当前位置:文档之家› 822材料结构与力学性能

822材料结构与力学性能

822材料结构与力学性能
822材料结构与力学性能

《材料结构与力学性能》考试大纲

一、考试要求

试卷内容分为两部分:第一部分为材料结构与缺陷;第二部分为材料力学性能。

材料结构与缺陷部分的基本要求是应考者需全面掌握晶体材料结构及其缺陷的基本概念、基本规律、基本原理,要求能灵活运用材料结构与缺陷的基本理论综合分析材料结构与性能的相关性。

材料力学性能的基本要求是:(1)理解并掌握材料弹性变形、塑性变形与断裂等基本力学行为的宏观规律及微观本质,并进一步了解应力状态、试样几何因素以及环境因素对材料力学行为的影响;(2)熟悉材料常用力学性能指标的意义、测试原理、影响因素及其应用范围,具有按照实际工作条件和相关标准、规范等正确选择试验方法和指标进行材料测试、评价及选择材料的能力,并了解改善材料力学性能的基本方法和途径。

二、考试内容

1)材料结构与缺陷部分

a:晶体学基础:原子的结合键、结合能;结合键的特点、与性能的关系;晶体学的基本概念;晶面指数、晶向指数的标定;晶面间距的计算;晶体的对称性。

b:晶体结构:典型纯金属的晶体结构;合金相的晶体结构;离子晶体结构;共价晶体结构;亚稳态结构。

c:晶体缺陷:晶体缺陷的分类、结构、表征、运动特性;空位和间隙原子形成与平衡浓度;位错的基本类型与表征、位错的运动与增殖、位错的弹性性质、实际晶体中的位错;界面、相界、孪晶界;位错及位错与其他晶体缺陷的交互作用。

d:相图:相图的基本规律、分析方法与应用;分析各种类型的二元相图及其晶体的结晶过程和组织;三元相图的基本知识。

2)材料力学性能部分

a:材料基本力学性能试验:(1)掌握静载拉伸试验方法与拉伸性能指标的含义及测定,熟悉典型材料拉伸变形断裂行为与应力-应变曲线;(2)熟悉压缩、弯曲、扭转试验原理、特点及应用,了解应力状态对材料力学行为的影响;(3)掌握布氏、洛氏、维氏硬度试验原理、特点及应用范围。

b:材料变形行为与变形抗力:(1)掌握弹性变形行为及其物理本质,熟悉材料的弹性常数及其工程意义;(2)熟悉材料塑性变形行为及其微观机制,了解材料物理屈服现象;(3)了解材料的理论与实际屈服强度、微观与宏观屈服应力及宏观屈服判据;(4)了解材料强化的基本途径与常用方法。

c:材料断裂行为:(1)了解材料常见断裂形式及其分类方法;(2)熟悉金属延性断裂行为及微观机制;(3)熟悉解理和沿晶断裂行为及微观机制;(4)了解断裂的宏观强度理论。

d:材料的脆性及脆化因素:(1)了解材料脆性的本质及表现,熟悉微观脆性与宏观脆性的联系与区别;(2)熟悉缺口顶端的应力和应变特征,了解缺口试样拉伸行为及缺口敏感性;(3)了解冲击载荷特征与冲击变形断裂特点,掌握缺口试样冲击试验与冲击韧性的意义及应用;(4)了解材料低温脆性的本质及其评定方法。

e:材料裂纹体的断裂及其抗力:(1)了解材料的理论断裂强度,掌握Griffith 强度理论及应用;(2)掌握线弹性断裂力学的基本概念与基本原理,了解裂纹尖端塑性区及其修正; (3)了解裂纹体的断裂过程与断裂韧性的测定及其影响因素。

f:材料的疲劳:(1)熟悉高周、低周疲劳行为,s-N与 -N疲劳曲线及其经验规律,掌握疲劳抗力的意义及表征; (2)了解疲劳断裂过程、特征及微观机制;(3)掌握疲劳裂纹扩展的断裂力学处理思路与Paris方程;(4)了解材料疲劳抗力的影响因素。

g:材料高温力学性能:(1)了解高温下材料力学性能特点、高温蠕变行为、断裂过程及其微观机制;(2)掌握蠕变极限与持久强度指标的含义、评价方法及影响因素。

三、试卷结构

a)满分:150分(材料结构与缺陷、材料力学性能各占75分)

b)题型结构

a:材料结构与缺陷部分(75分)

