当前位置:文档之家› 物理化学(下)总结材料

物理化学(下)总结材料

物理化学(下)总结材料
物理化学(下)总结材料

《物理化学》(下) (大学第五版)总结

第八章 电解质溶液

一、基本概念与定义 1. 离子迁移数t

电解质溶液导电时,溶液中的i 离子运载的电流I i 与总电流之比(即i 离子所承担的导电任务的分数)。

1i i i i i

i

i

i

Q I u

t t

Q I u =

===∑∑

2. 离子电迁移率(离子淌度)u i :单位电位梯度时离子的运动速率。

3. 电导与电导率

电导G(

-1):电阻

R 的倒数。a

电导率(-1·m -1):电阻率

的倒数。

电导池常数K cell :K cell = L/A L: 电极之间的距离;A:电极的面积 4. 摩尔电导率

m (S ·m 2·mol -1

)

含1mol 电解质的溶液置于相距单位距离的2个平行电极之间的电导池所具有的电导。

m c

κ

Λ=

5.电解质的平均活度和平均活度因子

对于任意价型的强电解质M

+B

-

平均活度因子 =[ (+)+ (-)-]1/(+ + -

) a = m

m =[ (m +)

+ (m

-)

-]1/(

+ +

- )

m + = +m ;m - = -m 电解质活度a = (a )(

+ +

- )

6. 离子强度I

21

2i i i

I m z =

∑ 7. 离子氛

电解质溶液中环绕在某一离子B 周围电荷与B 相反、电荷数量与B 相等的异号离子构成的球体。 8. 基本摩尔单元

发生1mol 电子转移电极反应的物质的量1/zM n+ + e 1/z M

二、基本公式 1. Faraday 电解定律

往电解池通电,在电极上发生化学反应的物质的量与通入的电量成正比。 Q = It = znF

z :电极反应M n+ + ze M 中电子转移的计量数。

n:析出的M 的量; 2. 离子独立运动定律

对于电解质M

+B

-的无限稀释溶液,有:

,,m m m νν∞∞∞

++--Λ=Λ+Λ

3. 离子迁移数

t i = n 迁移/n 电解 (希脱夫法,界面移动法)

,m i

i m

t ν+Λ=

Λ

4. Debye-H ückel 极限公式

lg A z z I γ±+-

=- (A = 0.509)

三、电导测定的应用

1. 求弱电解质的解离度和电离常数

2. 求难溶盐的溶解度

3. 水的纯度

4. 电导滴定

第九、十章 原电池与电解池

1. 原电池与电解池的比较

原电池

电解池

化学能电能

负极(阳极),正极(阴极),

电池中电极的极性取决于组成电池的电极氧化还原电势。 E 端 = E 可逆 -

- 阴 -IR G T, p = W f, R = -zF E 可逆 < 0, E 可逆 > 0 电能化学能

负极(阴极),正极(阳极)

电解池中电极的极性取决于外加电源的极性。 E 分解 = E 可逆 +

+ 阴 +IR

G T, p = W f, R > 0

在可逆条件下,阳

= 0; 阴 = 0; IR = 0

对于原电池,I 0, 电极反应可逆,电池中其他过程也可逆(如液界电势0),电池为可逆电池

E 端 = E 可逆 =

+,R -

-,R (电池电动势的测定采用对消法)

Weston battery(cell): Cd(Hg)CdSO 4(饱和) HgSO 4(s)

Hg(l)

Pt

对于电解池,I 0, 电极反应可逆,不存在极化。 E 分解 = E 可逆 =

+,R -

-,R

2.可逆电极:反应可逆的电极。

(1)第一类电极: M –ne M n+负极:M M n+;正极:M n+ M

金属电极(如Cu电极)、气体电极(如氢、氧电极)、卤素电极、汞齐电极等。

(2) 第二类电极:M x A y + ne xM(s) + yA m-

负极:M(s)M x A y (s)A m-

正极:A m-M x A y (s)M(s)

甘汞电极,银-氯化银电极等,常用作参比电极。

(3) 第三类电极(氧化还原电极):M n+ + xe M(n-x)+

负极:M n+(a1),M(n-x)+(a2)Pt;正极:Pt M n+(a1),M(n-x)+(a2)

Fe3+(a1),Fe2+(a2)Pt

3. 盐桥

采用离子迁移数相近的高浓度电解质溶液减小原电池液界电势的装置。

5. 双电层

在电极表面电荷层和与之相接触的电解质溶液中多余的异号离子构成的电荷分布层(紧密层+扩散层)。

6. 电极极化效应和超电势

电极极化效应:由于电极反应的不可逆,使得在反应条件下,出现电极电势偏离可逆电极反应时的平衡电极电势的现象。

引起电极极化原因:浓差极化(可降低)、电化学极化。

超电势:某一电流密度下的电极电势iR与该条件下可逆电极电势R之间的差值。

= iR - R ; 阴 = R - iR

7. 分解电压

电解过程中,能使电解质溶液连续发生电解反应所必需的最小外加电压。

E 分解 = E 可逆 +

E iR + IR = E 可逆 +

+ 阴 + IR

8. 离子选择性电极

测量溶液中某种特定离子浓度的指示电极 (如:玻璃电极、F -选择性电极等)。 电极的基本形式: 参比电极(Ag

AgCl(s)

Cl -)

已知特定离子活度的溶液电极膜(晶体膜)

9. 金属的腐蚀与钝化

金属的腐蚀有化学腐蚀与电化学腐蚀。就电化学腐蚀而言,金属表面在可形成微电池的条件下构成微电池使金属发生溶解的过程。电化学腐蚀包括析氢腐蚀和吸氧腐蚀。

金属的钝化:在一些电解质溶液中,金属表面在一定的电流密度和电势围形成致密氧化膜的现象。 二、公式 1. 电池的电动势

E =

+ - -

2. 可逆电池反应的 Nernst 方程

对于可逆的电池反应:aA + bB = fF + gG

ln f g F

G a b

A B

a a RT E E zF a a =- 3. 可逆电极反应的 Nernst 方程

可逆电极反应:mOx(氧化态) + ze

nRed(还原态)

(Re )

Re (Re )ln Ox d n

d Ox d m Ox

a RT zF a ??

