第三章毛细管电泳法讲述介绍
- 格式:ppt
- 大小:4.52 MB
- 文档页数:55
毛细管活化:1.甲醇5min 洗去毛细管在制作过程中的矿物油和酯类;
2.水2min 冲去甲醇;
3.0.1MNaOH 15~30min 平滑毛细管内表面,活化硅羟基;
4.水10min 冲去NaOH;
5.缓冲液10min 平衡毛细管。
毛细管活化可以用专门冲洗毛细管的装置,也可以在毛细管电泳仪上设置冲洗程序活化。
毛细管涂层:可以使用真空泵涂层,也可以使用毛细管冲洗装置,或者在仪器上设置冲洗程序涂层。
使用冲洗装置涂层效果较好。
毛细管灌胶:毛细管凝胶电泳中需要给毛细管灌胶。
琼脂糖或者聚丙烯酰胺胶。
琼脂糖比较容易灌且不易产生气泡,注意灌胶时要一次搞定,最忌灌入又吸出,这样容易产生气泡。
聚丙烯酰胺比较难灌,分线性和交联。
线性即制胶时不加入Acr-Bis,而是Acr溶液。
毛细管凝胶电泳,一般用线性的,因为当它的交联度大时,虽然孔径变小、机械强度变大、但是其聚合时体积缩小严重,所以降低交联度甚至不加入Bis,使交联度为0.同时将浓度加大,聚合时凝胶体积变化不严重了,既保证机械强度,又避免气泡产生。
毛细管电泳的分离原理
毛细管电泳(CE)是一种基于电动力和色谱分离原理的分析技术。
它利用毛细管中载带电荷的离子在电场作用下的迁移速率的差异来实现分离。
在毛细管电泳中,首先将样品注入到一条非常细的毛细管内,然后通过使毛细管两端施加电场来产生电动力。
当电场施加到毛细管上时,带电的分析物会受到电场力的作用而在毛细管内迁移。
不同的物质由于自身的特性,比如大小、电荷等,会以不同的速率迁移。
具体来说,有两种常用的毛细管电泳模式:
1. 毛细管凝胶电泳(CGE):在该模式下,毛细管内填充了哑离子聚合物凝胶,通过凝胶的孔道来实现分离。
样品中的离子在电场作用下,根据尺寸的不同,在凝胶中迁移速度也不同,从而实现分离。
2. 毛细管毛细管区带电泳(CZE):在该模式下,毛细管内不填充任何分离介质。
样品中的离子自行在毛细管中迁移,根据大小和电荷的不同,迁移速度也不同,从而实现分离。
总的来说,毛细管电泳的分离原理是利用样品中离子在电场作用下的迁移速率差异,根据大小和电荷特性,在毛细管中实现分离。
毛细管电泳科技名词定义中文名称:毛细管电泳英文名称:capillary electrophoresis;CE定义1:以毛细管为分离通道、高压电场为驱动力的电泳分离分析法。
包括毛细管自由流动电泳、毛细管区带电泳等。
应用学科:生物化学与分子生物学(一级学科);方法与技术(二级学科)定义2:以毛细管为分离通道、高压电场为驱动力的电泳分离分析法。
包括毛细管自由流动电泳、毛细管区带电泳、毛细管等电聚焦等。
应用学科:细胞生物学(一级学科);细胞生物学技术(二级学科)以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片毛细管电泳(capillary electrophoresis,CE)又称高效毛细管电泳(high performance capillary electrophoresis,HPCE),是一类以毛细管为分离通道、以高压直流电场为驱动力的新型液相分离技术。
毛细管电泳实际上包含电泳、色谱及其交叉内容,它使分析化学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。
长期困扰我们的生物大分子如蛋白质的分离分析也因此有了新的转机。
目录基础理论双电层Zeta 电势淌度、绝对淌度和有效淌度电渗、电渗流和表观淌度分类特点仪器系统影响分离因素缓冲液pH值分离电压温度添加剂进样测定药物与蛋白结合常数质谱联用微全分析系统应用综述CE在药物制剂分析中的应用CE在药物杂质检查中的应用CE在中药分析中的应用CE在手性药物分析中的应用生物样本中的药物及其代谢产物分析展望基础理论双电层Zeta 电势淌度、绝对淌度和有效淌度电渗、电渗流和表观淌度分类特点仪器系统影响分离因素缓冲液pH值分离电压温度添加剂进样测定药物与蛋白结合常数质谱联用微全分析系统应用综述CE在药物制剂分析中的应用CE在药物杂质检查中的应用CE在中药分析中的应用CE在手性药物分析中的应用生物样本中的药物及其代谢产物分析展望展开编辑本段基础理论双电层双电层是指两相之间的分离表面由相对固定和游离的两部分离子组成的与表面异号的离子层,凡是浸没在液体中的界面都会产生双电层。
