红外热像仪精确测温技术_李云红
- 格式:pdf
- 大小:442.86 KB
- 文档页数:6
TiX870, TiX875, TiX880, TiX885, TiX875U, TiX885U, TiX1060, TiX1080Thermal Imagers用户手册11/2023 (Simplified Chinese)© 2023 Fluke Corporation. 保留所有权利。
技术指标如有更改,恕不另行通知。
所有产品名称均为其各自公司的商标。
有限保证和责任限制在正常使用和维护条件下,Fluke公司保证每一个产品都没有材料缺陷和制造工艺问题。
保证期为从产品发货之日起两年。
部件、产品修理和服务的保证期限为90天。
此项保证的对象仅为原始购买者或者Fluke授权代理商的最终使用客户,并且不适用于保险丝、普通电池或者Fluke认为由于意外的或不正常的工作或管理状况而错误使用、经过改动、疏忽管理、受到污染或损坏的产品。
Fluke公司保证软件能够在完全符合性能指标的条件下至少操作90 天,而且软件是正确地记录在无缺陷的媒体上。
福禄克不保证软件没有错误或工作中无中断。
Fluke授权代理商应当只将此种对新的和未使用过的产品的保证延伸到最终使用客户,但无权代表福禄克做出更高的或不同的质保条件。
只有从Fluke授权的销售渠道购买的产品或者当购买者已经支付了适当的国际价格时才能获得这种保证支持。
当从一个国家购买的产品送到另一个国家进行修理时,Fluke保留向购买者开具发票收取修理/更换零件进口费用的权利。
Fluke公司的保证责任是有限的,Fluke 公司可以选择是否将依购买价退款、免费维修或更换在保证期内退回到Fluke公司授权服务中心的有缺陷产品。
为获得保修,请与您最近的Fluke授权维修中心联系以得到返修授权信息。
然后将该产品发送到该维修中心,提供故障说明、并预付邮资和保险费(目的地交货)。
Fluke不承担运输中损坏的风险。
在保修之后,产品将被寄回给买方并提前支付运输费(目的地交货)。
如果Fluke认定产品故障是由于疏忽、误用、污染、修改、意外或不当操作或处理状况而产生,包括未在产品规定的额定值下使用引起的过压故障;或是由于机件日常使用损耗,则Fluke 会估算修理费用,在获得买方同意后再进行修理。
为什么使用红外测温仪红外测温仪已被证实是检测和诊断电子设备故障的有效工具。
可节省大量开支,用红外测温仪,你可连续诊断电子连接问题和通过查找在 DC 电池上的输出滤波器连接处的热点,以检测不间断电源( UPS )的功能状态,你可检验电池组件和功率配电盘接线端子,开关齿轮或保险丝连接,防止能源消耗;由于松的连接器和组合会产生热,红外测温仪有助于识别回路中断器的绝缘故障 . 或监视电子压缩机;日常扫描变压器的热点可探测开裂的绕组和接线端子。
使用红外测温仪的好处便捷红外测温仪可快速提供温度测量,在用热偶读取一个渗漏连接点的时间内,用红外测温仪几乎可以读取所有连接点的温度。
另外由于红外测温仪坚实 . 轻巧,且不用时易于放在皮套中。
在工厂巡视和日常检验工作时都可携带。
精确红外测温仪通常精度都是 1 度以内。
这种性能在做预防性维护时特别重要,如监视恶劣生产条件和将导致设备损坏或停机的特别事件时。
用红外测温仪,你甚至可快速探测操作温度的微小变化,在其萌芽之时就可将问题解决,减少因设备故障造成的开支和维修的范围。
安全红外测温仪能够安全地读取难以接近的或不可到达的目标温度,可以在仪器允许的范围内读取目标温度。
非接触温度测量还可在不安全的或接触测温较困难的区域进行,精确测量就象在手边测量一样容易。
红外测温仪在设备故障诊断时的使用设备故障红外诊断最核心的问题,是要求准确地获得被测设备的温度分布或故障相关部位温度值与温升值。
这个温度信息不仅是判断设备有无故障的依据,也是判断故障属性、位置、严重程度的客观依据。