=-

4. 可逆电池电动势与电池反应热力学状态函数变化的关系

()()(

)r m r m r m p p

r m r m r m p G zFE

G E

S zF T T

E

H G T S zFE zFT T

θθ

θ

θθθ

?=-????=-=????=?+?=-+?

TK 时,可逆电池反应热效应:

()R r m p R r m

E Q T S zFT T Q H θ

θ?=?=?≠?

5. T afel 公式

电极反应过程中,H 2在金属上的超电势与通过电极的电流密度的关系

= a + bln j

6. 电动势测定的应用

测定E 0和

0、热力学状态函数的变化、与电池反应相关的各种平衡常数、电解质溶液的

以及t i (用

浓差电池求液界电势)等。

关键:(1)能将化学反应设计为相对应的两个合理的电极反应,组合为电池。 (2)利用Nernst 方程和其它关系建立电动势与所求量之间的关系。

第十一和十二章 化学动力学

一、基本概念

1. 反应速率与速率常数

T 一定时的恒容系统中进行的化学反应:aA + bB = fF + gG

11111G I A A F I A B

I dC dC dC dC dC r k C C dt a dt b dt f dt g dt

αβ

ν=

=-=-===

G

A B F k k k k a b f g

=== k I 对应于用I 组分表示反应速率时的速率常数。

k = f (T, 催化剂)

对于气相反应,若气体系统视为理想气体,用组分I 的分压表示反应速率与对于的速率常数k p 和用组分浓度表示的速率常数之间用p i V = n I RT 联系。

2. 基元反应与总包反应

基元反应:反应物分子在一次化学行为中就能完成的反应。分为单分子、双分子和三分子反应。 总包反应(非基元反应、复杂反应):多步基元反应的组合。 3. 反应速率方程与反应级数

表达化学反应速率与反应组分浓度(微分式),或某一反应组分浓度与反应时间的关系式(积分式)。

A A

B d

C kC C dt

αβ

-

= (速率方程的微分式)

和 分别为反应对组分A 和B 的级数。n =

+

为反应的总级数(注意与反应分子数的区别与

联系)。

在一个反应中,反应级数、k 、E a 、A 及r 0称为反应的动力学参数。 4. 活化能E a

一个基元反应的活化能是使具有平均能量的1mol 反应物分子变为发生反应的分子所需的能量。 对于非基元反应,活化能没有明确的物理意义。 5. 双分子的有效碰撞频率

一定温度下,双分子的有效碰撞频率:

2

21/28(

)exp()c

AB AB E RT

Z d L RT

ππμ

=-

A B

AB A B A B

m m d r r m m μ=+=

+;

阈能E c :反应物分子碰撞能发生反应的最低能量。 6. 概率因子

概率因子P =A 实验 /A 理论

7. 反应的衰期t : 反应至反应物A 的剩余浓度占初始浓度分数所需的反应时间。

二、基本公式 1. 质量作用定律

基元反应 A + B = C

反应速率与反应物组分浓度(含相应的指数)的乘积成正比,浓度的指数为反应式中各反应物质的计量系数。

2. 温度对反应速率的影响(vant Hoff 规则与Arrhenius 方程)

vant Hoff 规则:

10

2~4T T

r r += Arrhenius 方程:exp()a

E k A RT

=-

3. 反应速率常数

2

1/28(

)exp()c

AB E RT

k d L RT

ππμ

=-

(硬球碰撞理论 SCT) 1()exp()exp()n r m

r m B S H k T k c h R RT

θθθ≠≠-??=- (过渡态理论的Eyring 方程)

4. 频率因子A

2

1/28(

)AB RTe

A d L ππμ

= (硬球碰撞理论 SCT)

1()exp()n n r m

B S k Te A c h R

θ

θ≠-?= (过渡态理论)

5. 反应的活化能

(ln ln )a E RT A k =-

12

2211

ln ()a RTT k E T T k =

- (Arrhenius 方程)

1

2

a C E E RT =+ (硬球碰撞理论 SCT)

a r m E H nRT θ

≠=?- (气相反应) a r m E H RT θ≠=?+ (凝聚态反应)

由键焓估算基元反应的E a : (1)

22a A A B B A A B B A B 2AB

()30%()30%

E E E L εε----+→=+?=+? (2)

2a Cl-Cl Cl-Cl H Cl HCl Cl

5.5% 5.5%

E E L ε+→+=?=??

(3)

2a Cl Cl Cl Cl Cl M 2Cl M E E L

ε--+→+==?

(4)

2a Cl Cl M Cl M E 0

++=+=

对于可逆反应

,,

22

ln ln(/)

C

a a

C r m

k

K

k

E E

d K U d k k

dT RT RT dT

θ

θθ

+

-

-++-

=

-

?

===

三、具有简单级数的反应速率方程

1. 反应速率方程及其特征

反应级数n

1/81/41/2

::

t t t说明

1

2

7:6:4

3:2:1

7:3:1

t1/8和t1/4分别为反应物反应

了7/8和3/4所需的时间

2. 确定反应速率方程

确定反应速率方程要求出相关的动力学参数。其中,反应级数的求法如下:

(1) 尝试法(积分法):将实验数据代入各级速率方程的积分式求k,以k 是否为常数确定n.。 (2) 微分法

A A ln ln(d /)ln ln r c dt k n c =-=+

12

12

lg lg lg lg r r n c c -=

-

(3)半衰期法

1/2 ln ln (1)ln t A n a =--

''

1/21/2

1[lg(/)/lg(/)]n t t a a =+ (4)孤立法(改变物质数量比例):在其他反应物大大过量条件下,求某反应物的分级数。

四、典型复杂反应与速率方程的近似处理法 1. 典型的复杂反应

典型的复杂反应为1-1的对峙反应,平行反应和连续反应。 1-1的对峙反应的动力学特点:

111111ln

()()k a

k k t k a k k x

--=+-+

反应速率方程与一级反应的速率方程形式相同。

k = (k 1 + k -1) K = k 1/k -1

平行反应的动力学特点:

速率方程的微分式和积分式与同级简单反应速率方程相似,速率常数为各平行反应速率常数之和。 当平行反应的各反应均为一级时

12ln

()a

k k t a x

=+- (x = x 1 + x 2)