(1)概念题(名词解释、多项选择、填空、改错等)(15分)

(2)简答题(15分)

(3)计算题(15分)

(4)综合论述及应用题(30分)

b:力学性能部分(75分)

(1)基本术语解释(15分)

(2)多项选择(10分)

(3)简答题(20分)

(4)综合论述与计算题(30分)

四、参考书目

1.《材料科学基础》,胡赓祥、蔡珣主编,上海交通大学出版社,2000年2.《金属材料结构与性能》,毛卫民、朱景川等编著,清华大学出版社,2008年

最新01第一章 钢筋混凝土结构材料的物理力学性能

01第一章钢筋混凝土结构材料的物理力 学性能

第一章钢筋混凝土结构材料的物理力学性能 钢筋混凝土是由钢筋和混凝土两种力学性能截然不同的材料组成的复合结构。正确合理地进行钢筋混凝土结构设计,必须掌握钢筋混凝土结构材料的物理力学性能。钢筋混凝土结构材料的物理力学性能指钢筋混凝土组成材料——混凝土和钢筋各自的强度及变形的变化规律,以及两者结合组成钢筋混凝土材料后的共同工作性能。这些都是建立钢筋混凝土结构设计计算理论的基础,是学习和掌握钢筋混凝土结构构件工作性能应必备的基础知识。 §1-1 混凝土的物理力学性能 一、混凝土强度 混凝土强度是混凝土的重要力学性能,是设计钢筋混凝土结构的重要依据,它直接影响结构的安全和耐久性。 混凝土的强度是指混凝土抵抗外力产生的某种应力的能力,即混凝土材料达到破坏或开裂极限状态时所能承受的应力。混凝土的强度除受材料组成、养护条件及龄期等因素影响外,还与受力状态有关。 (一) 混凝土的抗压强度 在混凝土及钢筋混凝土结构中,混凝土主要用以承受压力。因而研究混凝土的抗压强度是十分必要的。

