当前位置:文档之家› 钢桥一般设计流程

钢桥一般设计流程

钢桥一般设计流程
钢桥一般设计流程

钢桥一般设计流程

区别于混凝土梁部一般设计流程,特编写钢桥设计流程,为初次设计钢梁提供一点参考与设计思路。

一.钢桥设计最终目的:

1.确定用最少的钢材但受力最优的杆件截面

2.确定传力简洁顺畅的连接方式

二.在确定钢桥方案后,一般钢桥包括的计算:

钢桥的设计是一个迭代循环的过程,但是截面的选取顺序还是以主桁优先。

1.主桁截面的粗选(初估联结系与桥面后)

2.主桁截面的检算

3.联结系的检算

4.桥面的检算

5.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算

6. 连接计算(各部分杆件之间的连接方式以及节点板、拼接板、焊缝与螺栓计算)

7. 预拱度计算及实现方式

8. 伸缩缝的计算设计

三.主桁的粗选

3.1 选取的原则:按照钢材的容许应力为屈服应力的1/1.7确定主桁需要的截面面积,从而粗选主桁截面。

以Q370为例

对于拉杆:拉杆受强度、疲劳控制,应力为370/1.7=217.6Mpa,拉杆应力计算采用扣除螺栓消弱后的净面积,并考虑杆件由于刚接的次应力,所以拉杆杆件需要面积采用:杆件内力/150

对于压杆:压杆受强度、稳定控制,检算稳定时考虑容许应力折减,所以压杆一般由稳定控制。检算压杆,采用毛面积,粗选截面时压杆杆件需要面积采用:杆件内力/160。杆件越长截面越小,压杆容许应力折减越多,所以对于长细杆,可以采用压杆杆件需要面积:杆件内力/140。

粗选主桁后,控制大的指标,读取主桁的支反力、刚度条件是否符合规范。

3.2 内力控制组合

主力:恒载+活载+支座沉降

3.3 计算模型

平面一次成桥模型

建模方式:a、cad中导入主桁杆件

b、施加荷载,注意二恒的取值,平面一次成桥模型的二恒:(整体二恒+初估联结系+初估桥面)/主桁片数

3.4 截面迭代

用编写好的excel读取midas模型中的主力最大最小轴力迭代截面,迭代次数一般大于3次。(参考286截面选取excel)

按照粗选后的截面,先总体分析主桁的整体受力特性,为下一步主桁截面检算及截面优化修改打下基础。

四.主桁截面的检算

进一步细化主桁截面:

1. 综合考虑主力下主桁杆件的轴力、弯矩组合应力

2. 压杆的整体稳定与局部稳定

3. 拉压杆的疲劳

4.1内力控制组合

主力:恒载+活载+支座沉降,读取主力下最大最小内力时相应的其他内力,每个单元共6组内力值。

4.2 平面一次成桥模型

4.3 截面优化

分析杆件受力形式,对于检算没通过的杆件,分析没通过的原因,按照检算的结果对应修改优化截面。(参考286主桁截面检算excel)

对于修改后的截面,自己整体分析截面是否与钢桥主桁内力相吻合。

五.联结系的检算

联结系包括纵横向联结系:平联与横联。作用:与主桁一起是桥跨形成稳定的空间结构,承受纵横向荷载,联结系受横向风力影响较大。

4.1平联

4.1.1内力控制组合

恒载+活载+风力(弯梁需要考虑摇摆力与离心力)

4.1.2 计算模型

空间模型,空间模型二恒的加载不同于平面一次成桥,空间中的二恒是钢桥真正的二恒。

4.1.3 平联检算

读取midas平联控制组合下的内力,用编写好的excel检算平联。(参考286联结系截面检算excel)

4.2横联

4.1.1内力控制组合

主力+温度+风力(弯梁需要考虑摇摆力与离心力)

4.1.2 计算模型

4.1.3 横联检算

读取midas横联联控制组合下的内力,用编写好的excel检算横联。(参考286联结系截面检算excel)

检算前先了解联结系在恒载以及风力作用下的受力特性,为联结系截面的优化提供修改依据。

六.桥面的检算

对于桥面计算,不同的桥面有不同的计算方式,但是桥面计算的原理相当,应该从理解桥面计算的目的-----计算途径着手。

以286钢桁拱桥面计算为例阐述桥面计算的一般流程。

6.1 桥面布臵与杆件组成

桥面杆件组成:

1.纵向杆件:纵梁、u肋

2.横向杆件:横梁、横肋、横梁端头

3.斜向杆件:k撑

与传统的桥面相比较,桥面板与主桁下弦不直接连接,桥面板焊接在两横向中心距为9m纵梁的上,一个节间长度11m范围内,在两道横梁支点上伸出4个横梁端头,将桥面与主桁相连接,每个横梁端头左右两边各设臵一个斜撑,连接主桁节点与横肋与纵梁的交点。

6.2 桥面分析思路

a.确定一组较优桥面组成杆件截面尺寸的依据:

1. 连接方便

2. 各桥面组成杆件受力均衡,传力清晰。

b.桥面分析目的:

1. 活载、二恒等竖向力均作用在桥面上,u肋、桥面板、纵梁、横肋、横梁、k撑、横联端头将竖向力传至主桁节点,再通过吊杆、腹杆传至拱肋。桥面分析明确竖向力在桥面上的传力途径,分析桥面各个杆件的受力特性,认识各个杆件的作用,并指导桥面截面尺寸调整。

2. 平面模型没有建立桥面,只能分析主桁受力,故桥面计算在空间模型中完成。c.桥面分析途径

1. 桥面计算内力控制组合:恒载+冲击系数X活载。

2. 活载采用静活载模拟,首先按照受力特性,计算桥面各杆件的冲击系数。

3. 明确桥面各杆件的控制单元,即明确桥面各杆件静活载加载的纵向位臵,通过寻找各杆件在恒载下受力最大的单元完成。

4.明确各杆件受控制的活载类型,车道加载在空间模型的虚梁单元上,建立两种车辆,标载活载与特中活载,分别查看两种车辆荷载下桥面杆件控制单元的内力,明确控制的活载类型。

5. 静活载加载长度的确定:通过建立虚梁单元,车道加载在虚梁单元上,查看midas 中影响线追踪器,确定桥面杆件控制单元的静活载加载长度。

6.3 桥面各个组成部分的受力特性

由于桥面采用焊接与栓接形式,整体表现为纵横梁整体受力形式,空间分析中采用梁格模拟。

本桥采用全桥空间梁格模型进行计算,即通过有效顶板宽度的计算方法,将钢桥面系离散成横梁、横肋、纵梁、纵肋等几种梁单元,将离散后的钢桥面系带入全桥,参与全桥的整

体计算,得出离散后的各自受力。该方法体现出了各位臵主桁变形及支承刚度的影响,比较接近实际情况。

6.3.1 纵向杆件:纵梁、u肋的受力特性

纵梁、u肋通过桥面板、横梁、横肋、横梁端头、k撑与主桁节点相连,纵梁、u肋轴向表现为整体受拉压,即参与主桁下弦整体受力。

u肋整体表现为平面梁受力特性,纵梁由于k撑影响表现为空间梁受力特性。

轴力:纵梁与u肋参与主桁轴向受力,即第一体系内力,其轴力方向与主桁下弦杆基本一致,边上几个节间受压力,其余节间均受拉力,且越靠近跨中拉力越大,在跨中处横肋间纵梁轴力较横肋与横梁间纵梁轴力大。