当各产物的起始浓度为零时,各产物浓度之比等于速率常数之比

1

11222

r k x r k x ==

改变产物相对含量的方法是改变k 1/k 2。采用催化剂,改变反应温度

连续反应的动力学特点:

在反应过程中,中间产物B 出现浓度极大值y m 。中间产物极大值的位置和高度取决于两个速率常数的相对大小,

12121

()m m

k t k t m k a y e e k k --=

--

反应有速率控制步骤。 2. 反应速率方程的近似处理法

速率控制步骤(反应的总速率近似等于速控步骤的反应速率),稳态近似(活泼中间体的生成速率近似为零)和平衡近似(相对于速控步骤而言,其他步骤可认为近似达到平衡)。

五、各种典型的反应系统 1. 链反应

链的引发-链的传递-链的中止,有直链和支链两类。

涉及中间体为自由基,可用速控步骤和稳态近似法按反应机理建立反应速率方程,反应级数为分数级。 2. 单分子反应

T 一定时,反应速率(用k 表示)随反应物浓度的增加从二级变化到一级。 可用速控步骤和稳态近似法按反应机理建立速率方程。

3. 光化学反应

由初级和次级过程组成,初级过程遵守光化学2个基本定律。反应速率方程可用速控步骤和稳态近似法按反应机理建立。量子产率的计算。

4. 催化反应

催化反应的特点、催化反应类型。

酶催化反应:酶催化的反应速率与酶、底物、温度、PH 以及其他干扰物质有关。

T 一定时,根据Michaelis-Menten 提出的酶催化反应机理,可用速控步骤和稳态近似法建立反应速率方程,并求出K M 和r m 。

12

1

M k k K k -+=

[S]很大,r = r m = k 2[E 0] 若/2[]2

m m M r r r K S =

=;

11

[]

M m m K r r r S =+

按气-固相催化反应的一般机理,(1)和(5)步[扩散步骤]为非控制步骤的前提下,气-固相催化反应的总速率由(2)、(3)和(4)决定。气-固催化反应有单分子和双分子反应。

T 一定,反应物的吸附符合Langmiur 等温式,步骤(3)(表面反应步骤)为速控步骤、产物在催化剂表面弱吸附。

对于单分子的气-固催化反应,反应速率方程的建立可按反应机理和上述条件,采用速控步骤近似法建立。

21A A

A A

k a p r a p =

+

反应动力学特点:反应级数由平衡压力和反应物在催化剂表面吸附强弱决定。在不同的实验条件下,可以有不同的反应速率方程。

在上述条件下,反应级数随压力增加从1过渡到0。

当产物为强吸附,反应速率方程与上述有所不同(考虑产物的吸附对覆盖率的影响)。 双分子的气-固催化反应有L-H 和E-R 两种不同的机理。

L-H 机理:在催化剂表面相邻位置上,被吸附的2钟反应物物种之间发生表面反应。 E-R 机理:吸附在催化剂表面的一种反应物物种与气相中另一种反应物分子发生反应。 符合L-H 机理的反应,反应速率方程采用速控步骤近似法建立。

222

(1)A B A B

A B A A B B k a a p p r k a p a p θθ==

++

当保持一组分的分压稳定,r 随另一组分分压的增加出现一个极大值。 符合E-R 机理的反应,反应速率方程采用速控步骤近似法建立。

221A A B

A B A A

k a p p r k p a p θ==

+

反应级数随组分A 在催化剂表面吸附的强弱从一级变化到二级。但反应速率随p A 的增加不出现极大值。可以此作为判别L-H 和E-R 机理的一种依据。

第十三与十四章 表面物理化学与胶体

一、基本概念

1. 表面力与表面Gibbs 自由能

物质三种常态在互相接触过程中,可构成5种界面(g-l 、g-s 、l – s 、s 1 – s 2和l 1 – l 2)。 目前能用实验准确测量的界面力(表面力)为g-l 、

l1 – l2,而

g-s 还无法准确测量。

表面力( =

g-l ):由于液体表面收缩作用于单位长度的力。(N/m)

表面Gibbs 自由能: T 、p 及组成恒定时, 增加系统单位表面积使系统Gibbs 自由能的改变量。(数值上等于T 、p 及组成恒定时,增加单位表面积需要对系统所做的可逆非膨胀功)

从高表面系统的热力学基本方程可得出表面Gibbs 自由能的定义。

B B

B

B B

B

B B

B

B B

B

d d d d d d d d d d d d d d d d U T S P V A dn H T S V P A dn F S T P V A dn G S T V P A dn γμγμγμγμ=-++=+++=--++=-+++∑∑∑∑

B B B B ,,,,,,,,(

)()()()S V n S P n T V n T P n U H F G

A A A A

γ????====????

表面功:

W f, R = dG T, p, nB = dA

对自发过程,dG T, p, nB = dA < 0

2. 溶液表面的吸附

一些物质溶于溶剂形成溶液后,溶液表面浓度C 表面与溶液本体的浓度C 本体不同的现象。 (1)C 表面 > C 本体,正吸附,溶质为表面活性物质。 (2) C 表面 < C 本体,负吸附,溶质为非表面活性物质。 3. 铺展与润湿

T 、p 一定时, l 1-l 2或l-s 界面替代s-g 或l 2-g 界面并形成用新的l-g 界面的过程。 接触角:在s-g, g-l 和s-l 三相交界线的任意点处, s-l 和

g-l 之间的夹角。其大小反映液体在

固体或另一不相溶的液体l 2表面润湿的情况。

= 0,完全润湿; = 90

,不润湿; = 180

,完全不润湿。

也可用铺展系数S 反映铺展情况。S > 0,能铺展。 液体在固体表面的铺展:

0s g l g s l S G γγγ---=-?=-->表面

液体1在液体2表面的铺展:

21210l g l l l g S G γγγ---=-?=-->表面

4. 表面活性剂与临界胶束浓度(CMC)

