固体物理绪论
- 格式:ppt
- 大小:3.49 MB
- 文档页数:31
«固体物理»复习大纲招生专业:凝聚态物理/材料物理与化学固体物理学的基本内容(专题除外), 主要有:晶体结构, 晶体结合, 晶格振动和晶体热学性质, 晶体的缺陷, 金属电子论和能带理论.主要参考书目: 1. 黄昆, 韩汝琦, 固体物理学, 高教出版社2. 陆栋, 蒋平, 徐至中, 固体物理学, 上海科技出版社3. 朱建国, 郑文琛等, 固体物理学, 科学出版社«新型功能材料»复习大纲招生专业:材料物理与化学/光学工程一、复习大纲1,材料、新材料的重要性;2,材料科学、材料工程、材料科学与工程的学科形成与学科内涵;3,材料科学与工程的“四要素”的内容;“四要素”间的相互关系(用图来表示);“四要素”在材料研究中的作用;(要求能结合具体材料事例予以说明)4,如何理解材料、特别是新材料是社会现代化的物质基础与先导;5,怎样区分结构材料和功能材料?新型功能材料的内涵是什么?6,了解新型功能材料中相关科学名词的解释,并能给出适当的例子,如:信息材料;光电功能材料;能源材料;高性能陶瓷;纳米材料;晶体材料;人工晶体(材料);压电材料;铁电材料;复合材料;梯度材料;智能材料与结构;材料设计;环境材料;低维材料;生物材料;非线形光学材料;光子晶体;半导体超晶格;等等;7,注意了解材料检测评价新技术的发展;注意了解材料的成分测定、结构测定、形貌观测的方法;材料无损检测评价新技术的发展概况;8,能结合具体的材料对象,给出材料的成分分析、原子价态分析、结构(含微结构)分析、形貌分析等所采用的主要技术,以及利用这些技术所得出的主要结果;9,对若干常用的分析技术,包括:X射线衍射分析(XRD),原子力显微镜分析(AFM),扫描电子显微镜分析(SEM),透射电子显微镜分析(TEM),俄歇电子能谱分析,X射线光电子能谱分析(XPS),核磁共振谱分析,等,能结合具体事例,阐述它们在材料物化结构分析中的作用和能解决的具体问题;10,材料科学技术是一门多学科交叉的前沿综合性学科;材料科学技术的学科内涵极为丰富;当代材料科学技术正在飞速发展,其主要发展趋势可以归纳为8个方面。
固体物理学概论固体物理学是研究物质的结构和性质的一门学科,它涵盖了领域广泛且深奥的知识。
本文将为读者介绍固体物理学的基础知识和主要研究内容。
一、晶体结构晶体是物质在固态中具有长程有序的结构,其原子、离子或分子按照规则排列。
晶体结构对物质的性质和功能具有重要影响。
固体物理学研究晶体结构的方法和特性,发展了晶体学的基本理论。
1. 空间点阵空间点阵是描述晶体结构的重要工具,它由一组等距离的格点所组成。
常见的点阵有简单立方点阵、面心立方点阵和体心立方点阵等。
这些点阵可以通过平移和旋转操作来描述晶体的周期性。
2. 晶胞和晶格晶胞是晶体中基本重复单元,它由一组原子、离子或分子构成。
晶格是由晶胞组成的整体结构,它描述了晶体中原子的排列方式。
晶胞和晶格可以通过晶体学的实验方法进行确定。
二、电子结构电子结构是固体物理学中的核心内容,它研究了电子在晶体中的行为和性质。
电子结构决定了物质的导电性、磁性以及光学性质等。
1. 能带理论能带理论是描述晶体中电子分布的重要理论模型。
根据能量分布,电子在晶体中具有禁带和能带的概念。
导带和价带之间的能隙决定了物质的导电性质。
2. 费米能级费米能级是描述固体中电子填充状态的参考能量。
它决定了电子在晶体中的分布规律,以及固体的导电性质。
费米能级的位置和填充程度影响了物质的导电性。
三、磁性和磁性材料磁性是固体物理学研究的另一个重要方向。
固体材料在外加磁场下表现出不同的磁性行为,如铁磁性、顺磁性和反铁磁性等。
1. 磁化强度和磁矩磁化强度是描述材料对磁场响应的物理量,它与材料中的磁矩相关。
磁矩是材料中带有自旋的原子或离子产生的磁场。
2. 磁性材料的分类磁性材料可以根据其磁性行为进行分类。
铁磁材料在外加磁场下显示出强烈的磁化行为,顺磁材料对外加磁场表现出弱磁化行为,而反铁磁材料在一定温度下表现出特殊的磁性行为。
四、光学性质固体物理学还研究了固体材料的光学性质。
