭经济》
【年(卷),期】2018(000)009
【摘 要】回采巷道在受采动影响时,巷道变形破坏尤为严重,因此对其变形破坏规律
研究就显得非常重要.本文运用FLAC3D数值模拟软件,对静态支护状态和受工作面
采动影响下回采巷道的变形和应力分布规律进行数值模拟分析,得出受采动影响下
回采巷道的变形破坏规律,从而为回采巷道合理支护及加固方案设计提供可靠依据.
【总页数】3页(P122-124)
【作 者】林海峰
【作者单位】煤科集团沈阳研究院有限公司,辽宁沈阳110016;煤矿安全技术国家
重点实验室,辽宁抚顺113122
【正文语种】中 文
【中图分类】F406.3;TD353
【相关文献】
1.回采动压影响下深井巷道变形破坏规律数值模拟研究 [J], 杨仁树;薛华俊;何天宇;
李涛涛;王茂源;梁明
2.采动影响下采空区覆岩破坏变形规律数值模拟研究 [J], 王沙沙;魏久传;宋宝来
3.急倾斜煤层重复采动回采巷道变形破坏机理与支护技术研究 [J], 张艳丽; 解盘石;
伍永平
4.回采影响下煤层巷道围岩变形破坏数值模拟 [J], 崔莹妹; 江中宇; 杜佳骏; 刘帅;
侯超杰; 姚柏聪
5.采动影响下沿空巷道变形破坏与锚杆支护 [J], 贾宝新
因版权原因,仅展示原文概要,查看原文内容请购买
深部矿井动压回采巷道围岩大变形破坏机理袁越;王卫军;袁超;余伟健;吴海;彭文庆【摘要】针对深部动压回采巷道的大变形失稳破坏及其控制难题,建立了深部动压环境下圆形巷道力学模型,导出了塑性区边界隐性方程式.在此基础上,对深部动压巷道塑性区形态演化规律进行深入分析,阐明了第Ⅰ类及第Ⅱ类蝶形塑性区形成的力学条件,界定了塑性区恶性扩展及其临界的定义,揭示了深部动压回采巷道的变形破坏机理.结果表明,开采动压影响比常规条下围岩更易产生蝶形塑性区,且蝶叶发育尺寸、塑性破坏范围更大.随着动压影响的增强,巷道区域应力场成为超常规的超高应力场,巷道顶底、两帮的塑性破坏进一步向深部扩展,变形加剧,致使塑性区恶性扩展,最终造成围岩大变形破坏.对于深部动压回采巷道的设计、支护应充分考虑如何避免或降低动压的影响,改善围岩应力环境,减小蝶叶塑性破坏深度,以便更好地维护巷道.【期刊名称】《煤炭学报》【年(卷),期】2016(041)012【总页数】11页(P2940-2950)【关键词】深部矿井;动压回采巷道;大变形;破坏机理;塑性区【作者】袁越;王卫军;袁超;余伟健;吴海;彭文庆【作者单位】南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室,湖南湘潭411201;煤矿安全开采技术湖南省重点实验室,湖南湘潭411201;湖南科技大学资源环境与安全工程学院,湖南湘潭411201;南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室,湖南湘潭411201;煤矿安全开采技术湖南省重点实验室,湖南湘潭411201;湖南科技大学资源环境与安全工程学院,湖南湘潭411201;湖南科技大学资源环境与安全工程学院,湖南湘潭411201;湖南科技大学资源环境与安全工程学院,湖南湘潭411201;南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室,湖南湘潭411201;煤矿安全开采技术湖南省重点实验室,湖南湘潭411201;湖南科技大学资源环境与安全工程学院,湖南湘潭411201【正文语种】中文【中图分类】TD353相关资料表明,我国已经探明的煤炭资源储量,其中约60%的埋藏深度大于800 m。