表面活性剂:分子结构中具有极性(亲水)和非极性(亲油或憎水)基团、能产生明显正吸附(能明显降低纯水表面力)的物质。

表面活性剂水溶液的表面力随溶液浓度的增加而降低。当到达一定浓度后形成胶束,导致溶液的一些物理性质(如电导率、渗透压等)发生明显变化。

形成胶束的最低浓度围为临界胶束浓度。 5. HLB 值(亲水亲油平衡值)

HLB 值表示表面活性剂的亲水性。

对于非离子型表面活性剂,定义石蜡的HLB = 0,聚乙二醇的HLB = 20

1005HLB =

?=?亲水基质量1

值(亲水基质量%)憎水基质量+亲水基质量5

6. 液面的附加压

当液面不处于水平状态时(弯曲),液面压力与水平液面不同。 液面的附加压p r =p 弯曲 – p 水平 ( 0)

7. 毛细现象

当将毛细管插入液体中,由于附加压的存在,产生液体在毛细管(半径为r)的高度与毛细管外液体高度不等的现象。

毛细管外液体高差 2cos ()

l g h Rg γθ

ρρ=

-

8. 表面过剩量或表面超量

T 一定时,溶液表面表面过剩量G 2 = (n 表面 – n 体相)/A s ( 1 0 ) 9. 吸附等温线

T 一定时,气体或液体在固体表面的配合吸附量与气体分压或溶液浓度的关系。 10. 化学吸附与物理吸附

化学吸附是吸附剂表面与吸附质分子发生了化学反应(电子转移、化学键的生成与破坏,原子重排等)的过程。

物理吸附是一种没有涉及化学过程(电子转移、化学键的生成与破坏,原子重排等)的物理作用。 化学吸附与物理吸附存在的明显差别。 11. 胶体分散系统

粒子的大小在10-9~10-7 m 之间,与介质之间有明显的相界面,具有高表面自由能的热力学不稳定系

统。

分散系统有多种分类方法,按分散相和介质聚集状态分类的溶胶系统有气溶胶、液溶胶和固溶胶,一般研究液溶胶中的液-固(憎液)溶胶。 12.

电势

电势:胶粒表面牢固地吸附了同号的荷电离子,在胶粒与分散介质之间扩散双电层的电势 电势的正负根据胶粒所带的电荷决定,电势的数值与胶粒电荷的数值相等,但符号相反。 13. 聚沉值(mol/m 3)

使一定量溶胶在一定时间完全聚沉所需电解质的最小浓度。 二、基本公式

1. Young-Laplace 方程

s ''12

11(

)()p Young Laplace R R γ=+-公式

对于球面,R 1¢ = R 2¢

s '2p R

γ=

2. Kelvin 公式

2''121

211ln

()p M RT p R R γρ=-

3. Gibbs 吸附公式

2222

1()()ln T T a ΓRT a RT a γγ??=-

=-?? 4.氏润湿方程

s-g l-s

l-g

cos γγθγ-=

5. Langmuir 吸附等温式

对于等温下,气体混合物中i 组分的非解离吸附

11i i i i

i i

a p a p θ=

+∑

()

1/a d a a d

k p ap

Langmuir k k p ap

a k k θ=

=

++=吸附等温式

表面覆盖率

i = V i /V i,m

,V i 和V i,m 分别为TK 时的平衡吸附量和饱和吸附量。

1111m m V V V a p

=+? TK 时吸附质的解离吸附 1/21/2

121/2

1/a p a p θ=+

从吸附质分子截面积A m ,可计算吸附剂的总表面积S 和比表面A

m S A Ln =

3-1m /(22.4dm mol ) (STP)n V =?

/A S m =

m 为吸附剂质量

6. Freundlich 等温式

1 /n q kp =

7. Donnan 平衡

对于荷电的大分子,在含有小分子电解质的溶液中达渗透平衡后,渗透压

222221221

22zc c c z c RT zc c π++=+

若电解质的浓度很大(zc 2 << c 1 ),2c RT π≈ 若电解质的浓度很小(zc 2 >> c 1 ),2(1)z c RT π≈+

三、胶体的性质

1. 胶团的结构

胶团(电中性) = 胶粒(荷电) + 离子(与胶粒反号)

胶粒(荷电) = 胶核(电中性) + 选择性吸附离子

利用反应AgNO3 + KI = AgI + KNO3制备胶体,胶粒的电性与稳定剂有关。

[(AgI)m nAg+(n-x)NO3- ]x+xNO3-(作为稳定剂AgNO3过量)

[(AgI)m nI -(n-x)K+ ]x-xK+(作为稳定剂的KI过量)选择性吸附:胶核优先吸附与胶粒组分类似且容易形成胶粒晶格的离子。

2.光学性质

粒径介于10-9–10-7m的胶粒可散射光,产生Tyndall效应,使溶胶的颜色随胶粒大小不同而发生变化。

3. 动力学性质

胶粒的Brown运动、扩散作用和有沉降平衡均为胶体的动力学性质。

胶粒的Brown运动:胶粒在分散介质中的作不规则的热运动,运动的剧烈程度与胶粒的大小和温度有关。

4. 电学性质

胶体中荷电的胶粒在外电场的作用下运动产生电动现象。

电泳:荷电的胶粒在外电场的作用下作定向迁移。(胶粒移动,分散介质不动)

电渗:将溶胶充满在有多孔性的物质,溶胶中的分散介质在外电场的作用下发生移动。(胶粒不动,分散介质移动)

5. 胶体稳定的原因

作为热力学不稳定系统,溶胶系统却能长期稳定地存在,其主要原因为:

(1)溶胶中的胶粒带有相同的电荷,不易聚沉。

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

初中物理所有公式总结

1. 电功(W):电流所做的功叫电功, 2. 电功的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时= 3.6×106焦耳。 3. 测量电功的工具:电能表(电度表) 4. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安 (A);t→秒)。 5. 利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6. 计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 7. 电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦 8. 计算电功率公式: (式中单位P→瓦(w);W→焦;t→秒;U→伏(V); I→安(A) 9. 利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。 10.计算电功率还可用右公式:P=I2R和P=U2/R 11.额定电压(U0):用电器正常工作的电压。 12.额定功率(P0):用电器在额定电压下的功率。 13.实际电压(U):实际加在用电器两端的电压。 14.实际功率(P):用电器在实际电压下的功率。 当U > U0时,则P > P0 ;灯很亮,易烧坏。当U < U0时,则P < P0 ;灯很暗,当U = U0时,则P = P0 ;正常发光。 (同一个电阻或灯炮,接在不同的电压下使用,则有 ;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例220V100W是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。) 15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。 16.焦耳定律公式:Q=I2Rt ,(式中单位Q→焦; I→安(A);R→欧