因此,对被测设备故障相关部位温度的计算与合理修正,将是提高检测设备表面温度准确性的关键环节。
然而在现场进行设备红外检测时,由于检测条件和环境的影响变化,可能导致同一设备因检测条件不同,而得到不同的结果。
因此,为了提高红外检测的准确度,必须对现场检测过程中或对检测结果的分析处理中,采取相应的对策与措施或选择良好的检测条件,或对检测现场结果进行合理的修正。
带电设备红外诊断技术应用导则参照中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》《华北电网有限公司红外技术管理制度》1、从事红外检测与诊断工作的人员应具备以下素质:(1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。
(2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。
(3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定。
2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。
例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。
二、红外检测与诊断的基本要求(一)对检测设备的要求1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。
2、红外热电视应操作简单携带方便,有较好的测温精确度,测量结果的重复性好,不受测量环境中高压电磁场的干扰图像清晰,具有图像锁定、记录、输出和简单的分析功能。
3、红外热像仪应图象清晰、稳定,不受测量环境中高压电磁场的干扰,具有较强的图象分析功能,具有较高的热传感分辨率和图象分辨率,空间分辨率应满足实测距离的要求,具有较高的测量精确度和合适的测温范围。
(二)对被检测设备的要求1、被检测设备应为带电设备。
2、红外检测人员在对运行设备进行检测时,检测现场应有熟悉设备的运行人员在现场。
红外测温技术可以在很广泛的温度范围内进行测量,通常能够测量从绝对零度(-273.15摄氏度)到几千摄氏度的温度范围。
然而,不同类型的红外测温设备在测量最低温度时可能存在一些限制。
常见的红外测温设备包括红外热像仪和红外测温枪,它们使用红外辐射来测量物体的表面温度。
在一般工业和日常应用中,红外测温通常可以测量从几十摄氏度到几千摄氏度的范围。
然而,一些低温应用可能需要更高灵敏度和特殊的设备,以测量接近绝对零度的温度。
一些特殊的红外测温设备,如低温红外热像仪或用于科研用途的专业设备,可能可以测量较低的温度,甚至接近绝对零度。
这些设备通常使用高灵敏度的探测器和适当的校准来实现精确的低温测量。
需要根据具体的应用需求和测量范围来选择合适的红外测温设备。
如果您需要在极低温度下进行测温,可能需要咨询专业厂家或科研机构,以获取更详细的信息和建议。
红外测温在继电保护状态检修中的应用摘要红外测温技术在对于监测继电保护装置及二次回路的热缺陷非常有效,能及时发现运行中的设备及二次回路的事故隐患和故障先兆,能及时采取相应的处理措施,提高继电保护运行的安全性。
关键词红外测温;继电保护;状态检修中图分类号tm77 文献标识码a 文章编号 1674-6708(2011)57-0132-021 红外测温技术的特点所谓红外测温是指采用红外热像仪或红外热电视对所有应测部位进行全面扫描,找出热态异常部位,然后对异常部位和重点检测设备进行准确测温。
它是通过吸收物体自身分子运动对外产生的红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。
具有快捷、方便、灵敏度高、非接触性远距离测温、无需使被测设备停运或解体等优点。