面内弯矩:u肋体现为跨度为2.75m的连续梁弯矩特性,纵梁体现为跨度为11m的两端支点负弯矩跨中正弯矩的连续梁弯矩特性,最大正弯矩位于跨中附近,最大负弯矩位于中支点附近,面内弯矩即第二体系内力。

面外弯矩:u肋面内弯矩不大,可以忽略;纵梁由于受到k撑和横梁端头轴力作用,有一部分面外弯矩,应考虑。

6.3.2. 斜向杆件:k撑受力特性

为减小横向杆件的横向变形,分担横联端头的竖向传力,设立斜向k撑。

K撑整体表现为空间梁受力特性,主要受力有轴力、面内弯矩与面外弯矩。

轴力:在跨中附近处,左右k撑均轴向受拉,大小相等;在中支点附近处,左k撑轴向受压,右k撑轴向受拉;

面内弯矩:与主桁相连的k撑端部负弯矩,与纵梁相连的受正弯矩;且在跨中附近,正弯矩出现最大值,在中支点附近,负弯矩出现最大值;

面外弯矩:在跨中附近,与主桁相连的k撑端部负弯矩,与纵梁相连的受正弯矩;而在中支点附近,左k撑所受面外弯矩较小,与主桁相连的k撑端部受面外正弯矩,与纵梁相连的受负弯矩。

6.3.3. 横向杆件:横梁、横肋

横梁、横肋加大桥面的扭转刚度,加强桥面结构的恒载下横向联系,保证结构整体受力。

横梁与横肋整体表现为空间梁受力特性,主要受力有面内剪力、面外剪力、面内弯矩与面外弯矩。

轴力:横梁、横肋的轴力较小,可忽略不计;

面内剪力:横梁与横肋的面内剪力沿杆轴向呈斜直线,杆端剪力最大,杆中剪力几乎为0;在中支点附近杆端的剪力出现最大值;

面外剪力:横梁与横肋的面外剪力沿杆轴向呈斜直线,杆端剪力最大,杆中剪力几乎为0,在中支点附近杆端剪力出现最大值;

面内弯矩:横梁的面内弯矩由于横梁端头的固接作用产生的弯矩与横梁本身具有简支梁特性的弯矩叠加而成,杆端与杆中均为正弯矩,且杆中弯矩最大;与K撑相连的横肋面内弯矩与横梁的相似,未与K撑相连的横肋的面内弯矩呈抛物线型,杆端几乎为0,杆中为最大;

面外弯矩:横梁的面外弯矩基本呈杆端为负,中间为正的抛物线型,越靠近中支点其值越大,越靠近跨中值越小;中跨部分横肋面外弯矩较小,中支点处横肋面外弯矩最大。横梁及横肋的面外弯矩远小于面内弯矩。

6.3.4 横向杆件:横梁端头

横梁端头将桥面上大部分竖向荷载传递到主桁节点,横梁端头整体表现为空间梁受力特性,主要受力有面内剪力、面外剪力、面内弯矩与面外弯矩。

轴力:横梁端头的轴力较小,可忽略不计;

面内剪力:横梁端头的面内剪力呈直线型,整根杆件几乎相等;

面外剪力:横梁端头的面外剪力与面内剪力相似,且越靠近中支点剪力越大;

面内弯矩:横梁端头的面内弯矩呈斜直线,一端为正,一端为负,中间几乎为0;跨中附近正弯矩最大,中支点附近负弯矩最大;

面外弯矩:与面内弯矩相似,且中支点附近正弯矩与负弯矩均为最大,横梁端头的面外弯矩同样小于面内弯矩。

6.4 桥面杆件检算

读取桥面杆件控制单元midas内力,用编写好的excel检算。(参考286桥面杆件检算excel)

七.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算桥面、联结系及主桁最终稳定后从新按照之前编写好的excel检算表格最终检算。

八.预拱度计算

提取平面一次成桥结果,计算理论预拱度,预拱度最终的实现方式与理论预拱度会有差额,预拱度的实现通过cad杆件的旋转及伸缩中模拟。伸缩与旋转的原则:保持桥面不变。九.伸缩缝的计算