物理化学公式大全

物理化学公式集 热力学第一定律 功:δW=δW e+δW f (1)膨胀功δW e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f=xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。热Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容C=δQ/dT (1)等压热容:C p=δQ p/dT=(?H/?T)p (2)等容热容:C v=δQ v/dT=(?U/?T)v 常温下单原子分子:C v,m=C v,m t=3R/2 常温下双原子分子:C v,m=C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p—C v=[p+(?U/?V)T](?V/?T)p (2)理想气体C p—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=C p/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T1—T2) 热机效率:η=冷冻系数:β=-Q1/W

可逆制冷机冷冻系数:β= 焦汤系数:μJ-T==- 实际气体的ΔH和ΔU: ΔU=+ΔH=+ 化学反应的等压热效应与等容热效应的关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=Δr U m+RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius不等式: 熵函数的定义:dS=δQ R/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU=TdS-pdV dH=TdS+Vdp dF=-SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V的关系: C V=T C p=T Gibbs自由能与温度的关系:Gibbs-Helmholtz公式=- 单组分体系的两相平衡: (1)Clapeyron方程式:=式中x代表vap,fus,sub。(2)Clausius-Clapeyron方程式(两相平衡中一相为气相):=

物理化学的心得体会

物理化学心得体会 经过对物理化学的学习,感觉很系统,很科学,我对这门课程有了进一步的了解与熟悉。物理化学的研究内容是:热力学、动力学、和电化学等,它是化学中的数学、哲学,学好它必须用心、用脑,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,关键还在于用脑子去想。 学习物理化学应该有自己的方法:一、勤于思考,十分重视教科书,把其原理、公式、概念、应用一一认真思考,不粗枝大叶,且眼手并用,不放过细节,如数学运算。对抽象的概念如熵领悟其物理意义,不妨采用形象化的理解。适当地与同学老师交流、讨论,在交流中摒弃错误。二、勤于应用,在学习阶段要有意识地应用原理去解释客观事物,去做好每一道习题,与做物化实验一样,“应用”对加深对原理的理解有神奇的功效,有许多难点是通过解题才真正明白的。做习题不在于多,而在于精。对于典型的题做完后一定要总结和讨论,力求多一点“觉悟”。三、勤于对比与总结,这里有纵横二个方面,就纵向来说,一个概念原理总是经历提出、论证、应用、扩展等过程,并在课程中多次出现,进行总结定会给你豁然开朗的感觉。就横向来说,一定存在相关的原理,其间一定有内在的联系,如熵增原理、Gibbs自由能减少原理、平衡态稳定性等,通过对比对其相互关系、应用条件等定会有更深的理解,又如把许多相似的公式列出对比也能从相似与差别中感受其意义与功能。在课堂上做笔记,课下进行总结,并随时记下自己学习中的问题及感悟,书本上的、课堂上的物化都不属于自己,只有经历刻苦学习转化为自己的“觉悟”才是终身有用的。 第二、三章是热力学部分的核心与精华,在学习和领会本章内容中,有几个问题要作些说明以下几点:1. 热力学方法在由实践归纳得出的普遍规律的基础上进行演绎推论的一种方法。热力学中的归纳,是从特殊到一般的过程,也是从现象到本质的过程。拿第二定律来说,人们用各种方法制造第二类永动机,但都失败了,因而归纳出一般结论,第二类永动机是造不出来的,换句话说,功变为热是不可逆过程。第二定律抓住了所有宏观过程的本质,即不可逆性。热力学的整个体系,就是在几个基本定律的基础上,通过循环和可逆过程的帮助,由演绎得出的大量推论所构成。有些推论与基本定律一样具有普遍性,有些则结合了一定的条件,因而带有特殊性。例如从第二定律出发,根据可逆过程的特性,证明了卡诺定理,并得出热力学温标,然后导出了克劳修斯不等式,最终得出了熵和普遍的可逆性判据。以后又导出一些特殊条件下的可逆性判据。这个漫长的演绎推理过程,具有极强的逻辑性,是热力学

大学物理化学公式大全Word版

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学(下)总结

《物理化学》(下) (南京大学第五版)总结 第八章 电解质溶液 一、基本概念与定义 1. 离子迁移数t 电解质溶液导电时,溶液中的i 离子运载的电流I i 与总电流之比(即i 离子所承担的导电任务的分数)。 1i i i i i i i i Q I u t t Q I u = ===∑∑ 2. 离子电迁移率(离子淌度)u i :单位电位梯度时离子的运动速率。 3. 电导与电导率 电导G(Ω-1 ):电阻R 的倒数。a 电导率κ(Ω-1 ·m -1 ):电阻率ρ的倒数。 电导池常数K cell :K cell = L/A L: 电极之间的距离;A:电极的面积 4. 摩尔电导率Λm (S ·m 2 ·mol -1 ) 含1mol 电解质的溶液置于相距单位距离的2个平行电极之间的电导池所具有的电导。 m c κ Λ= 5.电解质的平均活度和平均活度因子 对于任意价型的强电解质M ν+B ν- 平均活度因子 γ± =[ (γ+)ν+ (γ-)ν-] 1/(ν + + ν- ) a ± = m ±γ± m ± =[ (m +)ν+ (m -)ν-] 1/(ν + + ν- ) m + = ν+m ;m - = ν-m 电解质活度a = (a ±)( ν+ + ν- ) 6. 离子强度I 21 2i i i I m z = ∑ 7. 离子氛 电解质溶液中环绕在某一离子B 周围电荷与B 相反、电荷数量与B 相等的异号离子构成的球体。 8. 基本摩尔单元 发生1mol 电子转移电极反应的物质的量1/zM n+ + e → 1/z M 二、基本公式 1. Faraday 电解定律 往电解池通电,在电极上发生化学反应的物质的量与通入的电量成正比。 Q = It = znF z :电极反应M n+ + ze → M 中电子转移的计量数。

