当前位置:文档之家› 材料力学各章重点内容总结

材料力学各章重点内容总结

材料力学各章重点内容总结

第一章 绪论

一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性

要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够

的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能

力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假

设和各向同性假设。

第二章 轴向拉压

一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只

适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A

σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=

注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max

max N F A σσ=≤

六、利用正应力强度条件可解决的三种问题:1.强度校核[],max

max N F A σσ=≤

一定要有结论 2.设计截面[],max

N F A σ≥ 3.确定许可荷载[],max N F A σ≤

七、线应变l l ε∆=没有量纲、泊松比'εμε

=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA

∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应

的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服

极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l l

δ-︒=⨯︒及断面收缩率1100A A A

ϕ-︒=

⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。 十、卸载定律及冷作硬化:课本第23页。对没有明显屈服极限的塑性材料,如

何来确定其屈服指标?见课本第24页。 十一、 重点内容:1.画轴力图;2.利用强度条件解决的三种问题;3.强度校核

之后一定要写出结论,满足强度要求还是不满足强度要求;4.利用胡克定律

N F l l EA

∆=求杆的变形量:注意是伸长还是缩短。 典型例题及习题:例2.1 例2.5 习题2.1 2.12 2.18

第三章 扭转

一、如何根据功率和转速计算作用在轴上的外力偶矩,注意功率、转速和外力偶矩的单位。9549e P M n

= 二、扭矩及扭矩图:利用右手螺旋规则(见课本75页倒数第二段)判断的是扭

矩的正负号而不是外力偶矩的正负号,扭矩是内力而外力偶矩是外力 。

三、圆轴在扭转时横截面的切应力分布规律:习题3.2

四、圆轴在扭转时横截面上距圆心为ρ处的切应力的计算公式p

T I ρρτ= 五、对于实心圆轴和空心圆轴极惯性矩和抗扭截面系数的计算公式 实心圆:4

32p D I π= 3

16t D W π= 空心圆:()4

4132p D I πα=- ()3

4116t D W πα=- 其中d D

α= 六、轴在扭转时的切应力强度条件[]max max t

T W ττ=≤及解决的3种问题:强度校核(一定要有结论)、设计截面、确定许可荷载。

七、相距为l 的两截面间的相对扭转角p Tl GI ϕ=

,单位是rad ;单位长度扭转角'p

T GI ϕ=,单位是/rad m 八、圆轴在扭转时的刚度条件''max max 180p T GI ϕϕπ⎡⎤=

⨯≤⎣⎦(注意单位:给出的许用单

位长度扭转角是度/米还是弧度/米)

九、切应力互等定理及剪切胡克定律:见课本78,79页

十、重点内容:1.画扭矩图;2.强度条件及刚度条件的校核,校核之后一定要

写出结论,满足要求还是不满足要求;3.极惯性矩和抗扭截面系数的计算公

式;4.利用强度条件和刚度条件来设计截面尺寸,最后要选尺寸大的那个。

典型例题及习题:例3.1 例3.4 习题3.1 3.2 3.8 3.13

第四章 弯曲内力

一、剪力和弯矩正负号的规定:课本117,118页

二、如何快速利用简便方法来计算任意截面上的剪力和弯矩:

横截面上的剪力在数值上等于左侧或右侧梁段上所有外力的代数和,对于

左侧梁段,向上的外力将产生正值的剪力,向下的外力将产生负值的剪力。对

于右侧梁段,向下的外力将产生正值的剪力,向上的外力将产生负值的剪力。

横截面上的弯矩在数值上等于左侧或右侧梁段上所有外力对该截面形心产

生的力矩的代数和。无论左侧梁段还是右侧梁段,向上的外力均产生正值的弯

矩,向下的外力均产生负值的弯矩;对于左侧梁段,顺时针方向的外力偶将产

生正值的弯矩,逆时针方向的外力偶将产生负值的弯矩。对于右侧梁段,逆时

针的外力偶将产生正值的弯矩,顺时针的外力偶将产生负值的弯矩。

三、利用写剪力方程和弯矩方程的方法来画剪力图和弯矩图

四、用剪力、弯矩、均布荷载三者间的微分关系来画剪力图和弯矩图,利用三者

间的微分关系也可以来检查画的图是否正确。

五、掌握上课时画在黑板上的表,准确判断当外力为不同情况时剪力图和弯矩图

的规律及突变规律。

六、剪力为零的位置弯矩有极值,要把极值弯矩求出来,可利用积分关系来求。

七、重点内容:画剪力图和弯矩图

典型例题及习题:做过的题目

第五章 弯曲应力

一、基本概念(见课本139页相关知识):纯弯曲、横力弯曲、中性层、中性轴

(实际是过形心的形心轴)