仅供学习与交流,如有侵权请联系网站删除 谢谢34 混凝土试件的横向变形产生约束,延缓了裂缝的开展,提高了试件的抗压极限强度。当压力达到极限值时,试件在竖向压力和水平摩阻力的共同作用下沿斜向破坏,形成两个对称的角锥形破坏面。如果在试件表面涂抹一层油脂,试件表面与压力机压盘之间的摩阻力大大减小,对混凝土试件横向变形的约束作用几乎没有。最后,试件由于形成了与压力方向平行的裂缝而破坏。所测得的抗压极限强度较不加油脂者低很多。 混凝土的抗压强度还与试件的形状有关。试验表明,试件的高宽比h/b 越大,所测得的强度越低。当高宽比h/b ≥3时,强度变化就很小了。这反映了试件两端与压力机压盘之间存在的摩阻力,对不同高宽比的试件混凝土横向变形的约束影响程度不同。试件的高宽比h/b 越大,支端摩阻力对试件中部的横向变形的约束影响程度就越小,所测得的强度也越低。当高宽比h/b ≥3时,支端摩阻力对混凝土横向变形的约束作用就影响不到试件的中部,所测得的强度基本上保持一个定值。 此外,试件的尺寸对抗压强度也有一定影响。试件的尺寸越大,实测强度越低。这种现象称为尺寸效应。一般认为这是由混凝土内部缺陷和试件承压面摩阻力影响等因素造成的。试件尺寸大,内部缺陷(微裂缝,气泡等)相对较多,端部摩阻力影响相对较小,故实测强度较低。根据我国的试验结果,若以150×150×150mm 的立方体试件的强度为准,对200×200×200mm 立方体试件的实测强度应乘以尺寸修正系数1.05;对100×100×100mm 立方体试件的实测强度应乘以尺寸修正系数0.95。 为此,我们在定义混凝土抗压强度指标时,必须把试验方法、试件形状及尺寸等因素确定下来。在统一基准上建立的强度指标才有可比性。 混凝土抗压强度有两种表示方法: 1、立方体抗压强度 我国规范习惯于用立方体抗压强度作为混凝土强度的基本指标。新修订的<公路钢筋混凝土及预应力混凝土桥涵规范>JTG D62(以下简称《桥规JTG D62》)规定的立方体抗压强度标准值系指采用按标准方法制作、养护至28天龄期的边长为150mm 立方体试件,以标准试验方法(试件支承面不涂油脂)测得的具有95%保证率的抗压强度(以MPa 计),记为f cu.k 。 )645 .11(645.1150150150150.f s f f s f k cu f δμσμ-=-= (1.1-1) 式中 k cu f .——混凝土立方体抗压强度标准值(MPa); s f 150μ——混凝土立方体抗压强度平均值(MPa); 150f σ——混凝土立方体抗压强度的标准差(MPa); 150f δ——混凝土立方体抗压强度的变异系数,150150150/s f f f u δσ=。其数值可按表 1.1-1采用。

材料力学、结构力学与理论力学的区别与联系

结构力学科技名词定义 中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科) 《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。 工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。 观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。 学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 结构断裂和疲劳理论 结构断裂和疲劳理论是研究因工程结构内部不可避免地存在裂纹,裂纹会在外载荷作用下扩展而引起断裂破坏,也会在幅值较小的交变载荷作用下扩展而引起疲劳破坏的学科。现在我们对断裂和疲劳的研究历史还不长,还不完善,但断裂和疲劳理论目前得发展很快。

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

808 材料力学与结构力学 考试范围

808 材料力学与结构力学1. 《材料力学》宋子康、蔡文安编,同济大学出版社,2001年6月(第二版)2.《结构力学教程》(Ⅰ、Ⅱ部分),龙驭球、包世华主编,高等教育出版社,2000~2001年3.《结构力学》(上、下册),朱慈勉主编,高等教育出版社,2004年 一、考试范围 I、材料力学必选题(约占50%) 1. 基本概念:变形固体的物性假设,约束、内力、应力,杆件变形的四个基本形式等。 2. 轴向拉、压问题:内力和应力(横截面及斜截面上)的计算,轴向拉伸与压缩时的变形计算,材料的力学性质,塑性材料与脆性材料力学性能的比较,简单超静定桁架,圆筒形薄壁容器等。 3. 应力状态分析:平面问题任意点的应力状态描述,平面问题任意点任一方向应力的求解(包括数解法、图解法),一点的应力状态识别,空间应力分析及一点的大应力,广义虎克定律等。 4. 扭转问题:自由扭转的变形特征,自由扭转杆件的内力计算,扭转变形计算,矩形截面杆的自由扭转,薄壁杆件的自由扭转,简单超静定受扭杆件分析等。 5. 梁的内力、应力、变形:内力(剪力、弯矩)的计算及其内力图的绘制,叠加法作弯矩图的合理运用,梁的正应力和剪应力的计算及其强度条件,梁内一点的应力状态识别,主应力轨迹,平面弯曲的充要条件,梁的变形(挠度、转角)计算,叠加法求梁的变形,梁的刚度校核,简单超静定梁分析等。 6. 强度理论与组合变形:四个常用的强度理论,斜弯曲,拉伸(压缩)与弯曲的组合,扭转与拉压以及扭转与弯曲的组合,拉压及扭转与弯曲的组合,偏心拉、压问题,强度校核等。

