水性聚氨酯的研究进展
- 格式:ppt
- 大小:375.00 KB
- 文档页数:32
中国水性聚氨酯发展现状水性聚氨酯是一种绿色环保的涂料技术,具有优异的性能和广泛的应用领域。
在中国,水性聚氨酯的发展现状如下。
首先,中国的水性聚氨酯技术逐步成熟。
中国的水性聚氨酯技术起步较晚,在20世纪90年代才逐渐引入并开始研发。
经过多年的努力,中国的水性聚氨酯技术已经取得了显著的进展。
目前,国内已经形成了一批拥有自主知识产权的水性聚氨酯技术,可以满足市场对于不同性能要求的需求。
其次,水性聚氨酯在中国涂料市场的应用逐渐扩大。
随着人们环保意识的提高和涂料行业的转型升级,水性聚氨酯作为一种绿色环保的涂料技术得到了广泛关注和推广。
目前,水性聚氨酯在汽车、建筑、家具、包装等领域得到了广泛应用,并取得了显著的市场份额。
特别是在汽车涂装领域,水性聚氨酯已经成为主流涂料技术,并取得了令人瞩目的成绩。
再次,中国水性聚氨酯的生产能力和产业链不断完善。
随着水性聚氨酯市场的逐渐扩大,中国的水性聚氨酯生产能力和产业链也在快速发展。
目前,中国拥有多家大型水性聚氨酯生产企业,并且产能逐年增加。
同时,水性聚氨酯原材料的供应链也在不断完善,可以满足市场的需求。
这对于水性聚氨酯的推广和应用提供了良好的保障。
最后,中国水性聚氨酯技术研发仍需加强。
虽然中国的水性聚氨酯技术已经取得了一定的成果,但与国际先进水平相比,仍然有一定差距。
目前,中国的水性聚氨酯技术仍然以跟随和仿制为主,自主创新能力有待提升。
因此,我们需要继续加大技术研发投入,增强创新能力,提高自主知识产权的比例,以实现中国水性聚氨酯技术的领先地位。
综上所述,中国水性聚氨酯的发展现状积极向好,取得了一定的进展。
然而,仍然需要加强技术研发和产业链建设,以提高技术水平和市场竞争力。
相信在国家政策的支持下,中国水性聚氨酯技术将迎来更加美好的发展前景。
纳米材料改性水性聚氨酯的研究进展综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。
标签:水性聚氨酯(WPU);纳米材料;方法;改性1 前言近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。
WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。
但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。
纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。
通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。
2 纳米材料改性WPU的方法2.1 共混法共混法即纳米粒子在WPU中直接分散。
首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。
但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。
为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。
李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。