读取模型中的梁段纵向位移,设计伸缩缝。

十.连接计算

1. 焊缝的计算

2. 螺栓的计算

2.1主桁螺栓连接计算

2.2联结系螺栓连接计算

2.3桥面螺栓连接计算

3. 节点板、拼接板的计算

十一.钢桥设计中的几个一致性

1. 平面模型与空间模型的一致性,通过比较两个模型的恒载下的支反力。

2. 用钢量计算的一致性,(空间模型中各个杆件重量的提取之和与平面模型中提取自重下支反力加上联结系与桥面用钢量之和一致)。

十二.钢桥设计中的平面、空间以及一次成桥与分施工阶段模型的关系

1.桥梁最终受力是与施工方式有关,最终受力状态应该以按施工状态模拟的模型为准,为

此有必要分析一次成桥与分施工阶段模型的比较。包括支反力与主桁内力比较。

2.平面模型没有考虑联结系、桥面参与主桁的受力,有必要考察平面模型与空间模型支反

力及内力的比较。

3.综合考虑风力或者制动力时,容许应力有所提高,但是有必要检算空间模型中受风力及

制动力影响较大的杆件。

钢结构设计原理重点

1.刚结构的特点:材料的强度高,塑性和韧性好;材质均匀,和力学计算的假定比较符合;钢结构制造简便,施工周期短;钢结构的质量轻;钢材耐腐蚀性差;钢材耐热但不耐火(钢结构对缺陷较为敏感;钢结构的变形有时会控制设计;钢结构对生态环境的影响小) 2. 钢结构应用范围:(技术角度)大跨度结构;重型厂房结构;受动力荷载影响的结构;可拆卸的结构;高耸结构和高层建筑;容器和其他构筑物;轻型钢结构 3.钢结构的极限状态:承载能力极限状态,正常使用极限状态 4.压应力是使构件失稳的原因 5.超静定梁或跨框架可以允出现许在受力最大的截面全面塑性,形成所谓塑性铰 6.索和拱配合使用,常称为杂交结构 7. 钢材的基本的性能:①较高的强度:屈服点fy抗拉强度fu 级较高②足够的变形能力:塑性和韧性性能好③良好的加工性能:具有良好的可焊性 8. 钢材三个重要的力学性能指标(1)屈服点(2)抗拉强度(3)伸长率 9.冷弯性能是鉴定钢材在弯曲状态下的塑性应变能力和钢材质量的综合指标 10.与抵抗冲击作用有关的钢材的性能是韧性 11.碳含量在0.12%~0.20%范围内的碳素钢,可焊性最好(钢:C<2%;铸铁:C>2%) 12.反映钢材质量的主要力学指标是屈服强度、抗拉强度、伸长率、冲击韧性、冷弯性能 13.有益元素:Mn、Si;有害元素:S、P、O、P 14.250?C附近有兰脆现象,260~320?C时有徐变现象 15.钢材的主要破坏形式:塑性破坏(延性破坏)脆性破坏(脆性断裂)损伤累积破坏疲劳破坏 16.A级钢不提供冲击韧性保证,B、C、D、E分别提供20?/0?、-20?、-40?的冲击韧性 17.选材考虑因素:荷载性质、应力状态、连接方法、工作环境、供货价格 18.热轧H型钢:宽翼缘H型钢(HW)、中翼缘H型钢(HM)窄翼缘H型钢(HN) 19.钢梁:型钢梁、组合梁 20.荷载较大高度受限的梁,可考虑采用双腹板的箱型梁,有较大的抗扭刚度 21.承载能力极限状态计算内容:截面强度、构件的整体稳定、局部稳定 22.吊车梁应力循环次数n>50000时要进行疲劳验算 23.单跨简支梁中截面出现塑性铰,即发生强度破坏;超静定梁出现塑性铰后,仍能继续承载 24.单轴对称截面有实腹式和格构式 25.塑形设计只用于不直接承受动力荷载的固端梁和连续梁 26.计算拉弯(压弯)时3种强度计算准则:边缘纤维屈服准则、全截面屈服准则、部分发展塑性准则 27.横梁对柱的约束作用取决于横梁的线刚度I0/L和柱的线刚度I/H的比值K0,即K0=I0H/IL 28.超出正常使用极限状态:影响正常使用或外观的变形、影响正常使用或耐久性能的局部破坏、影响正常使用或耐久性能的震动、影响正常使用或耐久性能的其他特定状态 29.连接的要求:足够的强度、刚度和延性 30.连接方法:焊接、铆接和普通螺栓连接、高强度螺栓连接 31. 常用焊接方法:电弧焊、电渣焊、气体保护焊和电阻焊等 32. 焊缝连接的优缺点:优点:省工省材、任何形状的构件均可直接连接、密封性好,刚度大缺点:材质劣化、残余应力、残余变形、一裂即坏、低温冷脆 33. 焊缝等级分三级:三级焊缝:外观检查;二级焊缝:在外观检查的基础上再做无损检验,;一级焊缝:在外观检查的基础上用超声波检验每条焊缝全部长度,以便揭示焊缝内部缺陷 34. 焊缝型式:对接焊缝和角焊缝 35. 施焊分类(位置):俯焊(最好)、立焊、横焊和仰焊(最差) 36.角焊缝的焊脚尺寸h f应不小于1.5t^0.5,t为较厚焊件的厚度(mm);hf应不大于较薄焊件厚度的1.2倍 37. 残余应力对结构性能的影响:对结构静力强度的影响、对结构刚度的影响、对压杆稳定的影响4、对低温冷脆的影响、对疲劳强度的影响 38.高强度螺栓连接的性能等级:10.9级、8.8级

钢结构设计原理课后习题答案(张耀春版)

页脚内容1 《钢结构设计原理》 三. 连接 3.8 试设计如图所示的对接连接(直缝或斜缝)。轴力拉力设计值N=1500kN ,钢材Q345-A ,焊条E50型,手工焊,焊缝质量三级。 解: 三级焊缝 查附表1.3:2w t N/mm 265=f ,2w v N/mm 180=f 不采用引弧板:m m 4801025002w =?-=-=t b l 3 2w 2t w 150010312.5N/mm 265N/mm 48010 N f l t σ?===>=?,不可。 改用斜对接焊缝: 方法一:按规范取θ=56°,斜缝长度: m m 58320)829.0/500(20)56sin /500(2)sin /(w =-=-?=-='t b l θ 32w 2t w sin 1500100.829213N/mm 265N/mm 58310 N f l t θσ??===<='? 32w 2w cos 1500100.559144N/mm 180N/mm 58310 v N f l t θτ??==≈<='? 设计满足要求。 方法二:以θ作为未知数求解所需的最小斜缝长度。此时设置引弧板求解方便些。 3.9 条件同习题3.8,受静力荷载,试设计加盖板的对接连接。

页脚内容 2 解:依题意设计加盖板的对接连接,采用角焊缝连接。 查附表1.3:2w f N/m m 200=f 试选盖板钢材Q345-A ,E50型焊条,手工焊。设盖板宽b =460mm ,为保证盖板与连接件等强,两块盖板截面面积之和应不小于构件截面面积。所需盖板厚度: 1250010 5.4mm 22460 A t b ?≥==?,取t 2=6mm 由于被连接板件较薄t =10mm ,仅用两侧缝连接,盖板宽b 不宜大于190,要保证与母材等强,则盖板厚则不小于14mm 。所以此盖板连接不宜仅用两侧缝连接,先采用三面围焊。 1) 确定焊脚尺寸 最大焊脚尺寸:t h t ==m ax m m 6f ,mm 最小焊脚尺寸:7.4105.15.1min f =?==t h mm 取焊脚尺寸h f =6mm 2)焊接设计: 正面角焊缝承担的轴心拉力设计值: N 94281620022.146067.027.02w f f f 3=?????=?=f b h N β 侧面角焊缝承担的轴心拉力设计值: N 557184942816101500331=-?=-=N N N 所需每条侧面角焊缝的实际长度(受力的一侧有4条侧缝): mm 172620067.045571847.04f w f f 1f w =+???=+?=+=h f h N h l l 取侧面焊缝实际长度175mm L=175×2+10(盖板距离)=360mm 。

最新钢结构设计原理重点

钢结构设计原理重点 1、什么是柱子曲线?现行规范采用几条?为什么采用此数目?(1)根据设计中经常采用的住的不同截面形式并考虑初弯矩和残余应力影响的稳定系数9 -正则化-广义长细比曲线 (2)4条 (3)初弯矩和残余应力不同 2、轴心构件的屈曲形式,什么截面发生此种屈曲? 弯曲屈曲单轴对称截面绕非对称轴失稳扭转屈曲双轴对称屈曲(十字形)弯扭屈曲单轴对称截面绕对称轴失稳 3、影响轴压构件初始缺陷的因素有哪些?残余应力、初弯曲、初弯矩、初偏心 4、构件翼缘腹板局部稳定各简化为什么条件上的板?其计算原则是什么? (1)构件翼缘-三边简支,腹板-四边简支(2)局部不失于整体失稳5、格构式受压构件需要对那些进行验算?(1)构件在弯矩作用平面内失稳(2)构件在弯矩作用平面外失稳(3)单肢验算(4)缀材验算 6、格构式受压构件对虚轴为何采用换算长细比?它的缀件有什么作用?计算模型? (1)两分肢向缀材抗剪强度比实腹式构件弱得多,绕虚轴稳定承载力有所降低,故采用加大的长细比(2)缀材承受剪力,而且能接受分肢计算长度(3)缀条为腹板,缀板为梁

7、轴压设计原则(1)等稳定性:使构件两个主轴方向的稳定承载力相同,以达到经济的效果,长细比应尽量接近,入x=入y(等稳定性原则)。(2)宽肢薄壁(3)连接方便,便于施工(4)制造省工 8.轴心受压正常使用极限状态如何保证?控制长细比 9.梁强度需验算哪些方面?弯曲正应力,剪应力,局部压应力,折算 应力。 10.抗弯强度验算塑性发展系数的要求?陈绍蕃、顾强钢结构设计原 理第二版p79 页,对直接承受动力荷载的梁,不考虑塑性发展,11?梁翼缘局部设计稳定的保证措施:限制宽厚比a弹性设计v根号 下235/fy; b塑性设计v 9倍的;c部分塑性v 13倍的。 12.梁腹板加劲肋作用 横向:承受剪力&局部压应力纵向:承受弯矩。 短加劲肋:承受局部压应力。 13.支撑加劲肋作用及如何计算? 承受集中力和支座反力 14.影响梁整体稳定性的因素有哪些? a抗弯刚度,抗扭刚度,翘曲刚度,提高M cr,稳定性增加,b受压区侧向支撑长度增加,临界弯矩M cr增加,C荷载性质(纯弯曲时最低,其次是均布荷载,再次是集中力) d 荷载作用位置,作用于翼缘M cr 降低,作用于下翼缘M cr增加f支座多余约束条件越强;M cr增加e 加强受压翼缘比加强受拉翼缘有效,M ”增加。 15.何时无需进行梁整体稳定? a有铺板密铺在梁受压翼缘上并与其牢固连接,能阻止受压翼缘侧向位