2 红外测温在继电保护状态检修中的应用红外测温应用于具有电流、电压致热效应或其他致热效应的二次设备及相关回路,包括保护装置、自动化(测控)装置、安全自动装置、故障录波器、端子箱、保护屏等二次设备本体及其相互之间连接的二次回路和一次设备至端子箱、保护屏的二次回路,站用电交直流回路。
二次设备包括装置的面板、背板和内部;二次回路包括电缆的连接处,比如开关端子箱端子排、保护屏端子排等。
具体项目见表1。
输变电设备应用红外检测及诊断技术及时有效地发现运行中的电力设备的事故隐患和故障先兆,及时采取相应合理的可靠措施,为设备检修提供了依据,使缺陷处理更具针对性。
同时也为开展设备状态维修创造了条件,有效地预防了一些事故的发生,大大提高了设备运行的可靠性。
输变电设备和继电保护设备因设备制造元件、运行环境不同,使红外技术在两者的应用中各有不同。
1)输变电设备主要运行在户外或较大的室内空间,继保设备主要集中在室内,运行环境舒适很多。
如环境温、湿度大都在允许范围内,设备积尘、污染程度要远远低于输变电设备。
这对于红外热成像的测试更有利,且对于红外热成像的背景温度修正要求也不同;2)输变电设备属于电力系统中高压设备,其安全距离有严格要求,这就造成输变电设备属于远距离测试,而保护设备和二次回路则是近距离测试,特别是保护装置,因测试位置有限,距离小的不到30cm,长的不过数米,这就造成输变电设备红外测试仪器和继电保护红外测试仪器的技术参数要求不同,前者适合配置长焦、后者适合配置广角镜头;3)输变电设备发现较多缺陷的是设备的接头部位。
热成像热成像历史“红外线”一词源于“past red”,是超出红色之外的意思,表示该波长在电磁辐射频谱中所处的位置。
“thermography”一词是采用同根词生成的,意思是“温度图像”。
热成像的起源归功于德国天文学家Sir William Herschel,他在1800 年使用太阳光做了一些实验。
Herschel 让太阳光穿过一个棱镜并在各种颜色处放置温度计,利用灵敏的水银温度计测量每种颜色的温度,结果发现了红外辐射。
Herschel 发现,当越过红色光线进入他称为“暗红热”区域时,温度便会升高。
“暗红热”即是现在人们所说的红外热能,处于被称为电磁辐射的电磁波频谱区域。
二十年后,德国物理学家Thomas Seebeck 发现了温差电效应。
在该发现的基础上,意大利物理学家Leopoldo Nobili 于1829 年发明了热量倍增器(即早期版本的热电偶)。
这种简单的接触式设备的工作原理是两个异种金属之间的电压差会随着温度的变化而变化。
过了不久,Nobili 的合作伙伴Macedonio Melloni 把热量倍增器改进为热电堆(以串联方式安装热量倍增器)并将热辐射集于热电堆上,这样,他可以检测到9.1 米(33 英尺)远处的人类体热。
1880 年,美国天文学家Samuel Langley 使用辐射热检测仪探测到304 米(1000 英尺)以外的牛的体热。
辐射热检测仪测量的不是电压差异,而是与温度变化有关的电阻变化。
Sir William Herschel 的儿子Sir John Herschel 于1840 年使用名为“蒸发成像仪”的设备制作出第一幅红外图像。
热图像是薄油膜的蒸发量差异形成的,可以借助油膜上反射出的光线进行查看。
热像仪是一种无需与设备直接接触便可检测出红外波长频谱中的热图案的设备。
早期型号的热像仪称为“光导探测器”。
从1916 年至1918 年,美国发明家Theodore Case 利用光导探测器做实验,通过与光子(而不是热能)直接交互作用产生信号,最终发明了速度更快、更灵敏的光导探测器。
红外线测温管理为了加强我厂红外检测与诊断工作,进一步规范电网红外检测工作,保障红外测温设备能够有效的发挥作用,充分发挥红外检测技术对电网安全运行的作用,参照中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》及《华北电网有限公司红外技术管理制度》,并结合我厂使用红外检测设备的实际情况,特制订本制度。