研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。
李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。
结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。
水性聚氨酯研究报告引言水性聚氨酯(waterborne polyurethane,简称WPU)是一类具有良好环保性能的高分子材料,在涂料、胶黏剂、弹性体等领域具有广泛的应用。
本报告旨在介绍水性聚氨酯的研究进展、制备方法、特性以及应用前景,促进对水性聚氨酯的进一步研究和开发。
1. 水性聚氨酯的制备方法水性聚氨酯的制备方法主要包括亲水基团引入法、无溶剂法和乳液聚合法等。
其中,乳液聚合法是目前较为常用的方法,具体流程如下: 1. 选择合适的聚醚多元醇和二元异氰酸酯作为主要原料。
2. 在适当的温度和条件下,将聚醚多元醇和二元异氰酸酯进行预聚合反应,形成醇胺预聚体。
3. 将醇胺预聚体与水相稳定体系(包括乳化剂和乳化助剂)进行乳化,得到水性聚氨酯乳液。
4. 进行乳液的脱溶剂化,其中常用的方法有真空蒸馏法、半透膜脱溶法等。
2. 水性聚氨酯的特性水性聚氨酯具有以下几个显著特性: - 环保性:相对于传统的溶剂型聚氨酯,水性聚氨酯具有低挥发性,减少了有机溶剂的使用,符合环保要求。
- 优异的物理性能:水性聚氨酯具有良好的柔韧性、强度和耐候性等物理性能。
- 良好的附着力:水性聚氨酯能够与不同类型的基材形成牢固的结合,提供优异的附着力。
- 调控性能:水性聚氨酯可以通过调整主链结构、交联机理和配方等方式,实现对其性能的调控。
3. 水性聚氨酯在涂料领域的应用水性聚氨酯在涂料领域具有广泛的应用前景,主要体现在以下几个方面: 1. 家具涂料:水性聚氨酯具有优良的耐刮擦性、耐磨损性和耐化学药品腐蚀性,适用于家具表面的涂装。
2. 木器涂料:水性聚氨酯可用于室内外木器的装饰和保护,具有优异的抗紫外线性能和耐候性能。
3. 金属涂料:水性聚氨酯具有优异的耐蚀性和防锈性能,适用于金属表面的防腐涂料。
4. 汽车涂料:水性聚氨酯可以作为汽车涂料的基材,具有良好的附着力、耐候性和耐化学腐蚀性。
4. 水性聚氨酯在胶黏剂领域的应用水性聚氨酯在胶黏剂领域也具有广泛的应用前景,如下所示: 1. 木工胶:水性聚氨酯胶黏剂用于木工胶可以提供优良的粘接强度和耐候性。
第52卷第5期 辽 宁 化 工 Vol.52,No. 5 2023年5月 Liaoning Chemical Industry May,2023收稿日期: 2021-06-05水性聚氨酯阻燃性能研究进展朱超男,张伟*,郑慧(沈阳理工大学,辽宁 沈阳 110159)摘 要: 水性聚氨酯(WPU)具有安全环保、无毒、物化性能优异、低排放VOC 等优点,在我国涂料、皮革涂饰、建筑等多个领域被广泛应用。
然而未阻燃的WPU 极易燃烧,所以提高WPU 的阻燃性能具有非常重大的意义。
阐述了WPU 的燃烧过程及阻燃机理,总结了近年来国内外阻燃技术的研究进展,分析了不同类型的阻燃剂的特点,最后展望了阻燃型WPU 的未来发展趋势。
关 键 词:水性聚氨酯;阻燃机理;阻燃剂中图分类号:TQ323.8 文献标识码: A 文章编号: 1004-0935(2023)05-0732-04聚氨酯(PU)是主链上含有聚氨基甲酸酯的高分子化合物,主要制备材料是异氰酸酯和多元醇。