钢结构焊接工艺评定的报告.doc

焊接工艺评定报告 共4页第3页工程名称 :莱钢万和冶金辅料轻烧白云石工程 评定报告编号JSQDGP- 01 工艺指导书编号JSQDGP- 01 《建筑钢结构焊接技术规程》项目质量负责人武习依据标准 JGJ81- 2002 试样焊接单位施焊日期2010-5-25 焊工资格证书代号TS6JTAI1800 母材钢号Q235 母材轧制状态热轧生产厂柳钢 化学成分和力学性能 C Mn Si S P σ a σ b δ 5 A kv (%) (%) (%) (%) (%) (MP a) (MP a) (%) (J) 标准024 256 410 26 35 合格证310 425 36 直径烘干制度 焊接材料生产厂牌号类型备注 (mm)(℃× h) 天津大桥焊材 焊条THJ422E4303Φ200×1--- 集团有限公司 焊接方法SMAW焊接位置平焊、立焊接头形式角接、对接 焊接工艺参数见焊接工艺评定指导书清根工艺层间清理 焊接设备型号BX5极性交流 评定结论:本评定按《建筑钢结构焊接技术规程》( JGJ18-2002 )规定,根据工程情况编制工艺评定指导书、 焊接试件、制取并检验试样,测定性能,确认试验纪录正确,评定结果为:合格焊接条件及工艺参数适用范围技术 评定指导书规定执行。 评定人审核人日期 日期 评定单位:(盖章) 技术负责人日期 年月日

焊接工艺评定指导书 共4页第4页 工程名称莱钢万和冶金辅料轻烧白云石工程指导书编号JSGGZD--01 母材钢号Q235B 规格10㎜母材轧制状态热轧生产厂柳钢焊接材料生产厂牌号类型烘干制度(℃× h)备注 天津大桥焊材集团有 焊条THJ422 E4303 200× 1 合格限公司 焊接方法SMAW 焊接位置平焊、立焊 焊接设备型号BX5 极性交流 接 头 焊 及 接 坡 顺顺焊 口 序 尺 图 寸 图 焊道焊接焊条或焊丝电流电压热输入 接φ( mm)( A)(V)( kJ/cm )备注 次方法牌号 工 1 SMAW THJ422 ㎜130 26 --- --- 艺 2 SMAW THJ422 ㎜130 26 --- --- 参SMAW THJ422 ㎜ 3 160 27 --- --- 数 焊前清理有层间清理有 技 背面清根无 术其它: 措 施 焊前须将喊道两侧20㎜范围内的油污、铁锈、飞边、毛刺及其它杂质清理干净。 编制人日期审核人日期

钢结构桥梁加工制作方案

东莞黄旗山城市公园人行桥加工制作方案 1. 工程概况 东莞黄旗山城市公园群峰山地休闲区人行桥,共分二座,分别为K1(35+4x30+15)m、K5(9+28+36+15)m, K1、K5桥梁均采用等截面连续钢箱梁,桥面净宽为7.1米,桥面设单向1.5%横坡,箱梁全宽为9.1米,高为1.0米,箱梁截面为单箱四室。其中K1跨径布置为35+4x30+15,箱梁全长为174.21 m,K5跨径布置为9+28+36+15 m,箱梁全长为87 m。 2. 施工组织及施工准备 2.1 施工组织机构及管理 施工组织机构 我们针对钢桥的特点,抽调钢箱梁制造上有丰富经验的工程、技术、质检人员组成项目经理部,负责组织落实钢箱梁的生产计划、质量计划等本工程的全部工作,组织机构设置如下: 项目技术人员配置表

钢箱梁制作劳动力计划表 抽调具有丰富经验的技术、管理人员组成项目经理部。 投入本工程的技术人员和工人是一支高素质的施工队伍,其中绝大多数人都参加了类似工程箱梁的制造工作。

2.2 钢桥制造施工组织流程图

2.3 施工管理(1)施工管理图 项目经理项 目 总 工 程 师 焊接工艺评定试验 编制技术文件 制造规则 质量计划 技术交底 处理质量问题 施工总结 技 术 部 编制检验规程 检查记录 检验产品质量 竣工文件整理 质 检 部 成本核算 编制定额 材料供应 生活保障 对外协作 综 合 部 生产计划 工艺布局 生产组织 生 产 部 安技措施计划 安全记录 安全检查 动力提供 设 安 部 项 目 副 经 理 桥 钢 箱 梁 制 造

(2)拟投入本工程的主要施工机械、试验和检测仪器 2.4 材料采购及管理 1. 材料采购 (1)材料采购计划 钢板的采购分批进行,分批进场。 焊接材料的采购满足生产需要,并提前考虑焊材复验时间。 (2)在材料采购过程中参照图纸上的相关技术要求执行。 2. 材料复验 1) 钢材首先必须进行质保书检查,即核对质保书和实物的炉批号做到证物