本制度适用于我厂带电设备红外检测、诊断和相应管理工作。
一、总则(一)本制度规定了电气设备红外检测工作的管理要求,提出了诊断技术和过热缺陷的判断方法。
我厂生产技术部全面负责红外检测的技术管理工作。
(二)各生产单位应明确一名生产领导分管红外检测工作。
必须设立红外检测的专(兼)责人,负责指导和协调本单位的红外监督工作.(四)各生产单位应负责对红外检测设备的使用、缺陷的汇总、总结及上报工作。
(五)各生产单位班组(变电站)的主要任务是负责本单位带电设备红外检测与诊断工作,负责红外检测诊断技术的应用和红外检测设备管理。
(六)人员基本要求1、从事红外检测与诊断工作的人员应具备以下素质:(1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。
(2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。
(3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定.2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。
例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等.二、红外检测与诊断的基本要求(一)对检测设备的要求1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。
专业红外热像仪FLIRT6xx 系列释放FLIR 红外热像仪的终极威力为确保设备可靠运行,您需要可靠的故障排除工具,以帮助您快速查找并报告问题。
这正是FLIR 红外热像仪不可或缺的原因所在。
它们能够让您及早检测到因电阻、机械磨损等问题引起的隐形热源,从而助您实现安全操作,避免代价高昂的停机。
T6xx 系列热像仪能够让获取并共享检测结果变得简单,而没有任何其它的热像仪产品系列可与之相媲美。
极致完美最佳人体工程学设计• 将光学块镜头顺时针或逆时针旋转120°,从而更 易于瞄准和观察。
• 自动定向功能可将屏幕温度数据切换至竖立或横立的图像中。
• 最快速的自动调焦和手动控制,实现精密成像。
• T640和T660具有连续自动调焦功能,自动呈现 对焦目标的高清图像。
提高工作效率• 触摸屏工具与智能手机中所用的一样直观• 简单按钮,即便手带手套也可访问界面• GPS 和内置指南针指示方向和地理位置• 照亮较暗区域的LED 和标记位置的激光指示器• 轻松将语音、文本和草图注释存储至辐射图像中极限分辨率与灵敏度• 高达640 x 480原始分辨率• UltraMax TM (超级放大)可提供高达120万像素的分辨率 — 提高至4倍• MSX ®增强实时视频、存储图像和UltraMax (超级放大)图像• 领先同类产品的灵敏度,低至<0.02 ˚C , 提供卓越的图像质量• 温度校正范围最高可达2,000 ˚C加快通信速度• 通过FLIR Tools Mobile 应用程序,可将T 系列热像仪连接至智能手机和平板电脑,从而能在现场快速分析并分享图像,同时可实现视频流传输和远程控制,以获得更安全的监控。
• MeterLink ®将FLIR T&M 数据传送至热像仪,并快速整合入图像和报告中。
• 适用于PC 和Mac 的FLIR Tools 软件提供额外的文档编制能力和热像仪固件升级。
浅谈红外测温在变电运行中的应用摘要:电力系统是国家经济发展的命脉,而电力系统最重要的问题就是安全稳定问题,运行人员的职责之一就是及时发现运行中的安全隐患,积极配合相关部门消除缺陷。
随着电力系统的发展,红外测温技术在变电运行中的应用越来越广泛,尤其是在500kv变电站,一些高压设备隐蔽或发展中的缺陷无法直接发现,但可通过红外测温技术及时发现、准确的处理。