WPU 是聚氨酯以水为溶剂形成的涂料,1942年德国人SHLACK 首次开发第一款阳离子型WPU。
20世纪70年代,WPU 得到工业化生产[1]。
WPU 由于具有无毒、无污染、低排放、耐化学腐蚀和良好的黏接性、耐磨性和韧性等优点,在涂料、皮革涂饰,建筑、航天、交通、日用品和胶黏剂等许多行业占有广泛市场,其需求量还在不断增加。
近年来,随着人们对环保主题的倡导和工业生产过程中环境友好性需求的不断提高,WPU 由于在制备过程中不添加或较少添加有机溶剂,所以WPU 在生产以及使用过程中比起其他涂料更加环保清洁,更符合人们对于环境保护的倡导[2]。
WPU 属于高分子聚合物弹性防水环保材料,聚氨酯本身的元素组成和化学结构决定了聚氨酯具有极易燃烧的性质[3],未经阻燃的WPU 的极限氧指数(LOI)是16%~18%。
高分子材料的燃烧总是伴随着热降解,热降解过程中产生的挥发性小分子和自由基容易在空气中发生氧化还原反应,使温度升 高[4]。
有机硅改性水性聚氨酯的研究一、本文概述随着环保理念的深入人心和科学技术的不断进步,水性聚氨酯作为一种环境友好型高分子材料,在涂料、胶粘剂、皮革涂饰剂、纸张处理剂、纤维处理剂以及高分子膜等多个领域得到了广泛应用。
然而,传统的水性聚氨酯在某些性能上仍存在一定不足,如耐水性、耐溶剂性、耐候性等方面的性能有待提升。
因此,通过改性提高水性聚氨酯的性能成为了研究的热点。
有机硅材料以其独特的结构和性能,如良好的耐水性、耐候性、耐化学腐蚀性等,成为了改性水性聚氨酯的理想选择。
有机硅改性水性聚氨酯不仅继承了水性聚氨酯的环保性,还大幅提升了其耐水、耐候等性能,拓宽了其应用领域。
本文旨在深入研究有机硅改性水性聚氨酯的制备工艺、性能表征及应用性能,探讨有机硅改性对水性聚氨酯性能的影响机理。
通过系统的实验研究和理论分析,为有机硅改性水性聚氨酯的工业化生产和应用提供理论支持和技术指导。
本文也期望通过这一研究,为推动水性聚氨酯材料的发展和应用做出一定的贡献。
二、有机硅改性水性聚氨酯的制备方法有机硅改性水性聚氨酯的制备主要涉及到有机硅化合物的引入和水性聚氨酯的合成两个主要步骤。
以下将详细介绍这一制备过程。
需要选择适合的有机硅化合物进行改性。
常见的有机硅化合物包括硅烷偶联剂、聚硅氧烷等。
这些化合物具有良好的耐水、耐候和耐化学腐蚀性能,能够有效提高水性聚氨酯的性能。
在选择有机硅化合物后,需要进行适当的处理,如水解、醇解等,以使其能够更好地与水性聚氨酯反应。
水性聚氨酯的合成通常采用预聚体法。
将异氰酸酯与多元醇进行预聚反应,生成预聚体。
然后,在预聚体中加入扩链剂、催化剂、水等,进行链扩展和乳化,最终得到水性聚氨酯乳液。
在合成水性聚氨酯的过程中,将处理后的有机硅化合物引入反应体系。
有机硅化合物可以与预聚体中的异氰酸酯基团发生反应,形成硅氧键,从而将有机硅链段引入水性聚氨酯分子链中。
通过控制有机硅化合物的加入量和反应条件,可以实现对水性聚氨酯性能的调控。
水性聚氨酯应用与技术进展水性聚氨酯是聚氨酯溶解或分散于水中形成的二元胶态体系,经历6 0 多年的发展,水性聚氨酯制备技术已日趋完善。
而近年来,随着溶剂价格的不断飙升,加之人们对环保的关注和各国对挥发性有机化合物及有毒物的限制日趋严格,更使以水为介质的高环保、低消耗的水性聚氨酯日益得到重视,成为市场追逐热点,对水性聚氨酯技术的研究和应用的开发也进入一个重要时期,目前正朝着多品种、多功能、低消耗、优品质等方向发展。