傅献彩_物理化学主要公式及使用条件总结

第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。 上述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 适用于任意气体。 V RT n p /B B = 适用于理想气体 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m n R T nb V V an p =-+))(/(22

物理化学公式大全

1. 热力学第一定律的数学表示式 W Q U +=?或 'amb δδδd δdU Q W Q p V W =+=-+ 系统得功为正,对环境作功为负。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热与恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容与定容热容 δ/d (/)p p p C Q T H T ==?? δ/d (/)V V V C Q T U T ==?? (2)摩尔定压热容与摩尔定容热容 ,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==?? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压与恒容过程。 (3)质量定压热容(比定压热容) 式中m 与M 分别为物质的质量与摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。 7. 摩尔蒸发焓与温度的关系 2 1 vap m 2vap m 1vap ,m ()()d T p T H T H T C T ?=?+?? 式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。 8. 体积功 ,m //p p p c C m C M ==pV U H +=2 ,m 1d V U nC T ?=?

物理化学公式归纳

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 此式适用于理想气体,近似地适用于低压的真实气 体。 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 2. 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B / n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任 意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 5. 德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为德华常数。 此式适用于最高压力为几个MPa 的中压围实际气体p ,V ,T ,n 的相互计算。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 1. 2. 焓的定义式 2. 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2,m 1 d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称能)变 此式适用于理想气体单纯pVT 变化的一切过程。 pV U H +=2,m 1 d V U nC T ?=?

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

大学物理化学必考公式总结

物理化学期末重点复习资料

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学总结

物理化学总结 基本解释 Q:代表热,由于系统和环境之间存在温差而产生能量交换称为热。这定义可证明绝热可逆过程中,Q=0.在物质相变时,温度虽然恒定,但系统还吸收或放出热量,这种热称为潜热。显热是没有化学变化和相变的单纯升温降温过程系统吸收放出的热,由此可知在计算相变时会有过程I到II虽然温度不变 W:功是系统和环境之间能量交换的另一种形式。物理化学中功分为体积功和非体积功,其中体积功专指系统反抗外压力导致△V而做的功,这时,系统消耗自身的能量,W=-P△V 恒压过程:W=-P△V 恒温过程:恒温自由膨胀中W=-nRTlnV 2/V 1 自由膨胀:W=0 U内能:一个系统内部的能量总和。结合热力学第一定律:孤立系统的总能量不变可为其它量的计算建立联系。物理化学中,△U=Q-W。值得注意的是,如果系统的始,终态确定后,经过不同的途径完成,Q和W会有不同,但是△U不变,即Q-W的值不变。 △U=nC v,m (T 2 -T 1 ) H焓:焓是物体的一个热力学能状态函数H=U+PV(流动的内能+推动功),焓的变化值只取决于系统的始终态。焓的物理意义可以理解为恒压和只做体积功的特殊条件下,Q=ΔH,即反应的热量变化。 定义式:H=U+PV 恒压下△U=Q 其它情况包括恒压下,△H=nC p,m (T 2- T 1 ) 热容 针对理想气体 理想气体 C p,m -C v,m =R 单原子C v,m =3/2*R C p,m =5/2*R 双原子C v,m =5/2*R C p,m =7/2*R 相变:气体的相是气相,液体的相是液相,相变又称物态变化。 特征:恒压恒温 可逆相变:Q=△H=M(相对分子质量)*△H(蒸发焓,融化焓,升华焓) 若告诉蒸发热,融化热,升华热则不用上述公式,直接用△H=Q 不可逆相变:过冷水结冰,不可以用△S=△H/T 热温商:Q/T 熵:△S状态函数,是反应体系的混乱程度,但是熵变只等于可逆过程的热温商,不可逆循环热温商代数和小于零。 恒温过程:△S=Q/T;Q=W=nRTlnV 2/V 1 =nRTlnP 1 /P 2 △S=nRlnV 2 /V 1 =nRlnP 1 /P 2 恒压变温过程:△H=Q△S=Q/T=△H/T=nC p,m ln(T2/T1) 恒容变温过程:体积功为零,Q=U △S=nC v,m ln(T2/T) PVT均改变设计分解为上述几个过程,熵是状态函数,只与始末状态有关 A:亥姆霍兹函数A=U-TS,A也为状态函数 恒温过程△A=△U-T△S=△G=-nRTlnV2/V1=-nRTlnP1/P2 G:吉布斯函数G=H-TS=U+PV-TS=A+PV △G=△U+△(PV)-TS 恒温过程△G=△H-T△S 作用:判断恒温恒压且非体积功为零条件下,若系统发生不可逆过程则△G<0,且此时是自发的过程(不可逆);若过程可逆则△G=0,且系统处于平衡态 恒温过程,ΔH=△U=0;

物化各种公式概念总结

第一章热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 三、基本关系式1、体积功的计算 δW = -p 外d V 恒外压过程:W = -p 外ΔV 定温可逆过程(理想气体):W =nRT 1 2 21ln ln p p nRT V V = 2、热效应、焓:等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; ΔH =ΔU +Δ(pV ) 焓与温度的关系:ΔH =?2 1d p T T T C 3、等压热容与等容热容:热容定义:V V )(T U C ??=;p p )(T H C ??= 定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p ,m =a +bT +cT 2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p 外d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,

W =ΔU =?T C d V ;ΔH =?T C d p C V (㏑T 2-㏑T 1)=nR(㏑V 1-㏑V 2)(T 与V 的关系) C p (㏑T 2-㏑T 1)=nR(㏑P 2-㏑P 1) (T 与P 的关系) 不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p 外(V 2-V 1)求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 2、相变化 可逆相变化:ΔH =Q =n ΔH ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W 3、实际气体节流膨胀:焦耳-汤姆逊系数:μJ-T (理想气体在定焓过程中温度不变,故其值为0;其为正值,则随p 降低气体T 降低;反之亦然) 4、热化学 标准摩尔生成焓:在标准压力和指定温度下,由最稳定的单质生成单位物 质的量某物质的定压反应热(各种稳定单质在任意温度下的生成焓值为0) 标准摩尔燃烧焓:…………,单位物质的量的某物质被氧完全氧化时的反应焓 第二章 热力学第二定律 一、基本概念 自发过程与非自发过程 二、热力学第二定律 热力学第二定律的数学表达式(克劳修斯不等式) T Q dS δ≥ “=”可逆;“>”不可逆