二、弯曲时横截面上距中性轴为y 处正应力的计算公式z

My I σ= 正应力正负号的判断:根据变形特征来判断,如果处于受拉部分则为拉应力,

如果处于受压部分则为压应力。

三、弯曲时横截面上正应力的分布规律图:见141页图5.4d 和147页图5.7c 四、正应力强度条件[]max max max max z z

M y M I W σσ==≤及解决的3种问题 五、矩形截面、实心圆及空心圆惯性矩z I 及抗弯截面系数z W 的计算公式

矩形截面:312z bh I = 26z bh W = 实心圆:4

64

z D I π= 332z D W π= 空心圆:()4

4164z D I πα=- ()3

4132z D W πα=- 其中d D

α= 六、矩形截面梁切应力的分布规律:2224S z F h y I τ⎛⎫=- ⎪⎝⎭

见150页图5.10 最大切应力:,max

max 1.5S F bh τ= 七、切应力的强度校核[]*max max max

S z z F S I b ττ=≤ *max z S 是中性轴以下部分截面对中性轴的静矩,b 是中性轴穿过的截面宽度

八、重点内容:利用正应力强度条件解决3种问题,切应力的强度校核

典型例题及习题:例5.3 例5.5 习题5.4 5.5 5.12 5.16 5.17

附录

一、静矩z A S ydA =⎰ y A

S zdA =⎰,其量纲是长度的三次方。 二、形心: 1.不规则图形:

_A z ydA S y A A ==⎰ _y A zdA S z A A ==⎰ 2.规则图形:__i

i i A y

y A =∑∑ __i

i i A z z A =∑∑

三、静矩与形心的关系:课本374页

四、惯性矩2y A I z dA =⎰,2z A I y dA =⎰,极惯性矩2p A

I dA ρ=⎰,惯性矩和极惯性 矩之间的关系p y z I I I =+ ,各种常用图形惯性矩和极惯性矩的计算见第三

章和第五章有关公式。

五、惯性矩的平行移轴公式2y yc I I a A =+,2z zc I I b A =+,其中yc 轴和zc 轴是图

形的形心轴,a 是两平行轴y 轴和yc 轴之间的距离;b 是两平行轴z 轴和zc

轴之间的距离。

六、重点内容:1.静矩和形心的计算;2.静矩和形心的关系;3.各种常用图形

惯性矩和极惯性矩的计算;4.利用平行移轴公式计算不对称图形的惯性矩。

典型例题及习题:例I.2 例I.3 例I.6 习题I.9b

第六章 弯曲变形

一、衡量弯曲变形的两个指标是:挠度和转角(挠度以向上为正,向下为负;转

角以逆时针为正,顺时针为负)

二、挠曲线的近似微分方程是:()''EI M x ω=

三、转角方程:()'EI EI M x dx C θω==+⎰

挠曲线方程:()EI M x dxdx Cx D ω=++⎰⎰

四、求积分常数时的边界条件及连续性条件是如何确定的?见课本180页图6.6

和图6.7

五、用叠加法求弯曲变形

六、重点内容: 衡量弯曲变形的两个指标、挠曲线的近似微分方程及边界条

件和连续性条件、叠加法的应用。

典型例题及习题:6.10 6.11 6.34 6.36

第七章 应力和应变分析 强度理论

一、正应力和切应力正负号的规定:正应力以拉伸为正,压缩为负;切应力对单

元体内一点产生的力矩顺时针为正,逆时针为负。α角是指从x 轴到截面的

外法线方向,逆时针为正,顺时针为负。

二、会画轴向拉压、扭转及弯曲时任一点处的应力状态,尤其是对弯曲的情况应

力状态比较复杂,见课本221页图7.8b

三、掌握主平面及主应力的概念,3个主应力的大小顺序:123σσσ≥≥

四、几个主要公式:1. 任意斜截面上的正应力及切应力计算公式

cos 2sin 222x y

x y

xy ασσσσσατα+-=+- sin 2cos 22x y

xy ασστατα-=+

2.最大正应力及最小正应力的计算公式

max min 2x y σσσσ+⎫=⎬⎭max σ和min σ实际上是主应力。

3.最大切应力及最小切应力的计算公式

max min ττ⎫=⎬⎭4.主平面的方位02tan 2xy

x y τασσ=--,可以求出相差为90度的两个角度0α;如

约定用x σ表示两个正应力中代数值较大的一个,即x y σσ≥,则两个角度0

α中,绝对值较小的一个确定max σ所在的平面。要求:能在单元体上画出主平

面的位置。

五、如何画应力圆?