毛细管电泳法分离水杨酸、苯甲酸及阿司匹林中的含量测定毛细管电泳法分离水杨酸、苯甲酸及阿司匹林中的含量测定毛细管电泳又称高效毛细管电泳( High Performance Capillary Electrophoresis, HPCE) 是一种仪器分析方法。
通过施加10-40kV 的高电压于充有缓冲液的极细毛细管,对液体中离子或荷电粒子进行高效、快速的分离。
现在,HPCE 已广泛应用于氨基酸、蛋白质、多肽、低聚核苷酸、DNA 等生物分子分离分析,药物分析,临床分析,无机离子分析,有机分子分析,糖和低聚糖分析及高聚物和粒子的分离分析。
人类基因组工程中DNA 的分离是用毛细管电泳仪进行的。
毛细管电泳较高效液相色谱有较多的优点。
其中之一是仪器结构 简单(见图1)。
它包括一个高电压源,一根毛细管,紫外检测器及计算机处理数据装置。
另有两个供毛细管两端插入而又可和电源相连的缓冲液池。
high-v oltagepower supply BufferV ialBuffer V ial Detector Recording dev icecapillaryElectrode Electrode图1 CE 仪器组成示意图毛细管中的带电粒子在电场的作用下,一方面发生定向移动的电泳迁移,另一方面,由于电泳过程伴随电渗现象,粒子的运动速度还明显受到溶液电渗流速度的影响。
粒子的实际流速 V 是电泳流速度 Vep 和渗流速度 Veo 的矢量和。
即:V = Vep + Veo (1)电渗流是一种液体相对于带电的管壁移动的现象。
溶液的这一运动是由硅/水表面的Zeta 势引起的。
CE 通常采用的石英毛细管柱表面一般情况下(pH>3)带负电。
当它和溶液接触时,双电层中产生了过剩的阳离子。
高电压下这些水合阳离子向阴极迁移形成一个扁平的塞子流,如图2。
毛细管管壁的带电状态可以进行修饰,管壁吸附阴离子表面活性剂增加电渗流, 管壁吸附阳离子表面活性剂减少电渗流甚至改变电渗流的方向。
分离的原因:电泳迁移,电渗迁移电泳迁移:在高压电场下,带电离子向相反的方向移动。
电渗迁移:当毛细管内充满缓冲溶液时,毛细管壁上的硅羟基发生解离,生成氢离子溶解在溶液中,这样就使毛细管壁带上负电荷与溶液形成双电层,在毛细管的两端加上直流电场后,带正电的溶液就会整体的向负极端移动,这就形成了电渗流。
在操作缓冲溶液中,带电粒子的运动速度等于电泳速度和电渗速度的矢量和,电渗速度一般大于电泳速度,因此即使是阴离子也会从阳极端流向阴极端。
加大缓冲溶液的酸度、在缓冲溶液中加入有机试剂都会减少硅羟基的解离,减小电渗流。
分离模式毛细管电泳的分离模式有以下几种。
(1)毛细管区带电泳(CZE)将待分析溶液引入毛细管进样一端,施加直流电压后,各组分按各自的电泳流和电渗流的矢量和流向毛细管出口端,按阳离子、中性粒子和阴离子及其电荷大小的顺序通过检测器。
中性组分彼此不能分离。
出峰时间称为迁移时间(tm),相当于高效液相色谱和气相色谱中的保留时间。
(2)毛细管凝胶电泳(CGE)在毛细管中装入单体和引发剂引发聚合反应生成凝胶,这种方法主要用于分析蛋白质、DNA等生物大分子。
另外还可以利用聚合物溶液,如葡聚糖等的筛分作用进行分析,称为毛细管无胶筛分。
有时将它们统称为毛细管筛分电泳,下分为凝胶电泳和无胶筛分两类。
(3)毛细管等速电泳(CITP)采用前导电解质和尾随电解质,在毛细管中充入前导电解质后,进样,电极槽中换用尾随电解质进行电泳分析,带不同电荷的组分迁移至各个狭窄的区带,然后依次通过检测器。
(4)毛细管等电聚焦电泳(CIEF)将毛细管内壁涂覆聚合物减小电渗流,再将样品和两性电解质混合进样,两个电极槽中分别加入酸液和碱液,施加电压后毛细管中的操作电解质溶液逐渐形成pH梯度,各溶质在毛细管中迁移至各自等电点(pI)时变为中性形成聚焦的区带,而后用压力或改变检测器末端电极槽储液的pH值的办法使溶质通过检测器。
(5)胶束电动毛细管色谱(MEKC或MECC)当操作缓冲液中加入大于其临界胶束浓度的离子型表面活性剂时表面活性剂就聚集形成胶束,其亲水端朝外憎水非极性核朝内,溶质则在水和胶束两相间分配,各溶质因分配系数存在差别而被分离。