物理化学下册总结

第七章 1. 法拉第定律:Q =zFξ 2. 迁移数计算++++-+- = = ++I Q t I I Q Q 【例】用铜电极电解CuSO 4溶液,通电一定时间后测得银电量计中析出0.7512g 银,并测得阳极区溶液中CuSO 4质量增加0.3948g 。试求CuSO 4溶液中离子的迁移数t(Cu 2+)和t(SO 42- )。 (已知摩尔质量M (Ag) = 107.868 g·mol -1,M (CuSO 4) =159.604 g·mol -1。) 解:电量计中析出银的物质的量即为通过总电量:n (电) =0.7512g/M(Ag)= 6.964×10-3 mol 阳极区对Cu 2+ 进行物料衡算:n (原) + n (电)-n (迁出) = n (后) n (迁出) = n (原) -n (后) + n (电) n (迁出) =-+0394812 07512.().()g C u S O g A g 4M M =-?+?-(...)0394821596046964103mol =2.017× 10- 3 mol t (Cu 2+ ) = ()() n n 迁出电=??--201710 6 9641033 .. =0.2896 t (SO 42- ) =1-t (Cu 2+) = 0.7164 3. 电导(G ):=1G /R ,电导率1l G A R =?=?cell s κK ,摩尔电导率:/m m V c κκΛ== 【例】已知25℃时 KCl 溶液的电导率为0.2768 S·m -1。一电导池中充以此溶 液,在25 ℃时测得其电阻为453Ω。在同一电导池中装入同样体积的质量浓度为0.555g.dm -3的CaCl 2溶液,测得电阻为1050Ω。计算(1)电导池系数;(2)CaCl 2溶液的电导率;(3)CaCl 2溶液的摩尔电导率。 解:(1)电导池系数为 (2)CaCl 2溶液的电导率 (3)CaCl 2溶液的摩尔电导 4. 离子独立运动定律∞ ∞ ∞ ++--=+m m m ,,ΛνΛνΛ 【例】已知25℃时0.05mol.dm -3CH 3COOH 溶液的电导率为3.8?10-2S.m -1。计算CH 3COOH 的解离度α及解离常数K θ。4 2 1 ()349.8210..,m H S m mol ∞ + --Λ=? 4213-(CH COO )40.910..m S m mol ∞--Λ=?

物理化学重要概念公式总结

第一章 热力学第一定律 一、基本概念 系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。 二、基本定律 热力学第一定律:ΔU =Q +W 。 焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式 1、体积功的计算 δW = -p e d V 恒外压过程:W = -p e ΔV 可逆过程: W =nRT 1221ln ln p p nRT V V = 2、热效应、焓 等容热:Q V =ΔU (封闭系统不作其她 功) 等压热:Q p =ΔH (封闭系统不作其她 功) 焓的 定义:H =U +pV ; d H =d U +d(pV ) 焓与温度的关系:ΔH =?2 1d p T T T C 3、等压热容与等容热容

热容定义:V V )(T U C ??=;p p )(T H C ??= 定压热容与定容热容的关系: nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用 1、理想气体状态变化 等温过程:ΔU =0 ; ΔH =0 ; W =-Q =?-p e d V 等容过程:W =0 ; Q =ΔU =?T C d V ; ΔH =?T C d p 等压过程:W =-p e ΔV ; Q =ΔH =?T C d p ; ΔU =?T C d V 可逆绝热过程: Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2, W =ΔU =?T C d V ;ΔH =?T C d p 2、相变化 可逆相变化:ΔH =Q =n Δ_H ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W 3、热化学

初中物理化学公式大全

初中物理化学公式大全物理 1、匀速直线运动的速度公式: 求速度:v=s/t 求路程:s=vt 求时间:t=s/v 2、变速直线运动的速度公式:v=s/t 3、物体的物重与质量的关系:G=mg (g=9.8N/kg) 4、密度的定义式 求物质的密度:ρ=m/V 求物质的质量:m=ρV 求物质的体积:V=m/ρ 4、压强的计算。 定义式:p=F/S(物质处于任何状态下都能适用) 液体压强:p=ρgh(h为深度) 求压力:F=pS 求受力面积:S=F/p 5、浮力的计算 称量法:F浮=G—F 公式法:F浮=G排=ρ排V排g 漂浮法:F浮=G物(V排<V物) 悬浮法:F浮=G物(V排=V物) 6、杠杆平衡条件:F1L1=F2L2 7、功的定义式:W=Fs 8、功率定义式:P=W/t 对于匀速直线运动情况来说:P=Fv (F为动力) 9、机械效率:η=W有用/W总 对于提升物体来说: W有用=Gh(h为高度) W总=Fs 10、斜面公式:FL=Gh 11、物体温度变化时的吸热放热情况 Q吸=cmΔt (Δt=t-t0) Q放=cmΔt (Δt=t0-t) 12、燃料燃烧放出热量的计算:Q放=qm 13、热平衡方程:Q吸=Q放 14、热机效率:η=W有用/ Q放(Q放=qm) 15、电流定义式:I=Q/t (Q为电量,单位是库仑) 16、欧姆定律:I=U/R 变形求电压:U=IR 变形求电阻:R=U/I 17、串联电路的特点:(以两纯电阻式用电器串联为例) 电压的关系:U=U1 U2