关键词:红外测温电网安全电压致热变电站内的开关、刀闸、to、jo、变压器、避雷器、套管和耦合电容器等各种设备,因为材质、工艺、安装、受潮、放电、老化等原因;存在着各种故障隐患,因此设备的状态检修日益为人们所重视。
红外检测技术以不可比拟的非接触式优点,在电力系统安全生产中发挥着越来越重要的作用,给状态检修提供了重要的依据。
1、红外测温的基本原理由于红外测温仪转换变电设备的辐射功率信号能反映变电设备温度及温度变化,从而得知变电设备的状态。
电力设备的每一种缺陷模式都有相应的表现,由于受环境温度变化、污秽、有害气体腐蚀、风雨雪物等自然力作用,再加上人为设备施工不当造成的设备老化、损坏和接触不良,这必将导致设备的介质损耗、漏电流和接触电阻的增大,从而引起相应的局部发热而使温度升高。
红外测温可得到与景物表面热分布相应的实时的图像。
检测到设备的特定部位的温度,根据温度信号及其变化,通过分析得到设备的缺陷类型,在掌握了设备缺陷类型的基础上,再由人或“专家分析系统”去处理,给出缺陷原因和解释。
2、红外测温的诊断方法2.1表面温度判断法主要根据测得的设备表面温度值,对照2$gb763的有关规定,可以确定一部分电流致热设备的缺陷,对于温度(或温升)超高标准的不能正常工作的设备,可根据设备温度超标的程度,设备负荷的大小,设备的重要性及设备承受机械应力的大小来确定设备缺陷的性质,对在小负荷下温升超标的设备和承受机械应力较大的设备缺陷要从严定性。
2.2温差判断法电流致热型设备若发现设备的热态异常,应按规定进行准确测量并计算相对温差值,判断设备的缺陷的程度,对于负荷小、温升小,相对温差大的设备,如果有条件改变负荷率,可增大负荷电流后进行复测,以确定设备的缺陷性质。
FLIR T650sc / T630sc便携式热像仪T650sc / T630sc 系列红外热像仪价格经济,能提供热图像和可见光图像,分辨率可精确到点温,测温精度十分可靠。
内置的数码相机、语音注释、激光目标定位仪、GPS 等功能深受技术专家、工程师和科研人员的青睐。
可旋转的红外组件非常灵活,让您能快速、舒适地开展实验。
卓越的图像质量和热灵敏度T650sc/T630sc 热像仪均配备了非制冷氧化钒(VOx )红外探测器,生成的热图像像素高达 640 x480,图像清晰,细节丰富,成像可靠,精确度高,直观易辨。
触摸屏优质的LCD 触摸屏为您呈现清晰鲜明的图像,将交互性和用户舒适度上升到全新高度。
背光按钮结合操纵杆,使用非常简便。
辐射录制T650sc/T630sc 热像仪均可通过USB 向电脑或通过Wi-Fi 向移动设备传输全辐射视频流。
同时,还能生成可见光和红外非辐射MPEG 视频文件。
T650sc 可以实时录制全幅射红外视频流,直接存储在热像仪的SD 卡中。
该视频流包含所有的温度信息,可在热像仪或个人电脑上回放时进行后续温度分析。
丰富的功能设置T650sc/T630sc 热像仪都具有多波段动态成像(MSX )、超级放大(UltraMax )、自动图像旋转、草图注释和自动对焦等功能。
这两款热像仪还配有自动热/冷点&声音/灯光报警。
多达5个温度测量点的屏幕发射率表与温差(ΔT )计算功能为您快速获取并轻松比较温度数据提供了便利。
软件FLIR T650sc/T630sc 热像仪可与FLIR ResearchIR Max 软件无缝对接,为用户提供了直观的浏览、记录和高级处理功能。
MATHWORKS® MATLAB 软件可直接将数据导入MathWorks ® Matlab 软件进行高级图像分析和增强。
主要功能• 热像仪和可见光相机• VOX 非制冷红外探测器:640 X 480 像素• 测温范围最高可达+2,000 °C • 精确度±1 °C• 多波段动态成像(MSX )• 超级放大(ULTRAMAX )•配套软件使用MSX 功能的热图像,MSX 能在热图像上呈现更多细节。