物质在光场中的相互作用导致了光的传播、吸收和散射等现象。
固体物理学导论第一章晶体结构1.1 原子的周期性阵列一个晶体的所有各面的方向指数都是精确的整数。
衍射实验决定性的证明了晶体是由原子或原子团的周期性阵列组成的。
在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的,这样的原子团被称为基元。
在数学上这些基元可以抽象为几何点,而这些点的集合被称为晶格。
原胞是体积最小的晶胞,初基基元是包含原子数目最少的基元。
1.2 晶格的基本类型晶格可以通过晶格平移或其它各种对称操作与其自身重合。
典型的对称操作是围绕一个通过格点的晶轴进行转动。
,,,与这些角度相对应的转动轴分别被称为一重、二重、三重、四重和六重轴,通常用符号1、2、3、4和6分别表示这些转动轴。
晶格平移矢量具有任意性,由此给出的一般性晶格通常被称为斜方晶格。
二维晶格的分类:有五种,即一种斜方晶格和四种特殊晶格。
布拉维晶格(Bravais lattice)是对某种具体晶格类型的统称,于是有五种二维布拉维晶格。
三维晶格的分类:有14种,即三斜晶格和13种特殊晶格。
为方便起见,通常按照七种惯用晶胞将这14种晶格划分为7种晶系,即三斜(1)、单斜(2)、正交(4)、四角(2)、立方(3)、三角(1)和六角晶系(1)。
立方晶系包括简单立方(sc),体心立方(bcc)和面心立方(fcc)三种晶格。
1.3 晶面指数系统一个晶面的取向可以由这个晶面上的任意三个不共线的点确定。
晶体中某一方向的指数是指这样一组最小整数,这组最小整数间的比率等于该方向的一个矢量在轴上的诸分量的比率。
1.4 简单晶体结构氯化钠型结构:面心立方。
基元由一个钠离子和一个氯离子组成,每个原子有六个异类原子作为最近邻。
每一个单位立方体中有4个氯化钠基元。
氯化铯型结构:简单立方,基元由一个铯离子和一个氯离子组成,每个原子有八个异类原子作为最近邻。
每个原胞有1个分子。
六角密堆积型结构(hcp):与面心立方结构的总体积被球占据的体积比率一样,都为0.74。
固体物理教学⼤纲课程名称固体物理课程性质专业必修课《固体物理》教学⼤纲⼀、课程名称:固体物理⼆、课程性质:专业必修课三、课程教学⽬的:(⼀)课程⽬标:通过固体物理学课程的学习,使学⽣树⽴起晶体内原⼦、电⼦等微观粒⼦运动的物理图像及其有关模型,掌握晶体内微观粒⼦的运动规律及其与晶体宏观性能的物理联系,深刻理解晶体宏观性能的微观物理本质,为进⼀步学习和研究固体物理学各种专门问题及相关领域的内容建⽴初步的理论基础。
(⼆)教学⽬标:第⼀章晶体结构【教学⽬标】通过本章的教学,使学⽣了解晶格结构的实例、⾮晶态和准晶态的特征;理解和掌握晶体结构的周期性特征及其描述⽅法;理解和掌握晶体结构的对称性特征及其描述⽅法;理解和掌握倒格⼦的定义及其与正格⼦的关系;熟悉有关晶体结构的基本分析与计算。
借助于多媒体展⽰,使学⽣建⽴起晶体结构特征的直观图像。
第⼆章晶体的结合【教学⽬标】通过本章的教学,使学⽣了解晶体结合⼒的⼀般性质;掌握晶体的结合类型与特征;理解元素和化合物晶体结合的规律性;掌握离⼦晶体的结合能、体积弹性模量的计算;掌握范德⽡⽿斯晶体的结合能、体积弹性模量的计算。
在教学中,能够使学⽣认识到吸引与排斥的⽭盾的差别和对⽴统⼀是认识与理解固体的结合规律与性质的关键,培养学⽣的辩证思维能⼒。
第三章晶格振动与晶体的热学性质【教学⽬标】通过本章的教学,能够使学⽣理解简谐近似、格波概念、声⼦概念;理解玻恩-卡曼边界条件;了解三维格波的⼀般规律、晶格振动的⾮简谐效应;了解确定晶格振动谱的实验⽅法;掌握⼀维单原⼦、双原⼦晶格振动的格波解与⾊散关系;掌握晶格振动模式密度的计算⽅法;理解晶格热容量的量⼦理论、掌握爱因斯坦模型与德拜模型;理解格林爱森近似、掌握晶格状态⽅程。
结合例题分析和习题训练,提⾼学⽣分析问题和解决问题的能⼒。
第四章能带理论【教学⽬标】通过本章的教学,使学⽣能够了解晶体能带理论的基本假设和处理问题的基本思路;理解布洛赫定理及其推论的证明,掌握晶体能带的基本特征;熟悉克龙尼克—潘纳模型的求解与结论;熟悉布⾥渊区、费⽶⾯等基本概念;了解平⾯波⽅法、赝势⽅法;掌握近⾃由电⼦近似⽅法及其结论;掌握紧束缚近似⽅法的运⽤;掌握能态密度的计算⽅法。