六、应力圆圆周上的点和单元体上的面存在着一一对应的关系。见课本224页第

二段 七、广义胡克定律:()()()111x x y z y y z x z z x y E E E εσμσσεσμσσεσμσσ⎫⎡⎤=-+⎪⎣⎦⎪⎪⎡⎤=-+⎬⎣⎦⎪⎪⎡⎤=-+⎪⎣⎦⎭ xy xy yz yz zx zx G G G τγτγτγ⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭

当单元体的六个面皆为主平面时,广义胡克定律的表达式见课本238页公式

7.20及公式d ,此时的线应变称为主应变。

八、强度理论及4个相当应力

第一强度理论:最大拉应力理论 11r σσ=

第二强度理论:最大伸长线应变理论 ()2123r σσμσσ=-+

第三强度理论:最大切应力理论 313r σσσ=-

第四强度理论:畸变能密度理论

4r σ= 其中第一、二强度理论适用于脆性材料,第三、四强度理论适用于塑性材料

要求记住四个强度理论的内容及各自的相当应力的表达式。

九、 重点内容:1.会画单元体的应力状态2.求任意斜截面上的正应力及切应

力3.由应力状态求主应力的大小、主平面的位置、在单元体上绘出主平面

的位置及主应力的方向、最大切应力。4.广义胡克定律的应用 5.利用强度

理论进行强度的校核

典型例题及习题:例7.3 例7.9 习题7.3 7.4 7.10 7.26 7.36

第八章 组合变形

一、轴向拉(压)和弯曲的组合变形

横截面上只有正应力:由轴向拉(压)产生的正应力和由弯曲产生的正应力

二、两相互垂直平面内的弯曲

横截面上只有正应力:由两个不同方向的弯矩产生的正应力

三、弯扭组合

横截面上既有正应力又有切应力,应该先画出单元体上的应力状态,根据

应力状态及上第七章的最大及最小正应力计算公式来计算出3个主应力,再代

入到第三及第四强度理论的相当应力的表达式

3r σ=

4r σ=1适用于弯扭组

合变形 2适用于轴向拉(压)与纯剪切的组合状态

3r z W σ=

4r z

W σ= 这两个公式的适用范围:1适用于弯扭组合变形 2适用于轴向拉(压)与纯剪切的组合状态3适用于圆截面杆,因

为用到了2z t W W =

四、解题思路:1先判断出是哪一种组合变形 2判断出组合变形后分别画出

内力图 3从内力图上来判断哪一个截面是危险截面 4找出危险截面后判

断出哪一个或哪一些点是危险点 5根据危险点做相应的计算

典型例题及习题:课堂上补充的题目,例8.1 习题8.12 8.13

第九章 压杆稳定

一、欧拉公式:()

22cr EI F l πμ= 或 22cr E πσλ=,其中惯性矩min I I =。注意当杆的约束形式不同时,长度因数μ的取值。见课本297页表9.1

二、柔度(或长细比):l

i μλ=无量纲,对于直径为d 实心圆截面,惯性半径4

d i = 三、欧拉公式的适用范围:22cr p E πσσλ=≤

或λ≥

令p λ=则p λλ≥的杆称为大柔度杆,即欧拉公式只适用于大柔度杆。

四、中柔度杆(对于塑性材料):当s p λλλ≤<时,称为中柔度杆。 其中

s s a b

σλ-=, 此时cr a b σλ=- ()cr cr F A A a b σλ==- 五、小柔度杆(对于塑性材料):当s λλ<时,称为小柔度杆,对于小柔度杆不

存在稳定性问题只有强度问题,所以按强度问题处理。 cr s σσ= cr cr s F A A σσ== 六、压杆的稳定性校核:cr cr st F n n F σσ

==≥时,满足稳定性要求,否则不满足稳定性要求。

七、压杆的临界应力总图:见课本302页图9.16

八、重点内容:1.根据不同柔度的杆(大柔度杆、中柔度杆和小柔度杆)来求相应的临界应力及临界力。2. 压杆的稳定性校核。3. 压杆的临界应力总图 典型例题及习题:例9.4 习题9.5 9.14 9.15

超静定问题

解题步骤1、选研究对象画受力图,列出静力学平衡方程2、列变形协调方程3、列物理方程

典型例题及习题:做过的题目

第十三章 能量法

一、应变能的计算:轴向拉压 22N F l V EA

ε= 或 ()22N l F x V dx EA ε=⎰ 桁架 212n Ni i i i

i F l V E A ε==∑ 扭转 22p T l V GI ε= 或 ()22l p

T x V dx GI ε=⎰ 纯弯曲 22M l V EI ε= 横力弯曲 ()22l M x V dx EI

ε=⎰ 二、卡氏第二定理:梁或刚架 ()()i l i

M x M x dx EI F δ∂=∂⎰ 桁架 1n Ni i Ni i i i i

i F l F E A F δ=∂=∂∑ 三、单位载荷法: 桁架 1n Ni Ni i i i i F F l E A =∆=∑

梁或刚架 ()()l M x M x dx EI

∆=⎰ 四、重点内容:运用应变能、卡氏第二定理或单位载荷法求相应的位移或转角 典型例题及习题:例13.5 13.6 13.7 13.12习题13.2 13.3 13.6 13.9 13.14

