第一章-晶体结构-《固体物理学》黄昆-韩汝琦PPT课件
- 格式:ppt
- 大小:25.40 MB
- 文档页数:142
第一章晶体结构§1-1 绪论固体物理与力学、电动力学、量子力学等学科不同,这些学科学习的是一种运动形式,而固体物理学习的则是一类物质,固体物理学习晶体的几何结构,学习形成晶体结构的原子的最普遍的运动形式,即晶格振动,学习晶体中的能量特征和运动,然后学习半导体物理超导电性等一些专题问题。
引入:固体是指在承受切应力时具有一定程度刚性的物质。
在相当长的时间里,人们研究的固体主要是晶体,晶体知识作为一门科学的出现,科学界公认是在17世纪中叶,距今已有300多年。
固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?一、固体物理的研究对象固体物理是研究固体的微观结构,组成固体的粒子(原子、离子、电子)之间相互作用与运动规律,并在此基础之上阐明固体的宏观性质和应用的学科。
它分为:晶体、非晶体和准晶体三类。
1、晶体:原子按一定的周期排列成规则的固体(即,长程有序) 例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。
——图XCH001_055 和图XCH001_0001_03 是CaCO3和雪花结晶的结构——图XCH001_055 是高温超导体YBaCuO晶体的结构2、非晶体:原子的排列没有明确的周期性(短程有序),如:玻璃、橡胶、塑料。
——图XCH001_036_01 和图XCH001_036_02 分别是Be2O3单晶和非晶结构。
3、准晶体:介于晶体和非晶体之间的新的状态——称为准晶态。
理想晶体:内在结构完全规则的固体,又叫做完整晶体;实际晶体:固体中或多或少地存在有不规则性,在规则(排列)的背景中尚存在微量不规则性的晶体——近乎完整的晶体。
二固体物理的研究方法固体物理主要是一门实验性学科。
为了阐明所揭示出来的现象之间内在的本质联系,需要建立和发展关于固体的微观理论。
固体(晶体)是一个很复杂的客体,每一立方米中包含10个原子、电子,而且它们之间的相互作用相当强.固体的宏观性质就是如此大量有约23的粒子之间的相互作用和集体运动的总表现。
̯ ҂➘⤵⮳ⵃ⾥ 䆐
҂➘⤵ ⵃ⾥ ҂⮳㐂 ㏳ ㇁ 喈 Ƞ⻪ Ƞ⩤ ͺ䬣Ⱗρҋ⩗̽䓿 㻳 Д䬿 㘬̽⩗䕃⮳ ⼀ȡ
҂ ㆪ
҂喈 喉喚 ̯ ⮳ 㻳 ⮳ ҂喈䪮⼺ 喉喌Һ 喚 ♥⮳ ⯿ȠⅣ Д ϩ ⮳ ҂䩆Ƞ 䘬 ҂喛
XCH001_055 XCH001_0001_03 CaCO3 䰙㟠㐂 ⮳㐂 喌 XCH001_055 倇⍘䊴 ҂YBaCuO ҂⮳㐂 ȡ
䲍 ҂喈䲍 喉喚 ⮳ ⇐ ⮳ 喈ⴜ⼺ 喉喌 喚⣪⦲Ƞᾐ㘥Ƞ ȡ
XCH001_036_01 XCH001_036_02 Be2O3 䲍 㐂 ȡ
҂喚1984 Shechtmanへϩ ε⩗ 䕎 ∄ ⮳AlMn 䜀͜⮳⩤ 㵼 ͜喌 ⣟ε σ䛼 ⼟⮳ ◨ 喌 ◨⮳ 䨿⼺ ̼ων ҂⮳ 喌 Ϻν ҂ 䲍 ҂ͺ䬣⮳ ⮳⟥ 喌⼟ͩ ȡ
⤵ ҂喚 㐂 㻳 ⮳ ҂喌 ҂喛
䭴 ҂喚 ҂͜ ̼㻳 喌 㻳 喈 喉⮳㗻 ͜ 䛾̼㻳 ⮳ ҂ 䔀ͽ ⮳ ҂ȡ
λ ҂➘⤵⮳ 䓶⼺
҂ 㻳 ⮳ ҄ ⟥ ҂ ⮳ ⼟ ̽ Ѕ➘⤵ 䉗ͺ䬣 ̯ 㖃㈪喛 ҂ ⮳㻳 䘗㻳 ⮳ ȡ
̲ͅ㏙ 喈䄄 ДṜ⤲ ⼞⮳ὐ 㼒䛹 㼒ⴢ⮳ 䉗 㼒⤵䲑喛
ͅ㏙喌䭮㓬ӌ䃓ͩ 㼒ⴢ ҂ ⩠̯ϊ ⮳ȠⰧ ⮳Ƞ 㵻 䲑 ⮳ Ć ⴢć 㻳 䛼 䯵㔻 ⮳ 䔈͙ ⵯ̹喛
Όͅ㏙͜ 喌 㤡 ε⾩䬣◨䭤 䄣喌ằ ε ⮳➨ ȡ
Όͅ㏙ 喛䉨 ≊ 喌⚹ Ƞ 㒆へ⠛⿺ ε ν ҂ 㻱 ҄㐂 ⮳⤵䃩҂㈪喌ͩ䔊̯ₔⵃ⾥ ҂㐂 ⮳㻳 ӊε⤵䃩ӌ 喌 ⼞㉞⮳ 䛾 侻κ Όͅ㏙ϩЛ䔇 㐂ε㠔 䛼㺰⮳㏾侻㻳 Һ ν ҂℃☜⮳ 䮵⣯ 喌 ν䜀 ☜ ⩤ 䉗⮳偾 喍Ҋ 喌ͩε䔊̯ₔε㼒䔈ϊ㏾侻㻳 ⮳ 䉗喌 ⣟ε̯ϊ 䄣ȡ
ͅ㏙ ➨冰 ≊ѕ ⿺ε㏾ ⮳䜀 㜙⩠⩤ 䃩へ喌 ͅ㏙ 喌䔀В➘⤵ ⮳ 喌ҮϩЛ ҂⮳䃓䃵䔊 ε̯͙ ⮳䭥⃤Ƞ 喌X ㏮ ӊεϩㆪⰣ ⿔ ҂ 䘗㐂 ⮳ ȡ
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。