电流的关系:I=I1=I2 电阻的关系:R=R1 R2 18、并联电路的特点:(以两纯电阻式用电器并联为例) 电压的关系:U=U1=U2 电流的关系:I=I1 I2 电阻的关系:1/R=1/R1 1/R2 19、电功的计算:W=UIt 20、电功率的定义式:P=W/t 常用公式:P=UI 21、焦耳定律:Q放=I2Rt 对于纯电阻电路而言:Q放=I2Rt =U2t/R=UIt=Pt=UQ=W 22、照明电路的总功率的计算:P=P1 P1 …… 化学 化合反应 1、镁在空气中燃烧:2Mg O2 点燃2MgO 2、铁在氧气中燃烧:3Fe 2O2 点燃Fe3O4 3、铝在空气中燃烧:4Al 3O2 点燃2Al2O3 4、氢气在空气中燃烧:2H2 O2 点燃2H2O 5、红磷在空气中燃烧:4P 5O2 点燃2P2O5 6、硫粉在空气中燃烧:S O2 点燃SO2 7、碳在氧气中充分燃烧:C O2 点燃CO2 8、碳在氧气中不充分燃烧:2C O2 点燃2CO 9、二氧化碳通过灼热碳层:C CO2 高温2CO 10、一氧化碳在氧气中燃烧:2CO O2 点燃2CO2 11、二氧化碳和水反应(二氧化碳通入紫色石蕊试液):CO2 H2O === H2CO3 12、生石灰溶于水:CaO H2O === Ca(OH)2 13、无水硫酸铜作干燥剂:CuSO4 5H2O ==== CuSO4·5H2O 14、钠在氯气中燃烧:2Na Cl2点燃2NaCl 分解反应 15、实验室用双氧水制氧气:2H2O2 MnO2 2H2O O2↑ 16、加热高锰酸钾:2KMnO4 加热K2MnO4 MnO2 O2↑ 17、水在直流电的作用下分解:2H2O 通电2H2↑ O2 ↑ 18、碳酸不稳定而分解:H2CO3 === H2O C O2↑ 19、高温煅烧石灰石(二氧化碳工业制法):CaCO3 高温CaO CO2↑ 置换反应 20、铁和硫酸铜溶液反应:Fe CuSO4 == FeSO4 Cu 21、锌和稀硫酸反应(实验室制氢气):Zn H2SO4 == ZnSO4 H2↑ 22、镁和稀盐酸反应:Mg 2HCl === MgCl2 H2↑ 23、氢气还原氧化铜:H2 CuO 加热Cu H2O 24、木炭还原氧化铜:C 2CuO 高温2Cu CO2↑ 25、甲烷在空气中燃烧:CH4 2O2 点燃CO2 2H2O 26、水蒸气通过灼热碳层:H2O C 高温H2 CO

大学物理化学下册(第五版傅献彩)知识点分析归纳 (1)

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法? 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。 不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测

初中物理化学知识点

初中物理重要知识点总结
记住的常量
1.光(电磁波)在真空中传播得最快,c=3×105Km/s=3×108m /s。光在其它透明物质中传播比在 空气中传播都要慢 2.15℃的空气中声速:340m/s,振动发声 ,声音传播需要介质,声音在真空中不能传播。一般声 音在固体中传播最快,液体中次之,气体中最慢。 3.水的密度:1.0×103Kg/m3=1g/cm3=1.0Kg/dm3。 1 个标准大气压下的水的沸点:100℃,冰的熔点 O℃, 水的比热容 4.2×103J/(Kg·℃)。 4.g=9.8N/Kg,特殊说明时可取 10 N/Kg 5.一个标准大气压=76cmHg==760mmHg=1.01×105Pa=10.3m 高水柱。 6.几个电压值:1 节干电池 1.5V,一只铅蓄电池 2V。 照明电路电压 220V,安全电压不高于 36V。 7.1 度=1 千瓦·时(kwh)=3.6×106J。 8.常见小功率用电器:电灯、电视、冰箱、电风扇; 常见大功率用电器:空调、电磁炉、电饭堡、微波炉、电烙铁。
物理量的国际单位
长度(L 或 s) :米(m) 时间(t) :秒(s)面积(S) :米 2(m2)体积(V) :米 3(m3)速度(v) :米/秒(m/s)温度(t) : 摄氏度(℃) (这是常用单位) 质量(m) :千克(Kg)密度(ρ ) :千克/米 3(Kg/m3) 。力(F) :牛顿(N)功(能,电功,电能) (W) :焦耳(J) 功率(电功率) (P) :瓦特(w)压强(p) :帕斯卡(Pa)机械效率(η )热量(电热) (Q) :焦耳(J) 比热容(c) :焦耳/千克 摄氏度(J/Kg℃)热值(q) :J/kg 或 J/m3 电流(I) :安培(A)电压(U) :伏特(V) 电阻(R) :欧姆(Ω ) 。
单位换算
1nm=10-9m,1mm=10-3m,1cm=10-2m;1dm=0.1m,1Km=103m,1h=3600s,1min=60s, 1Kwh=3.6×106J.1Km/h=5/18m/s=1/3.6m/s,1g/cm3=103Kg/m3,1cm2=10-4m2, 1cm3=1mL=10-6m3,1dm3=1L=10-3m3, 词冠:m 毫(10-3),μ 微(10-6),K 千(103) ,M 兆(106)
公式
1.速度 v=s/t; 2.密度ρ =m/v; 3.压强 P=F/s=ρ gh; 4.浮力 F=G 排=ρ 液 gV 排=G(悬浮或漂浮)=F 向上-F 向下=G-F’ ; 5.杠杆平衡条件:F1L1=F2L2;6.功 w=Fs=Gh(克服重力做功)=Pt;7.功率 p=W/t=Fv; 8.机械效率η =W 有/W 总=Gh/Fs=G/nF=G/(G+G 动) =fL/Fs(滑轮组水平拉物体克服摩擦力作功); 9.热量:热传递吸放热 Q=cm△t;燃料完全燃烧 Q=mq=Vq;电热:Q= I2Rt 10.电学公式:电流:I=U/R=P/U 电阻:R=U/I=U2/P 电压:U=IR=P/I 电功:W=Pt =UIt =I2Rt=U2t/R 电热:Q= I2Rt(焦耳定律)=UIt==U2t/R 电功率:P=W/t= UI=I2R=U2/R 串联电路特点:I=I1=I2,U=U1+U2,R=R1+R2 U1:U2=P1:P2=Q1:Q2=W1:W2=R1:R2 并联电路特点:I=I1+I2,U=U1=U2,1/R=1/R1+1/R2 I1:I2=P1:P2=Q1:Q2=W1:W2=R2:R1
1

相关主题
文本预览
相关文档 最新文档