随着水性技术的不断进步,水性聚氨酯的应用领域随之逐步扩大,目前主要集中在皮革、织物整理、涂料、胶粘剂等领域。
1.皮革(1)皮革涂饰剂水性聚氨酯皮革涂饰剂是国内最早研究的水性聚氨酯树脂,到目前为止也是产量最大的品种。
水性聚氨酯作为皮革用涂饰剂,可与溶剂型聚氨酯相媲美,并可减少公害。
用聚氨酯乳液涂饰后的皮革,具有光亮、丰满、手感好、耐磨、不易断裂等优点,克服了聚丙烯酸类树脂涂饰剂热粘冷脆的缺点,因而聚氨酯乳液常用于生产高档皮革制品。
根据皮革行业新的需求,已研究开发出防尘耐污型皮革涂饰剂:氟改性的水性聚氨酯树脂在皮革和涂料耐污防尘方面性能都有显著提高,应用前景十分广泛。
(2)人造革树脂水性聚氨酯作为人造革浆料目前是最热门的聚氨酯材料发展领域之一。
水性聚氨酯合成革树脂具有无毒、无污染、施工方便、安全等特点,是溶剂型合成革聚氨酯树脂的主要替代品。
由于具有良好的成膜性能,水性聚氨酯合成革树脂适用于合成革、移膜革、超纤材料等的喷涂或滚涂面层加工,可直接涂布,也可转移法施工。
各种不同模量以及不同特性的树脂产品可以满足不同制品的要求,制成品具有高强度、高弹性、耐寒、耐弯折、耐剥离、耐紫外线、耐水解、耐湿热、耐溶剂以及手感良好等特点。
水性聚氨酯树脂在鞋革上的应用最大的问题是耐折问题。
在应用上具体表现在合成很软的水性聚氨酯树脂时成膜会发粘:合成硬的水性聚氨酯树脂延伸率低,耐弯折性差。
国内水性聚氨酯人造革树脂的研究主要是提高分子链段的规整性,使弹性好(如采用TDI和MDI混合的异氰酸酯,采用提高链的规整性的二元醇) 用硅氧烷改性水性聚氨酯和丙烯酸酯改性水性聚氨酯树脂以解决软粘的问题。
水性聚氨酯涂料技术研究进展水性聚氨酯涂料是一种环境友好型涂料,具有优异的性能和广泛的应用前景。
随着人们环保意识的不断提高,水性聚氨酯涂料的研究和应用愈加受到。
本文将综述水性聚氨酯涂料的背景、研究现状、研究方法、研究结果、结论与展望以及水性聚氨酯防腐涂料的发展历程可以追溯到20世纪90年代初,当时人们开始环保和健康,推动了水性涂料的研究和开发。
随着技术的不断发展,水性聚氨酯防腐涂料的应用范围越来越广泛,涉及到石油、化工、冶金、汽车、船舶、桥梁等领域。
目前,国内外对于水性聚氨酯防腐涂料的研究主要集中在配方设计、工艺流程、原料选择、质量控制等方面。
在配方设计方面,水性聚氨酯防腐涂料的成膜物质以聚氨酯为主,同时还需要加入各种功能助剂和填料,以改善涂料的性能。
在工艺流程方面,水性聚氨酯防腐涂料的制备主要涉及混合、搅拌、研磨、过滤等步骤。
在原料选择方面,需要选择低毒性、高性能的原料,以确保涂料的安全性和稳定性。
在质量控制方面,需要对涂料的成分、性能和稳定性进行严格把控,确保产品的质量。
目前,水性聚氨酯防腐涂料已经取得了显著的研究成果。
涂层的防腐性能、物理机械性能、耐化学试剂性能等指标均得到了显著提升。
水性聚氨酯防腐涂料还具有很好的耐磨性、耐候性和抗紫外线性能,可以在各种恶劣环境下使用。
展望未来,水性聚氨酯防腐涂料在工业防腐、海洋防腐、交通防腐等领域的应用前景十分广阔。
在工业防腐方面,水性聚氨酯防腐涂料可以应用于石油、化工、冶金等行业的设备防腐,提高设备的耐久性和安全性。
在海洋防腐方面,水性聚氨酯防腐涂料可以应用于船舶、码头、海上平台等设施的防腐蚀保护,提高海洋工程的安全性和可靠性。
在交通防腐方面,水性聚氨酯防腐涂料可以应用于汽车、火车、飞机等交通工具的防腐保护,提高交通工具的使用寿命和安全性。