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性 要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够 的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假 设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只 适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε =没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应 的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服 极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。 会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

材料力学章节重点和难点

材料力学章节重点和难点 第一章绪论 1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。 2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。 3.难点: 第二章杆件的内力 1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。 2.重点:剪力方程和弯矩方程、剪力图和弯矩图。 3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。 第三章杆件的应力与强度计算 1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。 2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。 3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;

第四章杆件的变形简单超静定问题 1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。 2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。 3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。 第五章应力状态分析? 强度理论 1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。 2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。 3.难点:主应力方位确定。 第六章组合变形 1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算; 2.重点: 弯扭组合变形。 3.难点:截面核心的概念 第七章压杆稳定 1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。

材料力学知识点

第六章弯曲变形知识要点 1、弯曲变形的概念 1)、挠曲线 弯曲变形后梁的轴线变为挠曲线。平面弯曲时,挠曲线为外力作用平面内的平面曲线。 2)、平面弯曲时的变形 在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系 3)、平面弯曲时的位移 1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。 2》转角——横截面绕其中性轴旋转的角位移,以表示。 挠度和转角的正负号由所选坐标系的正方向来确定。沿y轴正方向的挠度为正。转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。 4)、挠曲线近似微分方程 5)、受弯曲构件的刚度条件, 2、积分法求梁的挠度和转角 由 积分常数C、D由边界条件和连续性条件确定。对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。因此除了用边界条件外,还要用连续性条件确定所有的积分常数。 边界条件:支座对梁的位移(挠度和转角)的约束条件。 连续条件:挠曲线的光滑连续条件。 悬臂梁 边界条件:固定端挠度为0,转角为0 连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等 简支梁 边界条件:固定绞支座或滑动绞支座处挠度为0 连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等 连接铰链处,左右两端挠度相等,转角不等 3、叠加原理求梁的挠度和转角 1)、叠加原理 各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。 2)、叠加原理的限制 叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求: 1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料 2》曲率与挠度成线性关系,这就要求梁变形为小变形 4、弯曲时的超静定问题——超静定梁 1)、超静定梁 约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。 2)、求解简单超静定梁的变形比较法 1》多与约束——超静定梁中多于维持其静力平衡所必须的约束 2》基本系统——超静定梁解除多余约束后的静定系统

材料力学重点及其公式要点

外力偶矩 传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。 当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为 当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为 2.5.2切应力计算公式 横截面上某一点切应力大小为-12) Ip 式中Ip为该截面对圆心的极惯性矩,为欲求的点至圆心的距离。 圆截面周边上的切应力为 式中 RTWt (3-13) 称为扭转截面系数,R为圆截面半径。 2.5.3 切应力公式讨论 (1)切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。 (2)极惯性矩Ip和扭转截面系数Wt是截面几何特征量,计算公式见表3-3。在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。因此,设计空心轴比实心轴更为合理。 表3-3

2.5.4强度条件 圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。因此,强度条件为 ax Tmax (3-14) 对等圆截面直杆 Wt (3-15)式中为材料的许用切应力。 3.1.1中性层的曲率与弯矩的关系 1 M EIz (3-16) 式中,是变形后梁轴线的曲率半径;E是材料的弹性模量;IE是横截面对中性轴Z轴的惯性矩。 3.1.2横截面上各点弯曲正应力计算公式 My IZ (3-17) 式中,M是横截面上的弯矩;IZ的意义同上;y是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处(3-18)式中, Izymax MmaxM a x 称为抗弯截面系数。对于的矩形截面,;对于直径为D 6 的圆形截面, 32 D3;对于内外径之比为

材料力学复习重点

材料力学性能 1.填空题:30个15分 2.判断题:20个10分 3.名词解释 10个20分 4.问答题:6个35分 5.计算题:2个20分 第一章单向静拉伸力学性能 一、解释下列名词。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 11.韧脆转变温度:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这个温度称

为韧脆转变温度。 15.解理刻面:在解理断裂中具有低指数,表面能低的晶体学平面叫解理面。这种大致以晶粒大小为单位的解理面称为解理刻面。 17.约比温度:材料的实验温度与熔点的比值。高于这个温度的环境叫高温环境,材料的性能会随时间和温度而变化。 18.松弛稳定性:金属抵抗应力松弛的性能。 19.低周疲劳:金属材料在循环载荷作用下,疲劳寿命为102-104次的疲劳断裂叫低周疲劳。 四、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 八、什么是包申格效应,如何解释,它有什么实际意义? 包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 包申格效应与金属材料中位错运动所受的阻力变化有关。在金属预先受载产生少量塑性变形时,位错沿某一滑移面运动,遇林位错而弯曲,结果,在位错前方,林位错密度增加,形成位错缠结和胞状组织。这种位错结构在力学上是相当稳定的,宏观上表现为规定残余伸长应力增加。