钢结构设计原理复习总结

钢结构的特点: 1.钢材强度高、塑性和韧性好 2.钢结构的重量轻 3.材质均匀,和力学计算的假定比较符合 4.钢结构制作简便,施工工期短 5.钢结构密闭性好 6.钢结构耐腐蚀性差 7.钢材耐热但不耐火 8.钢结构可能发生脆性断裂 钢结构的破坏形式 钢材有两种性质完全不同的破坏形式,即塑性破坏和脆性破坏。钢结构所用材料虽然有较高的塑性和韧性,但一般也存在发生塑性破坏的可能,在一定条件下,也具有脆性破坏的可能。 塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉强度fu 后才发生。破坏前构件产生较大的塑性变形,断裂后的断口呈纤维状,色泽发暗。在塑性破坏前,构件发生较大的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。另外,塑性变形后出现内里重分布,使结构中原先受力不等的部分应力趋于均匀,因而提高了结构的承载能力。 构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形并断裂。常温及静态荷载作用下,一般为塑性破坏。破坏时构件有明显的颈缩现象。常为杯形,呈纤维状,色泽发暗。在破坏前有很明显的变形,并有较长的变形持续时间,便于发现和补救。 脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点fy ,断裂从应力集中处开始。冶金和机械加工过程中产生的缺陷,特别是缺口和裂缝,常是断裂的发源地。破坏前没有任 何预兆,破坏时突然发生的,断口平直并呈有光泽的晶粒状。由于脆性破坏前没有明显的预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大,因此,在设计,施工和使用过程中,应特别注意防止钢结构的脆性破坏。 在破坏前无明显变形,平均应力也小(一般都小于屈服点),没有任何预兆。局部高峰值应力可能使材料局部拉断形成裂纹;冲击振动荷载;低温状态等可导致脆性破坏。平直和呈有光泽的晶粒。突然发生的,危险性大,应尽量避免。 低碳钢的应力应变曲线: 1.弹性阶段:OA 段:纯弹性阶段εσE = A 点对应应力:p σ(比例极限) AB 段:有一定的塑性变形,但整个OB 段卸载时0=ε B 点对应应力:e σ(弹性极限) 2.屈服阶段:应力与应变不在呈正比关系,应变增加很快,应力应变曲线呈锯齿波动,出现应力不增加而应变仍在继续发展。其最高点和最低点分别称为上屈服点和下屈服点;下屈服点稳定,设计中以下屈服点为依据。 3.强化阶段:随荷载的增大,应力缓慢增大,但应变增加较快。当超过屈服台阶,材料出现应变硬化,曲线上升,至曲线最高处,这点应力fu 称为抗拉强度或极限强度。 4.颈缩阶段:截面出现了横向收缩,截面面积开始显著缩小,塑像变形迅速增大,应力不断降低,变形却延续发展,直至F 点试件断裂。 疲劳破坏:钢材的疲劳断裂是微观裂纹在连续反复荷载作用下不断扩展直至断裂的脆性破坏。 钢材的疲劳强度取决于构造状况(应力集中程度和残余应力)、作用的应力幅、反复荷载的虚幻次数,而和钢材的静力强度无明显关系。 钢结构的连接方法:焊接连接:不削弱构件截面,构造简单,节约钢材,焊缝处薄。弱铆钉连接:塑性和韧性极好,质量容易检查和保证,费材又费工。螺栓连接:操作简单便于拆卸。 焊接连接的优点:1.焊件间可以直接相连,构造简单,制作加工方便2.不削弱截面,节省材料3.连接的密闭性好,结构的刚度大4.可实现自动化操作,提高焊接结构的质量。 缺点:1.焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆2.焊接残余应力和残余变形使受压构件承载力降低3.焊接结构对裂纹很敏感,局部裂纹一旦发生,容易扩展至整个截面,低温冷脆问题也比较突出。 焊接连接通常采用的方法为电弧焊(包括手工电弧焊)自动(半自动)埋弧焊和气体保护焊。 侧面角焊缝主要承受剪力,塑性较好,应力沿焊缝长度方向的分布不均匀,呈两端打而中间小的状态。焊缝越长,应力分布不均匀性越显著,但临界塑性工作阶段时,产生应力重分布,可使应力分布的不均与现象渐趋缓和。 焊脚不能过小:否则焊接时产生的热量较小,而焊件厚度较大,致使施焊是冷却速度过快,产生淬硬组织,导致母材开裂。 焊脚不能过大:1.较薄焊件容易烧穿或过烧2.冷却时的收缩变形加大,增大焊接应力,焊件容易出现翘曲变形 计算长度不能过小:1.焊件的局部加热严重,焊缝起灭狐所引起的缺陷相距较近,及可能的其他缺陷使焊缝不够可

钢桥制作焊接工艺解析

xxxx大桥制作和焊接工艺技术交底 一、工程概况 xxxx位于湖北黄石水道上游,是沪蓉高速公路湖北省东段(武黄高速公路和黄黄高速公路)和国家高速公路联网大庆至广州高速公路湖北段的公用过江通道,也是湖北省公路主骨架的重要组成部分。 花湖互通A匝道第四联桥跨布置为:31.2m+40m+40m+31.25m。上部结构采用等截面单箱双室的钢结构连续箱梁。钢箱梁沿匝道中心线全长142.38米。 花湖互通D匝道第五联桥跨布置为:37.5m+50m+37.5m。上部结构采用等截面单箱双室的钢结构连续箱梁。钢箱梁沿匝道中心线全长124.84米。钢箱梁为单箱双室断面,梁宽13米,高1.8米,两侧个悬臂长2.5米,根部高0.5米,端部高0.2米。纵向每2米设一道悬臂梁,钢箱梁顶板兼做桥面承重结构。 二、钢箱梁下料工艺 1、钢结构的下料工艺(以A匝道第四联跨为列进行讲解) A匝道的总体概况为:A匝道钢箱梁为单箱双室断面,梁宽10.5米,高1.6米,两侧个悬臂长2.0米,根部高0.5米,端部高0.2米。纵向每2米设一道悬臂梁,钢箱梁顶板兼做桥面承重结构。A匝道全桥位于i=3.467%及i=3.5%的纵坡段上,竖曲线半径为4000m。整个曲线由XY平面内的圆弧曲线(桥梁中心线为R=30000mm),以及竖曲线R=4000000mm。根据A匝道的起点设计高程、终点设计高程确定起点、终点的直线方程。在竖曲线平面内的透影方程为F1(Y)=A1(Y)+A,叠加竖曲线内的圆弧方程R=4000000,再叠加预拱度曲线方程得到腹板曲线方程。总体下料见下:钢桥的总体排版见排版图纸,具体的型式见下:

(一)A匝道顶板定宽为1800+2200*4=10600mm 桥面的总宽度为10500mm。根具焊缝的排版原则:焊缝相互错开200mm以上,与腹板错开200mm以上。 钢箱梁顶板的排版示意图 钢板的平板对接按照埋弧自动焊接工艺卡进行。现场对接坡口为不带钝边30O坡口。注意:1、所有埋弧自动焊工厂对接坡口、现场对接坡口必须采用半自动切割。施焊前必须仔细清理坡口以及坡扣两侧50mm范围内的油污、铁锈。呈金属光泽。 2、所有的平板对接焊缝均为一级焊缝,必须加引弧板和收弧板。焊剂必须按照规范要求进行烘烤。焊接质量标准按照JTJ041-2000标准中的相关规定执行。 (二)钢桥底板下料:底板的宽度为6548,采用的钢板宽度为2000、2200、2400各一块,按照有关焊接规范要求,焊缝相互错开200mm以上。下料工艺、焊接工艺和顶板相同。排板示意图纸见下: 钢箱梁底板排版示意图 下料完毕后,,相互偏差不大于3mm。用钢卷尺拉对角线检查。具体排版见CAD排版图纸。

钢箱梁焊接工艺方案

xxxxxxxxxxx改建工程 钢 箱 梁 焊 接 工 艺 方 案 编制: 审核: 批准: xxxxxxxxxxx 2013年11月

目录 第一章、钢箱梁制作 (2) 1、工程概况 (2) 2、适用范围 (2) 3、编制依据 (2) 4、目的 (2) 5、工程目标 (2) 6、施工组织机构 (3) 7、钢梁制作流程图................................... 错误!未定义书签。 8、施工准备......................................... 错误!未定义书签。 9、进度计划 (4) 10、施工平面布置.................................... 错误!未定义书签。 11、钢梁制作施工方法................................ 错误!未定义书签。 12、防腐施工 (13) 第二章、钢箱梁安装.................................. 错误!未定义书签。 1、总体方案......................................... 错误!未定义书签。 2、钢梁运输......................................... 错误!未定义书签。 3、现场拼装大吊装块................................. 错误!未定义书签。 4、防腐............................................. 错误!未定义书签。第三章、质量保证措施.. (17) 1、质量管理组织体系 (17) 2、管理职责 (17) 3、工程施工质量控制 (18) 4、质量资料整理 (24) 第四章、安全保证措施 (25) 1、安全管理体系 (25) 2、钢结构冷作安全 (25) 3、焊接与切割安全 (26) 4、现场架子搭设与拆除 (26) 5、用电安全保证措施 (26) 6、运输安全技术措施................................. 错误!未定义书签。 7、吊装安全技术措施................................. 错误!未定义书签。 8、涂漆工序安全技术措施 (27) 9、施工工地安全技术措施 (27) 10、报告 (27) 11、文明施工 (29)

