51单片机存储器的基本结构及工作原理

  • 格式:doc
  • 大小:184.00 KB
  • 文档页数:7

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机存储器的基本结构及工作原理

第一个问题:单片机的外部结构怎样呢?

拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们“新动力2004”单片机学习套件用的一块称之为89S51的芯片,下面我们就看一下如何给它连线。

1、电源:这当然是必不可少的了。单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。

2、振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。只要买来晶振,电容,连上就可以了,按“新动力2004版”实验部份原理图接上即可。

3、复位引脚:按“新动力2004版”实验部份原理图中接法连好,至于复位是何含义及为何需要复要复位,复位章节中已做介绍。

4、EA引脚:EA引脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。

注:上述讲的是单片机最小应用系统图,朋友们在书让随便找本书都有,也以参考“新动力2004版”实验部份原理图。

这里我就不再画了。

第二个问题:单片机的工作任务分析

我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个引脚相连,否则单片机就没法控制它了,那么和哪个引脚相连呢?单片机上除了刚才用掉的5个引脚,还有35个,我们将这个LED和1脚相连。

按照“新动力2004版”实验部份原理图的接法,当1脚是高电平时,LED不亮,只有1脚是低电平时,LE D才发亮。因此要1脚我们要能够控制,也就是说,我们要能够让1引脚按要求变为高或低电平。即然我们要控制1脚,就得给它起个名字,总不能就叫它一脚吧?叫它什么名字呢?设计51芯片的INTEL公司已经起好了,就叫它P1.0,这是规定,不可以由我们来更改。

名字有了,我们又怎样让它变--高--或变--低--呢?叫人做事,说一声就可以,这叫发布命令,要计算机做事,也得要向计算机发命令,计算机能听得懂的命令称之为计算机的指令。让一个引脚输出高电平的指令是SETB,让一个引脚输出低电平的指令是CLR。因此,我们要P1.0输出高电平,只要写SETB P1.0,要P1.0输出低电平,只要写CLR P1.0就可以了。

现在我们已经有办法让计算机去将P1.0输出高或低电平了,但是我们怎样才能计算机执行这条指令呢?总不能也对计算机也说一声了事吧。要解决这个问题,还得有几步要走。

第一步:计算机看不懂SETB CLR之类的指令,我们得把指令翻译成计算机能懂的方式,再让计算机去读。计算机能懂什么呢?它只懂一样东西——数字。因此我们得把SETB P1.0变为(D2H,90H ),把CLR

P1.0变为(C2H,90H ),至于为什么是这两个数字,这也是由51芯片的设计者--INTEL规定的,我们不去研究。

第二步:在得到这两个数字后,怎样让这两个数字进入单片机的内部呢?这要借助于一个硬件工具"编程器"。本站开发的“新动力2004版”集编程器和实验板于一体。大家可以参考一下,如想购买请进入看看!

我们将“新动力2004”学习套件与电脑连好,运行编程器的软件,然后在编缉区内写入(D2H,90H)见图2,写入……好,拿下片子,把片子插入学习套件的实验板,接通电源……什么?灯不亮?这就对了,因为我们写进去的指令就是让P1.0输出高电平,灯当然不亮,要是亮就错了。现在我们再拨下这块芯片,重新放回到编程器上,将编缉区的内容改为(C2H,90H),也就是CLR P1.0,写片,拿下片子,把片子插进实验板,接电,好,灯亮了。因为我们写入的(CLR P1.0)就是让P1.0输出低电平的指令。这样我们看到,硬件电路的连线没有做任何改变,只要改变写入单片机中的内容,就可以改变电路的输出效果。

第三个问题:单片机内部结构分析

我们来思考一个问题,当我们在编程器中把一条指令写进单片机内部,然后取下单片机,单片机就可以执行这条指令,那么这条指令一定保存在单片机的某个地方,并且这个地方在单片机掉电后依然可以保持这条指令不会丢失,这是个什么地方呢?这个地方就是单片机内部的只读存储器即ROM(READ ONLY M EMORY)。为什么称它为只读存储器呢?刚才我们不是明明把两个数字写进去了吗?原来在89C51中的ROM是一种电可擦除的ROM,称为FLASH ROM,刚才我们是用的编程器,在特殊的条件下由外部设备对ROM进行写的操作,在单片机正常工作条件下,只能从那面读,不能把数据写进去,所以我们还是把它称为ROM

下面分别介绍各组成部份硬件的结构,工作原理和操作方法:

存储器:

8031单片机有4个存储器空间,分别用来安排4种不同功用的存储器:

一\内部数据存储器;二\特殊功能寄存器;三\程序存储器;四\外部数据存储器。

内部数据存储器和特殊功能寄存器集成于片内,程序存储器和外部数据存储器则安排在

片外,用接口电路与单片机连接。4种存储器中,除内部数据存储器和特殊功能寄存器是统一编址的除外,各存储器均分开编址,并用不完全相同的寻址方式来访问它们。

RAM,共128字节,地址范围为00H一7FH,见下图2。前32个单元(地址00H一1FH)称为寄存器区。其中,每8个寄存器形成-个寄存器组。具体说来:

寄存器0组地址00H一07H

寄存器1组地址08H一0FH

寄存器2组地址10H一17H

寄存器3组地址18H一1FH

图2 内部数据存储器结构

通过对特殊功能寄存器PSW中RS1、RS0两位的编程设置),可选择任一寄存器组为工作寄存器组,方法如下:

RS1 RSO 所选中的寄存器组

0 0 选中的寄存器0组

0 1 选中的寄存器1组

1 0 选中的寄存器2组

1 1 选中的寄存器3组

当某一组被设定成工作寄存器组后,该组中的8个寄存器,从低地址到高地址就分别称为Ro-R7,从而可以把它们用作通用寄存器,并可按寄存器寻址方式被访问。一旦工作寄存器组被指定后,另外三组寄存器则同其它数据RAM一样,只能按字节地址被予以读写。

字节地址20H到2FH称为位地址区,共有16个字节,计128位,每位都有相应的位地址,位地址范围为00H一7FH,见图3。通过位寻址,可以对各位进行位操作。由此可见,8031单片机有着相当出色的位处理能力。