材料力学知识点总结

材料力学知识点总结 材料力学是材料科学的重要分支,主要研究材料的内部结构与力学 性能之间的关系。本文将对材料力学中的几个重要知识点进行总结。 一、材料的力学性能 1. 弹性模量:衡量材料在受力变形时的抵抗能力。代表材料刚度的 指标,常用的弹性模量有杨氏模量、剪切模量和体积模量。 2. 屈服强度:材料在受力后开始发生塑性变形的临界点。一般以屈 服点或屈服强度标定材料的强度。 3. 完全断裂强度:材料在断裂前所能承受的最大力。可用于材料的 强度对比。 4. 韧性:衡量材料抵抗断裂的能力。韧性高的材料在受力时具有良 好的延展性。 二、应力与应变 1. 应力:单位面积上的力,常用符号σ表示。分为正应力(拉应力)和负应力(压应力)两种。 2. 应变:物体在受力作用下产生的形变。分为线性弹性应变、剪切 应变、体积应变等。 3. 应力应变关系:材料在弹性阶段的应力与应变呈线性关系,即胡 克定律。E为杨氏模量,G为剪切模量。

三、材料的破坏机制 1. 塑性破坏:材料在超过屈服强度后发生的永久性变形。常见的塑 性破坏形式包括颈缩、屈服失稳和局部屈曲等。 2. 脆性破坏:材料在受力后突然断裂。晶体材料易发生脆性破坏, 而金属等韧性材料具有一定的塑性。 3. 疲劳破坏:材料长期受到周期性加载而逐渐失效。疲劳破坏会导 致材料发生裂纹和断裂。 四、应力集中与应力分布 1. 应力集中:在材料中存在突变形状或孔洞等缺陷时,会引起应力 集中。应力集中可导致材料的破坏。 2. 应力分布:材料在受力过程中,应力的分布不均匀。常见的应力 分布形式有均匀应力分布、线性应力分布和局部应力集中等。 五、材料的断裂韧性 1. 断裂韧性:衡量材料抵抗破裂的能力。通常通过计算断裂韧性指标,如断裂韧性KIC和GIc等。 2. 断裂韧性的提高:可采用增加材料的强度、改变材料的组织结构、合理设计结构等方法来提高材料的断裂韧性。 六、应用案例 1. 材料的选择:根据实际工程需求选择合适的材料,考虑材料的力 学性能、成本和可加工性等因素。

材料力学重点归纳

材料力学考试重点 一、。课程的性质、任务 材料力学是变形体力学的最基础课程。固体力学(即变形体力学)是研究固体材料的变形、流动和断裂的一门科学。它是材料科学专业的一门理论性较强的重要的技术基础课程。 本课程的基本任务是为了提高材料工程类专业学生的力学基础素养,使之掌握该专业所必需的固体力学基本概念、基本方法和基础理论,培养学生具备一定的力学分析计算能力和基本的力学实验技能,为学习后续专业课程奠定必要的力学基础。教学的同时注意结合本课程的特点培养学生的辩证唯物主义观点。 二、课程的基本要求 通过本课程的教学,应使学生达到下列基本要求: 1.理论力学静力学是系统学习力学课程的必要基础。因此要求学生理解并掌握理论力学静力学的有关概念和理论。了解几种常见的约束类型的性质及静力学基本公理。较熟练地掌握对物体进行受力分析的方法。 2.了解静力学的基本任务。理解并掌握力线的平移定理。熟悉各类平面力系的简化方法和结果。掌握各类平面力系的平衡条件,并能熟练地应用它们去求解物体(或物体系)的平衡问题。简单了解空间力系的简化结果、力对轴之矩的概念及重心的概念。 3.理解并掌握固体力学的有关基本概念:对固体力学分析问题、解决问题的基本方法和思路有明确的认识。 4.掌握一维工程构件三种基本变形的内力、应力和变形的分布变化规律、基本分析方法以及计算方法。 5.清楚了解研究测试固体材料力学性质的意义和方法,对常见固体材料(典型的金属材料和岩石)的力学性质和测定方法有基本认识和掌握。了解电测应力方法的基本原理。 6.对应力、应力状态、应变、应变、应变状态的概念有较明确的认识。较熟练掌握应力分析理论和应变分析理论。 7.理解和掌握固体材料弹性变形和塑性变形的主要特征,对屈服函数、主应力空间、屈服面、屈服曲线、屈服条件等概念有较明确认识。熟悉掌握强度理论:最大拉应力理论、最大剪应力理论、形状改变比能理论、莫尔强度理论和库仑-纳维叶剪切强度准则的基本观点、适用范围、表达形式和工程应用。 8. 掌握固体材料和构件的强度、刚度和稳定性分析计算的基本理论和基本方法 三、课程基本教学内容 第一部分:理论力学静力学 第一章静力学的基本概念 1.静力学及其任务、刚体、平衡、平衡条件、力及其分类;2.静力学基本公理;3.约束和约束反力、物体的受力和受力图、力系及其分类。 第二章平面力系及其平衡条件