钢结构设计原理 基本概念复习题及参考答案

2011年课程考试复习题及参考答案 钢结构设计原理 一、填空题: 1.钢结构计算的两种极限状态是和。 2.提高钢梁整体稳定性的有效途径是和。 3.高强度螺栓预拉力设计值与和有关。 4.钢材的破坏形式有和。 5.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则 常采用的方法来解决。 6.高强度螺栓预拉力设计值与和有关。 7.角焊缝的计算长度不得小于 40 ,也不得小于 8hf ;侧面角焊缝承受静载时,其 计算长度不宜大于 60hf 。 8.轴心受压构件的稳定系数φ与、和有关。 9.钢结构的连接方法有、和。 10.影响钢材疲劳的主要因素有、和。 11.从形状看,纯弯曲的弯矩图为,均布荷载的弯矩图为,跨中 央一个集中荷载的弯矩图为。 12.轴心压杆可能的屈曲形式有、和。 13.钢结构设计的基本原则是、、 和。 14.按焊缝和截面形式不同,直角焊缝可分为、、 和等。 15.对于轴心受力构件,型钢截面可分为和;组合截面可分为 和。 16.影响钢梁整体稳定的主要因素有、、、 和。 1.承载能力极限状态,正常使用极限状态 2.加强受压翼缘,减少侧向支承点间的距离(或增加侧向支承点) 3.螺栓材质,螺栓有效面积 4.塑性破坏,脆性破坏 5.限制宽厚比,设置加劲肋 6.性能等级,螺栓直径

7.8h f,40mm,60 h f 8.钢号,截面类型,长细比 9.焊接连接,铆钉连接,螺栓连接 10.应力集中,应力幅(对焊接结构)或应力比(对非焊接结构),应力循环次数 11.矩形,抛物线,三角形 12.弯曲屈曲,扭转屈曲,弯扭屈曲 13.技术先进,经济合理,安全适用,确保质量 14.普通缝,平坡缝,深熔缝,凹面缝 15.热轧型钢,冷弯薄壁型钢,实腹式组合截面,格构式组合截面 16.荷载类型,荷载作用点位置,梁的截面形式,侧向支承点的位置和距离,梁端支承条件 二、问答题: 1.高强度螺栓的8.8级和10.9级代表什么含义? 2.焊缝可能存在哪些缺陷? 3.简述钢梁在最大刚度平面内受荷载作用而丧失整体稳定的现象及影响钢梁整体稳定的主要因素。 4.建筑钢材有哪些主要机械性能指标?分别由什么试验确定? 5.什么是钢材的疲劳? 6.选用钢材通常应考虑哪些因素? 7.在考虑实际轴心压杆的临界力时应考虑哪些初始缺陷的影响? 8.焊缝的质量级别有几级?各有哪些具体检验要求? 9.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形式有何不同? 10.在计算格构式轴心受压构件的整体稳定时,对虚轴为什么要采用换算长细比? 11.轴心压杆有哪些屈曲形式? 12.压弯构件的局部稳定计算与轴心受压构件有何不同? 13.在抗剪连接中,普通螺栓连接和摩擦型高强度螺栓连接的传力方式和破坏形式有何不同? 14.钢结构有哪些连接方法?各有什么优缺点? 15.对接焊缝的构造有哪些要求? 16.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结构性能有何影 响?减少焊接残余应力和焊接残余变形的方法有哪些? 17.什么叫钢梁丧失整体稳定?影响钢梁整体稳定的主要因素是什么?提高钢梁整体稳定的有效措施 是什么? 18.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求? 19.螺栓的排列有哪些构造要求? 20.什么叫钢梁丧失局部稳定?怎样验算组合钢梁翼缘和腹板的局部稳定?

钢结构设计原理重点修改版

填空 1.极限状态的分类:承载能力极限状态,正常使用极限状态。 2.普通碳素钢的等级:A,B,C,D 3.钢材是根据什么命名的:质量等级,脱氧方法,屈服点数值,代表屈服点的字母Q。 4.有害元素有哪些:O,S,N,P,H 5.焊缝按连接计算分哪几类:对接焊缝,角焊缝。或者承受轴心力作用时角焊缝连接计算,复杂受力时角焊缝连接计算。 6.角焊缝的分类:正面角焊缝,斜焊缝,侧面角焊缝,直角角焊缝,斜角角焊缝。 7.角钢肢背和肢尖的内力分配:等肢K1=0.7 K2=0.3不等肢(长肢水平)K1=0.75 K2=0.25不等肢(长肢垂直)K1=0.65 K2=0.35 8.螺栓的排列分类:并列,错列。 9.高强度螺栓8.8级10.9级的含义:螺栓性能等级。 10.轴心受力构件常用的截面形式:按其截面组成形式(实腹式构件,格构式构件)按常见的有(热轧型钢截面,冷弯型钢截面,轻型刚或钢板连接而成的组合截面)。 11.轴心受力构件校核的内容:刚度验算,整体稳定验算,局部稳定验算,强度验算。 12.压弯构件整体破坏形式有哪些:弯曲屈曲,弯扭屈曲,弯扭失稳。 13.节点厚度根据什么确定:梯形(最大腹杆内力),三角形(弦杆最大内力)。 14.上弦横向水平支撑间距:不大于60m。 15.拉杆压杆按什么设计:拉:强度,压:稳定性。 16.刚性杆能受什么:受拉,受压。 17.平面外的计算长度怎么取:有支撑就取支撑间距,没有就取实长。 选择 1.标准值和设计值的转换分项系数不一致 标准值X分项系数=设计值 2.低温下的钢材强度塑性会怎样? 强度提高,塑性韧性降低 3.钢材符号含义Q235AF 代表屈服点为235的A级沸腾钢 4.塑性韧性好的钢材要用到什么结构上? 多用于焊接结构 5.衡量冲击荷载能力的指标是什么? 韧性(也叫冲击韧性) 6.焊脚尺寸用什么表示? 指焊缝根角至焊缝外边的尺寸,表示为hf 7.单个普通螺栓受剪承载力的取值 140fv 8.残余应力对静力强度刚度疲劳强度的影响 9.组合梁翼缘部稳定通过什么控制? 通过宽厚比控制 10.弹性受压杆件的界性,临界力 临界力随抗弯刚度的增加和构件长度的减小而增大 11.绕虚轴受弯时设计准则是什么? 以截面边缘纤维屈服为设计准则