II、结构力学必选题(约占40%) 1. 平面体系的几何组成分析及其应用 2. 静定结构受力分析与特性 3. 影响线及其应用 4. 位移计算 5. 超静定结构受力分析与特性(力法、位移法、概念分析等) 6. 结构动力分析(运动方程、频率、振型、阻尼、自由振动、强迫振动、振型分解法等)III、可选题(约占10%,一道材料力学可选题和一道结构力学可选题中必选做一题) 1. 材料力学可选题:能量法:变形能的计算,卡氏第一、第二定理,运用卡氏第二定理解超静定问题等;压杆稳定:细长压杆临界力的计算,欧拉公式的适用范围,压杆稳定的实用计算,简单结构体系的稳定性分析等。 2. 结构力学可选题:变形体的虚功原理;力矩分配法;结构矩阵分析(单元刚度阵、总刚度阵的集成、支座条件的引入和非结点荷载的处理等)。 二、题型 1. 以计算分析题型为主,含基本概念分析、综合概念分析和结构定性分析。 2. 含材料力学-结构力学综合题。

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

哈尔滨工业大学《材料结构与力学性能》考研大纲_哈工大考研论坛

哈尔滨工业大学《材料结构与力学性能》考研大纲 一、考试要求 试卷内容分为两部分:第一部分为材料结构与缺陷;第二部分为材料力学性能。 材料结构与缺陷部分的基本要求是应考者需全面掌握晶体材料结构及其缺陷的基本概念、基本规律、基本原理,要求能灵活运用材料结构与缺陷的基本理论综合分析材料结构与性能的相关性。 材料力学性能的基本要求是:(1)理解并掌握材料弹性变形、塑性变形与断裂等基本力学行为的宏观规律及微观本质,并进一步了解应力状态、试样几何因素以及环境因素对材料力学行为的影响;(2)熟悉材料常用力学性能指标的意义、测试原理、影响因素及其应用范围,具有按照实际工作条件和相关标准、规范等正确选择试验方法和指标进行材料测试、评价及选择材料的能力,并了解改善材料力学性能的基本方法和途径。 二、考试内容 1)材料结构与缺陷部分 a:晶体学基础:原子的结合键、结合能;结合键的特点、与性能的关系;晶体学的基本概念;晶面指数、晶向指数的标定;晶面间距的计算;晶体的对称性。 b:晶体结构:典型纯金属的晶体结构;合金相的晶体结构;离子晶体结构;共价晶体结构;亚稳态结构。 c:晶体缺陷:晶体缺陷的分类、结构、表征、运动特性;空位和间隙原子形成与平衡浓度;位错的基本类型与表征、位错的运动与增殖、位错的弹性性质、实际晶体中的位错;界面、相界、孪晶界;位错及位错与其他晶体缺陷的交互作用。 d:相图:相图的基本规律、分析方法与应用;分析各种类型的二元相图及其晶体的结晶过程和组织;三元相图的基本知识。 2)材料力学性能部分 a:材料基本力学性能试验:(1)掌握静载拉伸试验方法与拉伸性能指标的含义及测定,熟悉典型材料拉伸变形断裂行为与应力-应变曲线;(2)熟悉压缩、弯曲、扭转试验原理、特点及应用,了解应力状态对材料力学行为的影响;(3)掌握布氏、洛氏、维氏硬度试验原理、特点及应用范围。 b:材料变形行为与变形抗力:(1)掌握弹性变形行为及其物理本质,熟悉材料的弹性常数及其工程意义;(2)熟悉材料塑性变形行为及其微观机制,了解材料物理屈服现象;(3)了解材料的理论与实际屈服强度、微观与宏观屈服应力及宏观屈服判据;(4)了解材料强化的基本途径与常用方法。 c:材料断裂行为:(1)了解材料常见断裂形式及其分类方法;(2)熟悉金属延性断裂行为及微观机制;(3)熟悉解理和沿晶断裂行为及微观机制;(4)了解断裂的宏观强度理论。 d:材料的脆性及脆化因素:(1)了解材料脆性的本质及表现,熟悉微观脆性与宏观脆性的联系与区别;(2)熟悉缺口顶端的应力和应变特征,了解缺口试样拉伸行为及缺口敏感性;(3)了解冲击载荷特征与冲击变形断裂特点,掌握缺口试样冲击试验与冲击韧性的意义及应用; (4)了解材料低温脆性的本质及其评定方法。 e:材料裂纹体的断裂及其抗力:(1)了解材料的理论断裂强度,掌握Griffith强度理论及应用;(2)掌握线弹性断裂力学的基本概念与基本原理,了解裂纹尖端塑性区及其修正;(3)了解裂纹体的断裂过程与断裂韧性的测定及其影响因素。 f:材料的疲劳:(1)熟悉高周、低周疲劳行为,s-N与-N疲劳曲线及其经验规律,掌握疲劳抗力的意义及表征;(2)了解疲劳断裂过程、特征及微观机制;(3)掌握疲劳裂纹扩展的断