材料力学知识点总结

材料力学总结一、根本变形

二、还有: 〔1〕外力偶矩:)(9549m N n N m •= N —千瓦;n —转/分 〔2〕薄壁圆管扭转剪应力:t r T 22πτ= (3) 矩形截面杆扭转剪应力:h b G T h b T 32 max ;βϕατ== 三、截面几何性质 (1) 平行移轴公式:;2A a I I ZC Z +=abA I I c c Y Z YZ += (2) 组合截面: 1. 形 心:∑∑===n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1) 二向应力状态〔解析法、图解法〕 a . 解析法:b.应力圆: σ〞 x

τ:使单元体顺时针转动为“+〞 α:从x 轴逆时针转到截面的 法线为“+〞 ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+⎪⎪⎭ ⎫ ⎝ ⎛-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= 〔3〕广义虎克定律: [])(1 321 1σσνσε+-= E [] )(1z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-=

材料力学知识点总结

= N ⎝ ⎭ 2 [ σ ⎪ t 材料力学总结 一、根本变形 轴向拉压 扭 转 弯 曲 外 外力合力作用线沿杆轴 力偶作用在垂直于轴 外力作用线垂直杆轴,或外力偶作用 力 线 的平面内 在杆轴平面 剪力:Q 内 规定: 轴力:N 规定:左上右下为“+” 扭转:T 弯矩:M 规定: 规定:左顺右逆为“+” 力 拉为“+” 矩矢离开截面为“+” 微分关系: 压为“-” 反之为“-” dQ = q ; dM = Q dx dx 几 变形现象: 何 平面假设: 应 方 应变规律: 面 ε = d ∆l = 常数 变形现象: 平面假设: 应变规律: d φ 弯曲正应力 变形现象: 平面假设: 应变规律: 弯曲剪应力 dx γ ρ = ρ dx 应 力 = ρϕ σ = My ε = y ρ τ = QS * z 力 N 公 σ = A 式 τ = T ρ I P τ = T max W t I Z σ = M max W τ max I b z = QS I max b Z z 应 σ 力 τ 分布 应 等直杆 用 外力合力作用 条 线沿杆轴线 件 圆轴 应力在比例极限内 平面弯曲 应力在比例极限内 应力-应变 关系 σ = E ε 〔单向应力状态〕 τ = G γ 〔纯剪应力状态〕 ⎛ ⎫ ≤ [σ ] 弯曲正应力 强 max 度 ⎝ A ⎭ σ max ⎛ T ⎫ [ ] 1. [σ σ ]= [σ ] t [σ ] c 弯曲剪应力 [σ ]= u τ = ⎪ ≤ τ ≤ 条 n max W ⎪ t max max . σ ]≠ [σ ] τ = Q max S max ≤ [τ ] 件 σ ≤ [σ ] c max I b z 塑材: σ = σ u s σ t max ≤ [σ t ] 脆材: σ = σ u b cmac c

(完整版)材料力学知识点总结

一、基本变形 材料力学总结 变形现象: 平面假设: 应变规律: = d ∆l = 常数 dx 变形现象: 平面假设: 应变规律: = d = dx 变形现象: 平面假设: 应变规律: = y = N = T = T = My I Z = M max W Z = QS * z I z b = QS max max I b z max W = E (单向应力状态) = G (纯剪应力状态) = ⎛ N ⎫ ≤ [] max A ⎪ ⎝ ⎭max []= u n 塑材:u = s 脆材: u = b max = ⎛ T ⎫ ≤ [] ⎪ ⎝ W t ⎭max 弯曲正应力 1. [t ]= [c ] max ≤ [ ] 2. [t ]≠ [c ] t max ≤ [t ] cmac ≤ [c ] 弯曲剪应力 = Q max S max ≤ [] max I b z