基泰尔. 固体物理导论. 参考文献一、概述1. 介绍固体物理学的重要性和研究对象2. 引出本文主要内容二、基泰尔固体物理导论概述1. 基泰尔的学术背景和成就2. 《固体物理导论》的出版历史和影响三、固体物理导论的主要内容1. 原子结构和晶体学1) 原子的结构和性质2) 晶体的分类和性质2. 晶格振动和声学性质1) 晶格振动的基本理论2) 固体中的声波传播3. 电子结构和导电性1) 原子的电子结构2) 固体中的电子行为与导电性4. 磁性与磁介质1) 磁性材料的分类与特性2) 磁介质的应用与研究5. 绝缘体和半导体1) 绝缘体与半导体的性质对比2) 半导体材料与器件的发展四、《固体物理导论》的学术贡献1. 对固体物理学的理论框架和实验研究的影响2. 在教学和科研领域的地位和价值五、结论1. 总结基泰尔的《固体物理导论》对固体物理学研究的重要性和影响2. 展望固体物理学领域的未来发展方向参考文献基泰尔. 固体物理导论. Springer-Verlag出版社. 1986.六、基泰尔固体物理导论概述基泰尔(Charles Kittel)是一位美国著名的物理学家,生于1916年。
他曾在伯克利加州大学任教并从事磁性物理学、凝聚态物理学等领域的研究工作。
基泰尔教授是固体物理学领域的权威专家,他在磁性、声子、电子结构等方面的研究成果丰硕,对固体物理学的发展做出了杰出贡献。
《固体物理导论》是基泰尔教授于1953年首次出版的著作,其后多次修订,成为固体物理学领域最为权威和经典的教材之一。
这部著作系统全面地介绍了固体物理学的基本理论和方法,对研究者和学习者有着重要的指导意义。
《固体物理导论》对于推动固体物理学的研究和教学有着深远的影响,被誉为固体物理学领域的“圣经”。
七、固体物理导论的主要内容1.原子结构和晶体学《固体物理导论》首先介绍了固体物理学的基本概念和原子结构的特点。
基泰尔教授深入浅出地阐述了原子结构的基本理论,包括原子核和电子的构成,以及原子的能级和轨道结构。
物理学专业优质课固体物理学导论物理学专业优质课 | 固体物理学导论导言物理学是自然科学中探讨物质、能量及其相互作用的学科,而固体物理学则是物理学中一个广泛且重要的分支。
固体物理学研究固体物质的性质、结构与行为,对于了解材料科学、电子学、光学、能源领域等具有重要的应用价值。
本文将介绍物理学专业中一门优质课程——固体物理学导论。
第一章 | 课程简介固体物理学导论是物理学专业本科阶段的一门核心课程。
该课程旨在培养学生对固体物理学基本概念、现象和理论的初步了解,以及运用物理学方法解决实际问题的能力。
通过学习固体物理学导论,学生将对材料的结构、热学性质、电学和磁学性质等有一个全面的认识。
第二章 | 课程内容1. 固体物质的结构与晶体学在固体物理学导论中,学生将学习固体内部的结构和晶体学原理。
了解晶体的结构对于理解固体物理学的基本概念和性质具有重要意义。
通过讲授晶体的点阵、晶胞和晶面,学生能够了解晶体的周期性结构以及晶体学中的基本术语和概念。
2. 热学性质固体物理学导论也涵盖了固体的热学性质,包括热膨胀、热导率和热容等。
学生将学习热学性质与固体内部结构的关系,以及如何应用热学性质来解决实际问题。
3. 电学性质电学性质是固体物理学的另一个重要方面。
在固体物理学导论中,学生将了解固体材料中电子的行为以及带电粒子在晶格中的运动。
电导率、介电常数等概念将被介绍,并与固体材料的特性相关联。
4. 磁学性质通过固体物理学导论,学生将初步了解固体材料的磁性。
课程将包括磁场的概念、磁畴理论、铁磁性等相关内容。
通过学习磁学性质,学生将了解磁场对固体物质的影响以及如何利用磁学性质来设计和开发磁性材料。
第三章 | 学习方法与实践1. 理论学习固体物理学导论侧重于理论知识的学习。
学生将通过教材阅读、课堂讲解和小组讨论等学习方式,掌握固体物理学导论的基本概念和理论框架。
2. 实验研究为了加深对固体物理学的理解,课程还包含实验研究的环节。