混凝土结构材料的力学性能(精)

第一章混凝土结构材料的力学性能 一、钢筋的品种、等级 我国在钢筋混凝土结构中目前通用的为普通钢筋,按化学成分的不同,分有碳素结构钢和普通低合金钢两类。 按照我国《混凝土结构设计规范》(GB50010—2002)的规定,在钢筋混凝土结构中所用的国产普通钢筋有以下四种级别: (1)HPB235(Q235):即热轧光面钢筋(Hotrolled Plain Steel bars)235级; (2)HRB335(20MnSi):即热轧带肋钢筋(Hotrolled Ribbed Steel bars)335级; (3)HRB400(20MnSiV、20MnSiNb、20MnTi):即热轧带肋钢筋(Hotrolled Ribbed Steel bars)400级; (4)RRB400(K20MnSi):即余热处理钢筋(Remained heat treatment Ribbed Steel bars)400级。 在上述四种级别钢筋中,除HPB235级为光面钢筋外,其他三级为带肋钢筋。 目前我国生产的上述普通钢筋,其性能和使用特点为: 1.HPB235级钢筋 是一种低碳钢(通称I级钢筋)。强度较低,外形光圆钢筋(图1-1),它与混凝土的粘结强度较低,主要用作板的受力钢筋、箍筋以及构造钢筋。 2.HRB335级钢筋 低合金钢(通称Ⅱ级钢筋)。为增加钢筋与混凝土之间的粘结力,表面轧制成外形为等高肋(螺纹),现在生产的外形均为月牙肋(图1-1)。是我国钢筋混凝土结构构件钢筋用材最主要品种之一。 3.HRB400级钢筋 低合金钢(通称新Ⅲ级钢筋),外形为月牙肋,表面有“3”的标志,有足够的塑性和良好的焊接性能,主要用于大中型钢筋混凝土结构和高强混凝土结构构件的受力钢筋,是我国今后钢筋混凝土结构构件受力钢筋用材最主要品种之一。 4.RRB400级钢筋 是用HRB335级钢筋(即20MnSi)经热轧后,余热处理的钢筋。这种钢筋强度较高,有足够塑性和韧性,但当采用闪光对焊时,强度有不同程度的降低,即塑性和可焊性较差,使用时应加以注意。这种钢筋一般经冷拉后作预应力钢筋。