轴向拉压扭转弯曲 刚度条 =T ⋅180 ≤[] max GI P 注意:单位统一 y max ≤[y] max ≤[] 件 变形 d∆l = N ; ∆L =NL dx EA EA EA—抗拉压刚度 =d=T dx GI Z = TL GI P GI p—抗扭刚度 1 = M (x) (x) EI y '' = M (x) EI EI—抗弯刚度 应用 条件 应力在比例极限 圆截面杆, 应力在比例极限 小变形, 应力在比例极限矩 形 A=bh bh 3bh 2 I Z = 12 ;W Z = 6实 心 圆 A= d 2 4 d4d3 I P = 32 ;W t = 16 d4d3 I Z = 64 ;W Z = 32 空 心 圆 D 2 A =(1-2) 4 d44 I P = 32 (1 -) d 3 W =(1 -4) t 16 d 4 I =(1-4) Z 64 d34 W Z = 32 (1-) 其(1)' 剪切 (1)强度条件: = Q ≤[]A—剪切面积 A (2)挤压条件: =P bs ≤[] bs A bs J A j—挤压面积 矩形:= 3Q max 2 A 圆形:= 4Q max 3A 环形:= 2 Q max A max 均发生在中性轴上它 公(2)G E 式2(1 ) 二、还有: (1)外力偶矩:m = 9549 N (N •m) n (2)薄壁圆管扭转剪应力:=T N—千瓦;n—转/分 2r 2t (3)矩形截面杆扭转剪应力: max = T b2h ;= T G b3h

材料力学知识点总结

一、基本变形 轴向拉压 材料力学总结 扭 转 弯 曲 外 外力合力作用线沿杆轴 力 线 内 轴力:N 规定: 拉为“ +” 力 压为“ -” 力偶作用在垂直于 轴的平面内 扭转: T 规定: 矩矢离开截面为“ +” 反之为“ -” 外力作用线垂直杆轴, 或外力偶作用 在杆轴平面 剪力: Q 规定:左上右下为“ +” 弯矩: M 规定:左顺右逆为“ +” 微分关系: dQ q ; dM Q dx dx 几 变形现象: 何 平面假设: 应 方 应变规律: 面 d l 常数 dx 力 应 力 N 公 A 式 应 力 分 布 应 等直杆 变形现象: 平面假设: 应变规律: d dx T T I P max W t 弯曲正应力 变形现象: 平面假设: 应变规律: y My I Z M max W Z 弯曲剪应力 QS * z I z b QS max max I z b 用 外力合力作用 条 线沿杆轴线 件 应力-应变 E 关系 (单向应力状态) N 强 max A max 度 u 条 n 件 塑材: u s 脆材: u b 圆轴 平面弯曲 应力在比例极限内 应力在比例极限内 G (纯剪应力状态) 弯曲正应力 T 1. t c max 弯曲剪应力 max W t max 2. t c Q max S max max t max t I z b cmac c

轴向拉压扭转弯曲 刚 度 条 件 应用 条件变 矩 形 实形心 圆 空 心 圆 T 180 0 max GI P 注意:单位统一 d l N ;NL d T L dx GI Z dx EA EA TL GI P EA —抗拉压刚度GI p—抗扭刚度 圆截面杆, 应力在比例极限 应力在比例极限 A=bh A=d2d4d3 I P;W t 3216 4 D2 I P d 4(1 4 ) A2) 32 4 (1 d 3 4 ) W t(1 16 剪切 y max y max 1M ( x) ( x)EI y ''M (x) EI EI—抗弯刚度 小变形, 应力在比例极限 bh 3bh2 I Z; W Z 126 d 4 d 3 I Z; W Z 6432 I Z d 4 (14) 64 W Z d 3(1 4 ) 32 其(1)'(1)强度条件: Q 矩形:max3Q 2A 它公式 A —剪切面积 E A (2)G()挤压条件: 2(1 2 )P bs bs bs A J A j—挤压面积 4Q 圆形:max 3A Q 环形:max2 A max 均发生在中性轴上 二、还有: (1)外力偶矩:m 9549N (N ? m)N—千瓦; n—转 /分n (2)薄壁圆管扭转剪应力:T 2 r2 t (3)矩形截面杆扭转剪应力:max T;T 23 h b h G b

(完整版)材料力学重点总结

(完整版)材料力学重点总结 材料力学阶段总结 一. 材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾. 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3。 材力与理力的关系, 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、和符号规定。 正应力⎩ ⎨⎧拉应力压应力 应变:反映杆件的变形程度⎩ ⎨⎧角应变线应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: ⎪⎩⎪⎨ ⎧ ==∆=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变是线性关系:材料比例极限以内。 5。 材料的力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶 段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,) (V E G +=12

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数. 塑性材料 []s s n σσ= s σσ =0 脆性材料 []b b n σσ= b σσ =0 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8。材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。 9 小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10 材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二。 杆件四种基本变形的公式及应用