钢结构焊接工艺评定1

一.工程概况 1.1概述 厦门市金佳鼎进出口有限公司厂房建设及配套由厦门市华旸建筑工程设计 有限公司设计,厦门市住总监理有限司负责监理,福建省万桥市政园林有限公司 承建。工程位于同安区工业集中区 厦门市金佳鼎进出口有限公司厂房构建筑面积4256.922)采用方钢,楼面梁采用H型钢梁和方钢,联接方式为高强,螺栓连接+焊接,楼面采用压型板现浇混凝土; 二、焊接工艺 2.1一般规定 2.1.1钢材除应符合本规程的相应规定外,尚应符合下列要求: 1、清除待焊处表面的水、氧化皮、锈、油污; 2、焊接坡口边缘上钢材的夹层缺陷长度超过25mm时,应采用无损探伤检测 其深度,如深度不大于6mm,应用机械方法清除;如深度大于6mm,应用机 械方法清除后焊接填满;若缺陷深度大于25mm时,应采用超声波探伤测定其 尺寸,当单个缺陷面积(a×d)或聚集缺陷的总面积不超过被切割钢材总面积 (B×L)的4%时为合格,否则该板不宜使用; 3、钢材内部的夹层缺陷,其尺寸不超过第2款的规定且位置离母材坡口表面距 离(b)大于或等于25mm时不需要修理;如该距离小于25mm则应进行修 补,其修补方法应符合规定; 4、夹层缺陷是裂纹时(见图1.1.1),如裂纹长度(a)和深度(d)均 不大于50mm,其修补方法应符合规定;如裂纹深度超过50mm或累计长度 超过板宽的20%时,该钢板不宜使用。

1.1.2焊接材料除应符合本规程有关规定外,尚应符合下列规定: 1焊条、焊丝、焊剂和熔嘴应储存在干燥、通风良好的地方,由专人保管; 2焊条、熔嘴、焊剂和药芯焊丝在使用前,必须按产品说明书及有关工艺文件的规定进行烘干。 图 1.1.1 夹层缺陷示意 3低氢型焊条烘干温度应为350~380℃,保温时间应为1.5~2h,烘干后应缓冷放置于110~120℃的保温箱中存放、待用;使用时应置于保温筒中;烘干后的低氢型焊条在大气中放置时间超过4h应重新烘干;焊条重复烘干次数不宜超过2次;受潮的焊条不应使用; 4实芯焊丝及熔嘴导管应无油污、锈蚀,镀铜层应完好无损; 5焊钉的外观质量和力学性能及焊接瓷环尺寸应符合现行国家标准《圆柱头焊钉》(GB10433)的规定,并应由制造厂提供焊钉性能检验及其焊接端的鉴定资料。焊钉保存时应有防潮措施;焊钉及母材焊接区如有水、氧化皮、锈、漆、油污、水泥灰渣等杂质,应清除干净方可施焊。受潮的焊接瓷环使用前应经

钢结构焊接工艺及制作方法

钢结构焊接生产工艺 一、钢结构加工工艺的基础知识 钢结构焊接制造(即焊接结构生产)是从焊接生产的准备工作开始的,它包括结构的工艺性审查、工艺方案和工艺规程设计、工艺评定、编制工艺文件(含定额编制)和质量保证文件、定购原材料和辅助材料、外购和自行设计制造装配-焊接设备和装备;然后从材料入库真正开始了焊接结构制造工艺过程,包括材料复验入库、备料加工、装配-焊接、焊后热处理、质量检验、成品验收;其中还穿插返修、涂饰和喷漆;最后合格产品入库的全过程。 钢结构焊接生产的准备工作是钢结构制造工艺过程的开始。它包括了解生产任务,审查(重点是工艺性审查)与熟悉结构图样,了解产品技术要求,在进行工艺分析的基础上,制定全部产品的工艺流程,进行工艺评定,编制工艺规程及全部工艺文件、质量保证文件,订购金属材料和辅助材料,编制用工计划(以便着手进行人员调整与培训)、能源需用计划(包括电力、水、压缩空气等),根据需要定购或自行设计制造装配-焊接设备和装备,根据工艺流程的要求,对生产面积进行调整和建设等。生产的准备工作很重要,做得越细致,越完善,未来组织生产越顺利,生产效率越高,质量越好。 材料库的主要任务是材料的保管和发放,它对材料进行分类、储存和保管并按规定发放。材料库主要有两种,一是金属材料库,主要存放保管钢材;二是焊接材料库,主要存放焊丝、焊剂和焊条。 焊接生产的备料加工工艺是在合格的原材料上进行的。首先进行材料预处理,包括矫正、除锈(如喷丸)、表面防护处理(如喷涂导电漆等)、预落料等。除材料预处理外,备料包括放样、划线(将图样给出的零件尺寸、形状划在原材料上)、号料(用样板来划线)、下料(冲剪与切割)、边缘加工、矫正(包括二次矫正)、

钢结构焊接施工工艺

钢结构焊接施工工艺 14.1.1工艺概述 本工艺适用于桥梁工程中钢结构焊接施工。 14.1.2作业内容 桥梁工程钢结构焊接施工,包括钢板表面处理、焊接等。 14.1.3质量标准及检验方法 《铁路钢桥制造规范》(TB10212-2009) 《栓钉焊接技术规程》(CECS 226:2007) 《钢结构工程施工质量验收规范》(GB50205—2001) 《铁路钢桥保护涂装及涂料供货技术条件》(TB/T 1527-2011) 《铁路桥涵工程质量验收标准》(TB10415—2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 14.1.4工艺流程图 14.1.5工艺步骤及质量控制 一、施工准备 1.材料及主要机具 (1)电焊条:其型号按设计要求选用,必须有质量证明书。冬期施工或潮湿环境施焊前应按要求进行烘焙。严禁使用药皮脱落、焊芯生锈的焊条。按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。 (2)引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。 (3)主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条等(详见 14.10.6)。 2.作业条件 (1)熟悉图纸,做焊接工艺技术交底。 (2)施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。 (3)现场供电应符合焊接用电要求。 (4)环境温度低于0℃,应根据工艺试验确定预热,后热温度。 二、工艺步骤与质量控制 1.平焊 (1)选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺评定报告确定。 (2)清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 (3)烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,放在焊条保温桶内,随用随取。 (4)焊接电流:根据焊件厚度、焊接层次、焊条型号、直径、焊工熟练程度等因素,选择适宜的焊

《钢结构设计原理》教学大纲

《钢结构设计原理》教学大纲 一、课程说明 1、课程简介 本课程是土木工程专业的必修课,其性质属于专业基础课。本课程是一门理论性与应用性并重的课程。通过本课程的学习,着重讲授钢结构的基本理论与基本知识,使学生了解钢结构的特点、历史、现状及发展前景;掌握钢结构材料的工作性能及影响钢材性能的主要因素,能正确选用结构钢材;掌握钢结构连接的性能、受力分析与设计计算;掌握各种钢结构基本构件的设计计算等,并为学习后续课程和钢结构课程设计打下必要的基础。 2、教学目的及要求 本课程是土木工程专业的专业基础课,是一门理论性与应用性并重的课程。在教学方法上,采用课堂讲授为主,课后自学,课堂练习等教学形式。 (一)课堂讲授 本课程在讲述的过程中,教师应尽量联系生产实际,注重物理意义,不要陷入到繁复的数学推导之中。在教学中要求同学重点掌握基本概念、基本方法和基本规律,并详细讲授每章的重点、难点内容,着重培养学生分析问题和解决问题的能力。讲授中应注意理论联系实际,启迪学生的思维。为便于学生对构造的理解,可组织教学参观、观摩教学模型或采用多媒体辅助教学。 (二)课后自学 为了培养学生整理归纳,综合分析和处理问题的能力,每章都安排一部分内