上海大学929材料力学与结构力学(专)2018年考研专业课大纲

2019年上海大学考研专业课初试大纲 考试科目:929材料力学与结构力学(专) 一、复习要求: 要求考生熟练掌握材料力学和结构力学的基本概念、基本理论和基本方法,能运用基本理论及方法求解杆件变形和内力、压杆稳定性、动载荷以及相应结构体系的变形及内力分析等问题,并能灵活应用于具体的实际结构(构件),解决相应的结构问题。 二、主要复习内容: (一)杆件拉伸与压缩 轴向拉压的概念、基本假设、横截面上的内力计算和轴力图,直杆拉(压)时横(斜)截面上的应力,材料拉(压)时的力学性质,拉(压)杆的强度条件及应用,杆件拉(压)时的轴向变形,胡克定律。 (二)连接件的实用计算 连接件剪切面和挤压面的确定及剪切和挤压的实用计算。 (三)轴的扭转 扭转的概念,外力偶矩的计算及扭矩图,薄壁圆筒的扭转剪应力,剪应力互等定理和剪切胡克定律,圆轴扭转时横(斜)截面上的剪应力,强度和和刚度条件,扭转破坏试验,扭转静不定问题,其它截面形式轴的扭转计算,扭转静不定问题。 (四)梁的弯曲应力及变形 梁平面弯曲概念及梁的计算简图,梁弯曲时内力的微分关系,刚架及平面曲杆的内力计算,剪力图,弯矩图的绘制,梁纯弯曲和横力弯曲时的正应力、剪应力和强度条件。弯曲中心的概念及确定,梁弯曲挠度的二次积分法及叠加法,刚度条件,静不定梁的求解。 (五)应力状态及强度理论 应力状态及主应力的概念,二向应力状态分析的解析法和应力圆的应用,三向应力状态分析,复杂应力状态下的应变及广义胡克定律,复杂应力状态下的变形能,强度理论的概念,四个经典强度理论及其相当应力,强度理论的应用及其适用范围。 (六)组合变形 组合变形的概念,斜弯曲的计算,轴向拉(压)与弯曲组合变形,偏心拉压,弯曲与扭转组合变形。 (七)能量法 杆件基本变形的变形能,莫尔积分法,余能定理,卡氏第一、二定理,虚功原理等的应用与计算,能量法求解静不定问题,利用对称性简化静不定问题的方法。 (八)压杆的稳定性 压杆稳定性的概念,两端铰支压杆的临界载荷,其它支承条件下压杆的临界力,临界应力总图,压杆的稳定校核。 (九)材料力学性能测试技术 拉伸、压缩试验,扭转试验,弯曲正应力试验,弯扭组合电测试验的设计、测试技术及数据分析。 (十)平面体系的机动分析 平面体系的计算自由度,几何不变体系的简单组成规则,瞬变体系,机动分析,几何构造与静定性的关系。 (十一)静定刚架与平面桁架 单、多跨静定梁,静定平面刚架,根据外荷载直接绘制内力图;结点法、截面法独立求解平面桁架,结点及截面法联合解平面桁架。 (十二)影响线及其应用 精都考研网(专业课精编资料、一对一辅导、视频网课)https://www.doczj.com/doc/ed6234149.html,

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学 结构力学 弹性力学 异同点

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。 包括两大部分:一部分是材料的力学性能的研究,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类: 线弹性问题。在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。 几何非线性问题。若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。 物理非线性问题。在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。在几何非线性问题和物理非线性问题中,叠加原理失效。解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。 结构力学它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应作用下的响应,这些效应包括外力、温度效应、施工误差、支座变形等。主要是内力——轴力、剪力、弯矩、扭矩的计算,位移——线位移、角位移计算,以及结构在动力荷载作用下的动力响应——自振周期、振型的计算。 一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