水性聚氨酯防腐涂料的研究和应用进展顺利,已经得到了广泛应用。
未来,随着技术的不断进步和应用领域的不断拓展,水性聚氨酯防腐涂料将会发挥更大的作用,为人类的生产和生活带来更多的便利和安全。
水性聚氨酯的合成与性能研究水性聚氨酯作为一种新型环保高分子材料,具有优异的性能,在各个领域得到了广泛的应用。
本文将重点介绍水性聚氨酯的合成方法、材料性能以及应用前景。
一、水性聚氨酯的合成方法水性聚氨酯的合成可分为两步,首先是聚合物的合成,然后是聚合物与水的乳化。
在聚合物的合成中,可以采用预聚法和原位合成法。
预聚法是指将聚氨酯前驱体(异氰酸酯和聚醚多元醇)与少量的交联剂在有机溶剂中反应,形成预聚物。
然后,将预聚物与水进行乳化,形成水性聚氨酯。
原位合成法是指将异氰酸酯、聚醚多元醇和水在一个反应体系中同时加入,通过一步反应合成水性聚氨酯。
二、水性聚氨酯的性能研究1. 力学性能水性聚氨酯具有较好的弹性模量和抗拉强度,可以根据不同应用需求进行调整。
与传统有机溶剂型聚氨酯相比,水性聚氨酯具有更低的挥发性,降低了对环境的污染。
2. 热稳定性水性聚氨酯具有优异的热稳定性,能够在高温环境下保持其性能不变。
这使得水性聚氨酯在汽车涂料、建筑涂料等领域具有广阔的应用前景。
3. 耐候性水性聚氨酯具有良好的耐候性,能够抵抗紫外线辐射和氧化物侵蚀,长时间保持其色彩和光泽。
4. 粘附性能水性聚氨酯能够与多种基材良好地粘结,具有优异的粘附性能。
这使得水性聚氨酯在涂料、粘合剂等领域得到了广泛的应用。
三、水性聚氨酯的应用前景1. 汽车涂料领域水性聚氨酯涂料具有低挥发性、高光泽度和优异的耐候性,被广泛应用于汽车涂装领域。
随着环保意识的增强和法规的要求,水性聚氨酯涂料将逐渐替代有机溶剂型涂料成为主流。
2. 建筑涂料领域水性聚氨酯涂料具有优异的耐候性和热稳定性,能够适应建筑物长期的使用环境。
而且,水性聚氨酯涂料还能够减少有害气体的释放,提高室内环境的质量。
3. 纺织品领域水性聚氨酯具有优异的柔软性和弹性,被广泛应用于纺织品的涂层加工。
与传统有机溶剂型聚氨酯相比,水性聚氨酯能够降低对环境的污染,符合绿色生产的要求。
综上所述,水性聚氨酯作为一种新型环保高分子材料,在各个领域都具有广泛的应用前景。
丙烯酸酯改性水性聚氨酯的研究进展简述了丙烯酸酯改性水性聚氨酯4种常用的改性方法:嵌段共聚改性、接枝共聚改性、核-壳乳液聚合改性和互穿聚合物网络改性(IPN);综述了国内外丙烯酸酯改性水性聚氨酯研究进展。
标签:水性聚氨酯;丙烯酸酯;改性1 前言聚氨酯(PU)性能优异,具有良好的力学性能、耐磨性、柔韧性、耐化学品性,附着力强、成膜温度低、保光性好,可以室温固化,因此在涂料、胶粘剂及油墨等许多领域都得到广泛的应用[1,2]。
目前聚氨酯油墨、胶粘剂等多以溶剂型为主,有机挥发物(VOC)对大气污染,严重破坏了人类的生态环境[3,4]。
水性聚氨酯(WPU)以水为分散介质,不含有机溶剂,不燃、无毒、不污染环境、易运输保存,使用方便且软硬度可调、耐低温、耐磨性好及粘附力强,特别适用于烟、酒、食品、饮料、药品、儿童玩具等卫生条件要求严格的包装印刷品[5~7]。
然而,WPU还存在耐水性差、耐高温性能不佳、固含量低等缺点。
为了提高乳液及膜性能,扩大应用范围,需对PU乳液进行适当的改性。
丙烯酸酯乳液具有较好的耐水性、耐候性,但存在硬度大、不耐溶剂等缺点。
用丙烯酸酯对WPU改性,可优势互补[8~10]。