容,课上教师只给出自学提纲,不作详细讲解,课后学生自学。 (三)课外作业 平时布置典型习题,以加强学生对所学知识的深入理解。 3、教学重点及难点 钢结构的连接,受弯构件、轴心受压构件、压弯构件及节点设计的计算原理。 4、教学手段及教学方法建议 主要采用传统课堂为主辅以前沿课题讲解。 5、考核方式 (一)考核方式:笔试(闭卷) (二)成绩评定标准: 考试主要采用闭卷方式,考试范围应涵盖所有讲授及自学的内容,考试内容应能客观反映出学生对本门课程主要概念的记忆、掌握程度,对有关理论的理解、掌握及综合运用能力。考试题型包括:选择题、概念题、判断题、计算题等。 总评成绩:百分制,平时成绩占30%,闭卷考试成绩占70%。 6、选用教材 [1] 张耀春主编.《钢结构设计原理》.北京:高等教育出版社,2004 [2] 钟善桐.《钢结构稳定设计》.建筑工业出版社,2001 7、教学参考书 [1] 全国高等教育自学考试指导委员会组编.《钢结构》.武汉大学出版社出版.2000 [2] 黄呈伟主编.《钢结构基本原理》.重庆大学出版社.21世纪高等学校本科系列教材,2001 [3] 魏明钟主编.《钢结构》.武汉理工大学出版社.普通高校土木工程专业新编系列教材,2001 8、教学环节及学时安排

钢结构焊接工艺评定报告书

焊接工艺评定报告 共4页 第3页 工程名称:莱钢万和冶金辅料轻烧白云石工程 评定报告编号 JSQDG P -01 工艺指导书编号 JSQDG P -01 项目质量负责人 武习 依据标准 《建筑钢结构焊接技术规程》 JGJ81-2002 试样焊接单位 施焊日期 2010-5-25 焊工 资格证书代号 TS6JTAI1800 母材钢号 Q235 母材轧制状态 热轧 生产厂 柳钢 化 学 成 分 和 力 学 性 能 C (%) Mn (%) Si (%) S (%) P (%) σa (MP a ) σb (MP a ) δ5 (%) A kv (J) 标准 0.14 0.52 024 0.020 0.026 256 410 26 35 合格证 0.12 0.55 0.20 0.019 0.019 310 425 32.5 36 焊接材料 生产厂 牌号 类型 直径 (mm ) 烘干制度 (℃×h ) 备注 焊条 天津大桥焊材 集团有限公司 THJ422 E4303 Φ3.2 200×1 --- 焊接方法 SMAW 焊接位置 平焊、立焊 接头形式 角接、对接 焊接工艺参数 见焊接工艺评定指导书 清根工艺 层间清理 焊接设备型号 BX5 极性 交流 评定结论:本评定按《建筑钢结构焊接技术规程》(JGJ18-2002)规定,根据工程情况编制工艺评定指导书、焊接试件、制取并检验试样,测定性能,确认试验纪录正确,评定结果为:合格 焊接条件及工艺参数适用范围技术评定指导书规定执行。 评定人 日期 评定单位:(盖章) 年 月 日 审核人 日期 技术负责人 日期

焊接工艺评定指导书 共4页第4页 工程名称莱钢万和冶金辅料轻烧白云石工程指导书编号JSGGZD--01 母材钢号Q235B 规格10㎜母材轧制状态热轧生产厂柳钢焊接材料生产厂牌号类型烘干制度(℃×h)备注焊条 天津大桥焊材集团有 限公司 THJ422 E4303 200×1 合格焊接方法SMAW焊接位置平焊、立焊 焊接设备型号BX5 极性交流 接 头 及坡口尺寸图焊 接 顺 序 图 顺焊 焊接工艺参数道 次 焊接 方法 焊条或焊丝电流 (A) 电压 (V) 热输入 (kJ/cm) 备注牌号φ(mm) 1 SMAW THJ42 2 3.2㎜130 26 --- --- 2 SMAW THJ422 3.2㎜130 26 --- --- 3 SMAW THJ422 4.0㎜ 160 27 --- --- 技术措施焊前清理有层间清理有 背面清根无 其它: 焊前须将喊道两侧20㎜范围内的油污、铁锈、飞边、毛刺及其它杂质清理干净。 编制人日期审核人日期

钢结构设计原理的课程设计报告

XX 工学院 课程实训 课程名称:钢结构设计原理专业层次:土木工程(卓越)

1、设计资料 1)某厂房跨度为24m,总长90m,柱距6m,屋架下弦标高为18m。 2)屋架铰支于钢筋混凝土柱顶,上柱截面400×400,混凝土强度等级为C30。 3)屋面采用1.5×6m的预应力钢筋混凝土大型屋面板(屋面板不考虑作为支撑用)。 4)该车间所属地区西安。 5)采用梯形钢屋架。 考虑静载:①预应力钢筋混凝土屋面板(包括嵌缝)1400N/m2 ②二毡三油防水层400N/m2 ③20mm厚水泥砂浆找平400N/m2 ④支撑重量70N/m2 考虑活载:活载700N/m2

6)钢材选用Q345钢,焊条为E50型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。 屋面坡度 i=1/10; 屋架计算跨度L 0=24000-300=23700mm ; 端部高度取H=1990mm ,中部高度取H=3190mm (为L 0/7.4)。 屋架几何尺寸如图1所示: 1拱50 图1:24米跨屋架几何尺寸

三、支撑布置 由于房屋长度有6米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。 上弦平面支撑布置

屋架和下弦平面支撑布置

垂直支撑布置 4、设计屋架荷载 屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。由于风荷载为0.35kN/m2 小于0.49kN/m2,故不考虑风荷载的影响。沿屋面分布的永久荷载乘以1/cosα=√1+102/10=1.005换算为沿水平投影面分布的荷载。桁架沿水平投影面积分布的自重(包括支撑)按经验公式( P=0.12+0.011 跨度)计 w 算,跨度单位为m。 标准永久荷载: 二毡三油防水层

钢结构设计原理考试重点

1、钢筋与混凝土两种力学性能不同的材料,能结合在一起有效地共同工作的理由? (1)混凝土与钢筋之间有着良好的粘结力,使两者能可靠的结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,钢筋与混凝土之间不致产生较大的相对变形而破坏两者之间的粘结。 (3)质量良好的混凝土,可以保护钢筋免遭锈蚀,保证钢筋与混凝土的共同作用。 2、钢筋与混凝土之间的粘结力就是怎样产生的?为保证钢筋与混凝土之间的粘结力要采取哪些措施? (1)光圆钢筋与混凝土之间的粘结力主要有摩擦力与咬合力提供;带肋钢筋与混凝土之间的粘结力主要就是钢筋表面凸起的肋纹与混凝土的机械咬合作用。(2)提高混凝土强度或使用高强混凝土;使用钢纤维混凝土。 3、什么叫混凝土的徐变?影响混凝土徐变的有哪些因素? 在荷载的长期作用下,混凝土的变形将随时间而增加,即在应力不变的情况下,混凝土的应变随时间持续增长,这种现象称为混凝土的徐变。 影响因素:(1)混凝土在长期荷载作用下产生应力的大小(2)加载时混凝土的龄期(3)混凝土的组成成分与配合比(4)养生及使用条件下的温度与湿度 4、什么就是承载能力极限状态?哪些状态认为就是超过了承载能力极限状态? 承载能力极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的变形或变位的状态。超过了承载能力极限状态:(1)整个结构或结构的一部分作为刚体失去平衡(2)结构构件或连接处因超过材料强度而破坏(包括疲劳破坏),或因过度的变形而不能继续承载(3)结构转变成机动结构(4)结构或结构构件丧失稳定(5)结构因局

相关主题
文本预览
相关文档 最新文档