材料力学和结构力学复习经验

发表于2008-4-8 08:32 |只看该作者 【同济土木考研系列四】------【材料力学和结构力 学复习经验】 个人声明: 1、本文仅仅是作者个人学习经验小结,仅供参考,欢迎09年报考同济大学土木工程学院的以! 2、尊重他人劳动,未经本人和https://www.doczj.com/doc/ed6234149.html,允许,请勿转载!! 应广大09年报考同济大学土木学院的考生要求,我写了一些《材料力学与结构力学》复习经验,不当之处还请大家谅解,但愿不要因为我的观点而误导了大家。祝大家09考研金榜题名!! 一、综述 同济《材料力学与结构力学》考试内容由两本书组成,包括材料力学和结构力学,卷面总分是15占30%,试题中可能出现材料力学与结构力学综合题目,根据08年考试题目,结构力学部分应该要难一点,因为结构力学是整个试卷的压轴题目。整个试卷一共就10道计算题,没有选择题和填考大题,有些内容注定不是考试重点,具体我会在下面有介绍。 大家在复试《材料力学与结构力学》之前一定要明确亮点,1、同济的专业课不是那么好考的,我华南理工,东南大学等(我同学有考这些学校的,我就顺便看了看),普遍要比同济专业课简单。之间选择其一考。2、同济专业课固然比较难,但事情都是相对的,对于大家来说都是比较难,这得到的情况,今年同济的专业课均分也就是在100分左右,应该不会超过105分。但是仍然有同学你就放弃同济,那样就太可惜了。只要大家付出了,一定可以获得满意的结构。如果随随便便就能称号也真是枉然了,要想上好的的学校就必须付出更多的辛酸和汗水。 二、材料力学复习 我分章节说说复习要点吧(按照宋子康主编的材料力学课本顺序) 第一章绪论及基本概念 看看了解一下概念就可以,不会出题目的。 第二章轴向拉伸与压缩

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

材料力学和结构力学课件

材料力学 1.材料力学研究内容 ⑴研究物体在外力作用下的应力、变形和能量,统称为应力分析;研究对象仅限于杆、轴、梁等物体,其几何特征是纵向尺寸远大于横向尺寸,这类物体统称为杆或杆件。 ⑵研究材料在外力和温度作用下所表现出的力学性能和失效行为;研究对象仅限于材料的宏观力学行为,不涉及材料的微观机理。 研究目的设计出杆件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。 2.杆件的受力与变形形式 ⑴拉伸或压缩 ⑵剪切 ⑶扭转 ⑷弯曲 ⑸组合受力和变形 拉杆、压杆或柱、轴、梁受力特点 3.材料的基本假定 ⑴各向同性假定 ⑵均匀连续性假定 ⑶平截面假定 4.受力分析方法 ⑴截面法:应用假想截面将弹性体截开,分成两部分,考虑其中任意一部分平衡,从而确定截面上的内力的方法。 弹性体受力、变形的第二特征是变形协调。P9[例题1-1] 平衡方程+变形协调方程 0x F =∑ 0y F =∑ 0c M =∑ P31[例题2-6] 5.应力应变相互关系 E σε=、G τγ=

6.轴力与轴力图 正负号规定:拉正,压负。 ⑴确定约束力。 ⑵根据杆件上作用的荷载及约束力确定控制面,也就是轴力图的分段点。 ⑶应用截面法,对截开的部分杆件建立平衡方程,确定控制面上的轴力数值。 ⑷建立N x F -坐标系,将所求得的轴力值标在坐标系中,画出轴力图。 P21[例题2-1] 7.变形计算 变形N F l l EA ?=± 应变N F l l EA E σ ε?=== 横向变形y x ευε=- υ泊松比 P25[例题2-2] 8.拉伸与压缩杆件的强度设计 ⑴强度校核 []max σσ≤ ⑵尺寸设计 [][][] max N N F F A A σσσσ≤? ≤?≥ ⑶确定杆件或结构所能承受的许用荷载 [][][][]max N N P F F A F A σσσσ≤? ≤?≤? P28[例题2-4/5] 9.拉伸与压缩杆件斜截面上的应力 2cos = cos N P x F F A A θθθ θσσθ==

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

相关主题
文本预览
相关文档 最新文档