材料力学重点总结要点

材料力学重点总结要点 1、材料力学的任务:解决安全可靠与经济适用的矛盾。研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。 2、材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。均匀性:构件内各处的力学性能相同。各向同性:物体内各方向力学性能相同。 3、材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、和符号规定。正应力应变:反映杆件的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、物理关系、本构关系虎克定律;剪切虎克定律: 适用条件:应力~应变是线性关系:材料比例极限以内。 5、材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集

中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感 6、安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使构件安全性下降;过大,浪费材料。许用应力:极限应力除以安全系数。 塑性材料脆性材料 7、材料力学的研究方法1) 所用材料的力学性能:通过实验获得。2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。1) 拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。2) 圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。3) 纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。9 小变形和叠加原理小变形:① 梁绕曲线的近似微分方程② 杆件变形前的平衡③ 切线位移近似表示曲线④ 力的独立作用原理叠加原理:

材料力学重点

材料力学重点 (1)构件:组成结构物和机械的单个组成部分 (2)刚度:在荷载的作用下,构件所产生变形不超过工程允许的范围,有足够的刚度(3)强度:在荷载作用下,构件不至于破坏,有足够的强度 (4)稳定性:在荷载作用下,构件在其原有形态下的平衡应保持为稳定的平衡,就满足稳定性要求 (5)连续性假设:各质点不存在任何空隙,连续密实 (6)均匀性假设:材料均匀各部分性质相同,物理性质不随坐标位置改变而改变 (7)各向同性假设:物体弹性常数不随坐标方向改变而改变 (8)弹性变形:物体在卸除荷载后能完全消失的那一部分变形 (9)塑性性变形:物体在卸除荷载后不能消失残留下来的那部分变形 (10)内力:物体内部相邻部分之间相互作用的内力的合成 (11)轴向拉压杆横截面上的内力 (12)应力:横截面上内力的分布集度 (13)线应变:每单位长度的伸长 (14)切应力:总应力p切向方向的应力 (15)弹性阶段:试样变形完全是弹性的,全部卸除荷载后,试样将恢复原长 (16)屈服阶段:应力几乎不变,应变增加 (17)强化阶段:试样经过屈服阶段后,使其继续伸长,材料在塑性变形过程中不断发生强化 (18)局部变形阶段:材料继续伸长,截面面积急剧下降,荷载读数反而降低 (19)断后伸长率:材料经过拉伸后残余伸长(L1-L)与原长L之比 (20)断面收缩率:断裂后试样横截面的面积最大缩减量A-A1与原始面积之比 (21)应力集中:杆件截面骤然变化而引起的局部应力骤增 (22)扭转:等直杆承受作用力在垂直于杆轴线的平面内的力偶时发生的扭转变形 (23)切应力互等定理:两相互垂直平面上的切应力T与T’数值相等,且均指向(背离)两平面的交线 (24)弯曲:等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶时,杆的轴线将变成曲线 (25)纯弯曲:若在某段内各截面上的剪力为0,弯矩为常量 (26)超静定问题:不能单凭静力学平衡方程求解的问题

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版) 1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。 2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。 3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。构 4.件应当满足以下要求:强度要求、刚度要求、稳定性要求 5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。任何固体在外力作用下都会发生形状和尺寸的改变——即变形。因此,这些材料统称为变形固体。 第二章:内力、截面法和应力概念 1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。按照外力作用方式的不同,外力又可分为分布力和集中力。 2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。 已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。 首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。由平衡条件就可以确定内力。例如在左段杆上由平衡方程

N-F=0 可得N=F 3.综上所述,截面法可归纳为以下三个步骤: 1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。 2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。 3、平衡求力对留下部分建立平衡方程,求解内力。 4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。例如,有同样材料而截面面积大小不等的两根杆件,若它们所受的外力相同,那么横截面上的内力也是相同的。但是,从经验知道,当外力增大时,面积小的杆件一定先破坏。这是因为截面面积小,其上内力分布的密集程度大的缘故。 如图所示,在杆件横截面m-m上围绕一点K取微小面积,并设上分布内力的合力为。的大小和方向与所取K点的位置和面积有关。 将与的比值称为微小面积上的平均应力,用表示,即: 称为截面m-m上一点K处的应力。应力的方向与内力N的极限方向相同,通常,它既不与截面垂直也不与截面相切。将应力分解为垂直于截面的分量σ和相切于截面的分量τ,其中σ称为正应力,τ称为切应力。在国际单位制中,应力单位是帕斯卡,简称帕(Pa)。工程上常用兆帕(MPa),有时也用吉帕(GPa)。 5.杆件变形的基本形式:在机器或结构物中,构件的形状是多种多样的。如果构件的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大得多,这样的构件称为杆件。杆是工程中最基本的构件。如机器中的传动轴、螺杆、房屋中的梁和柱等均属于杆件。

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力. 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%—4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象. 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象 第一章 3.金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

相关主题
文本预览
相关文档 最新文档