2 丙烯酸酯改性WPU的方法目前,丙烯酸酯改性WPU的主要制备方法有嵌段共聚、接枝共聚、核-壳乳液聚合和互穿聚合物网络(IPN)[11]。
2.1 嵌段共聚丙烯酸酯嵌段共聚改性WPU的方法主要有双预聚体法和不饱和化合物封端法2种[12]。
双预聚体法是用丙烯酸酯改性WPU的较早的方法之一,此法首先制得含羧基和羟基的聚丙烯酸酯,再制备以—NCO封端的水性聚氨酯预聚体溶液,然后水性聚氨酯预聚体溶液和聚丙烯酸酯反应,最后进行扩链,即可得到嵌段共聚物。
不饱和化合物封端法是用具有C=C的不饱和化合物对水性聚氨酯预聚体封端,再与丙烯酸酯单体共聚[13]。
任天斌等[14,15]以甲苯二异氰酸酯、聚异丙二醇、甲基丙烯酸羟乙酯及二羟甲基丙酸为原料,通过分子设计合成了带有双键的阴离子水性聚氨酯预聚体(APUA)可聚合乳化剂。
丙烯酸酯改性水性聚氨酯复合乳液的研究进展综介绍了丙烯酸酯改性水性聚氨酯的几种改性制备方法及其优缺点,其中包括:物理共混改性,交联共混改性,接枝共聚改性,核-壳结构乳液聚合改性,互穿网络法改性等。
综述了国内外的研究现状及今后研究发展方向。
标签:水性聚氨酯(WPU);丙烯酸酯(PA);改性1 前言压WPU因具有优异的耐磨性、耐寒性、柔韧性、耐有机溶剂性以及价廉,安全,无污染而具有巨大的市场前景[1]。
但是,WPU仍存在固含量低、自增稠性差、耐水性差、不耐高温以及光泽度低等缺点。
丙烯酸酯(PA)具有较好的耐化学性、力学性能、耐水性和耐候性等,但其也存在硬度大、不耐溶剂等缺点。
将WPU和PA 2者的优点有效地结合在一起,就出现了“第3代新型WPU”[2]。
目前国外已对水性聚氨酯-丙烯酸酯(PUA)复合乳液改性进行了较多的研究开发,乳液及其胶膜的性能都得到了明显改善[3,4]。
对第3代水性聚氨酯的理论研究较为透彻。
国内近几年对PUA复合乳液进行了研究[5]。
改性方法包括物理共混改性,化学共混改性,接枝共聚改性,核-壳结构乳液聚合改性,互穿网络法改性及其他改性等。
2 水性聚氨酯-丙烯酸酯(PUA)复合乳液的制备方法及对比分析2.1 物理共混改性法物理共混法是最简单的复合改性方法。
该方法是将PU和PA的合成分开进行,先通过常规方法制备稳定的PU乳液和PA乳液,再通过机械搅拌,使2者均匀混合,得到共混型PUA复合乳液。
邵菊美等[6]采用物理共混法对自制的WPU进行改性,并通过X射线衍射、热重分析(TGA)等手段对PU/PA体系的结晶度、热性能、力学性能等进行研究。
结果表明共混改性的复合乳液胶膜性能相对于WPU有明显提高;PU和PA 有较好的相容性,但仍存在一定程度的相分离,这主要是由于PU氨酯键上的极性氢原子与PA链段中酯基上的氧原子所形成的氢键作用不太强所致。
Rink[7]在共混时添加少量表面活性剂OP-10,以求提高PU和PA的相容性,然而所得体系不稳定,胶膜不透明,力学性能较差。
发生物理和化学变化的高分子物质,常被用于涂料。
与传
水性聚氨酯高分子染料
高分子染料是通过一定的化学反应将染料分子引入高分子的主链或悬挂于侧链上而形成的有色高分子聚合物,它既具有高分子材料的高强度、耐溶剂、耐热、耐迁移、易成膜和可加工性等特性,又具有有机小分子染料对光的强吸收性和发色性能。
高分子染料除在特种涂料、纤维制品、塑料等工业领域具有重要的应用价值外,在液晶显示、电致发光材料、光敏材料、分离材料、激光信息材
4 抗菌载药水凝胶抑菌圈实验照片。