红外探测技术红外检测技术基本原理红外技术的原理是基于自然界中一切温度高于绝对零度的物体,每时每刻都辐射出红外线,同时,这种红外线辐射都载有物体的特征信息,这就为利用红外技术探测和判别各种被测目标的温度高低与热分布场提供了客观的基础。
红外线是波长在0.76~1000μm 之间的一种电磁波,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射在真空中的传播速度C =299792458m/s10103⨯≈cm/s红外辐射的波长ωλc=式中:C:速度λ:波长ω:频率红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
其中黑体频谱辐射能流密度对红外辐射波长的关系,根据普郎克定律:e C p T T c λλλ2151⨯= (瓦·厘米2-·微米1-)式中: p Tλ—波长λ,热力学温度为T 时,黑体的红外辐射功率。
C 1—光速度(10103⨯cm/s )C 2—第一辐射常数=4107415.3⨯(瓦厘米2-微米2)λ—波长(微米),T 热力学温度(K )温度辐射的能量密度峰值对应的波长,随物体温度的升高波长变短。
根据维思定律:T=2898λ(μm ) 式中:λ—峰值波长,单位:μmT —物体的绝对温度单位K物体的红外辐射功率与物体表面绝对温度的四次方成正比,与物体表面的发射率成正比。
物体红外辐射的总功率对温度的关系,根据斯蒂芬—波尔兹曼定律:P=4Tε(W/2m)R⋅式中:T—物体的绝对温度P—物体红外辐射功率(辐射能量)ε—物长表面红外发射率(辐射系数) R—斯蒂芬—波尔兹曼常数(23⨯J/K).1-10380662物体表面绝对温度的变化,使的物体发热功率的变化更快。
红外热像仪用于肿瘤治疗研究红外热像仪从军工行业到现如今广泛应用于民用,经过了漫长的发展,现在逐渐应用到医疗研究中,为人类的医学进步作出巨大贡献。
人体正常的温度分布具有一定的稳定性和对称性,如果人的身体某处体温发生了变化,就意味着该处存在病灶,因为病灶处由于血流和代谢的改变会引起温度在人体内的分布格局,导致温度升高或温度降低,而红外热像仪可显示人体温度分布的变化及变化部位,医生可进行临床诊断。
医用红外热成像技术的临床应用十分广泛,不仅可用于早期筛探查,而且还可用于追踪观察、疾病诊断、疗效评定及医学研究等。
红外热像仪从军工行业到现如今广泛应用于民用,经过了漫长的发展,现在逐渐应用到医疗研究中,为人类的医学进步作出巨大贡献。
人体正常的温度分布具有一定的稳定性和对称性,如果人的身体某处体温发生了变化,就意味着该处存在病灶,因为病灶处由于血流和代谢的改变会引起温度在人体内的分布格局,导致温度升高或温度降低,而红外热像仪可显示人体温度分布的变化及变化部位,医生可进行临床诊断。
医用红外热成像技术的临床应用十分广泛,不仅可用于早期筛探查,而且还可用于追踪观察、疾病诊断、疗效评定及医学研究等。
肿瘤光热治疗法是利用具有较高光热转换效率的材料,将其注射入人体内部,利用靶向性识别技术聚集在肿瘤组织附近,并在外部光源的照射下将光能转化为热能来杀死癌细胞的一种治疗方法。
光热治疗的效果与纳米颗粒在肿瘤部位的累计数量、肿瘤位置、光照参数及光照模式有关,温度是最重要的物理评估量之一。
传统的接触式测温,贴在实验鼠肿瘤部位会阻挡激光能量,伸入试剂溶液可能会破坏试剂的性状,普通的红外测温仪只能检测平均温度,无法实时监测肿瘤治疗过程中病灶的实时温度变化,而红外热像仪采用非接触式测温,可精确测量每个点的温度,还能24小时不间断监控。
因此,红外热像仪是肿瘤治疗监测的得力助手。
本公司的X系统热像仪机芯,专注人体及动物体温检测,测温精度±2℃/±2%,可提升至±0.4℃,人体温度及动物体表温度检测提供了强有力的帮助,非接触式无损检测,隐蔽检测,不会打扰到被测目标,不容易引起被测者的恐慌。