最新随钻声波测井仪的技术性能与应用实例
- 格式:pdf
- 大小:486.33 KB
- 文档页数:4
声波测井仪在勘察中的运用通常的声波测井如声速测井和声幅测井,只记录纵波头波的传播时间和第一个波的波幅,而且只是利用了井孔中非常少的波列。
实际上,换能器在井孔中激发出的波列携带着很多的地层信息。
声波全波列测井采用数字记录方式记录了井孔中的全部波列,利用数字信号处理的方法从全波列中提取所感兴趣的信息,用于声波测井资料的地质解释。
1井孔中的声波及其波型成分在钻孔中,由点声源激发的全波列是由多种波列成分组成的,主要包括纵波、横波、伪瑞雷波和斯通利波等(见图1)。
(1)纵波纵波(又称滑行纵波)是由声源发出的以第一临界角入射到井壁后,在井外地层并靠近井壁且以图1全波列波形图地层中的纵波速度沿井壁滑行的波。
这种波在沿井壁传播的同时,又会以第一临界角为折射角折回井中,被接收器接收到。
(2)横波横波又称为滑行横波,它类似于纵波,从射线声学的角度来看,横波头波是由声源发出且以第二临界角入射到井壁后在井外地层并靠近井壁以地层中的横波速度传播的波,这种波在沿井壁传播时又会以第二临界角为折射角折回井中,被接收器接收到。
(3)伪瑞雷波以相速度介于井内流体中的纵波速度和地层中的横波速度传播的无几何衰减的高频散波。
(4)斯通利波以大于且近似等于井内流体中的纵波速度传播的无几何衰减的微频散波。
2声波全波列测井仪系统组成及工作原理2.1系统组成目前在国内工程勘察行业,适用的声波全波列测井仪器主要为北京大地华龙公司生产的XG-Ⅱ长源距全波列测井仪,该仪器是一套双通道高分辨率、数字化的测井仪,具有分时采样、迭加、滤波、信号增强、抑制噪声以及现场实时计算、实时显示实测波形和测试结果等功能。
测井仪系统由主机、井中全波列声系、连接电缆、平面换能器(用于岩芯的波速测试)和数据处理软件组成。
主要技术指标见表1。
井中全波列声系由一个发射探头和两个接收探头组成(见图2),发射探头距接收探头1的距离为1.05m,距接收探头2的距离为1.25m,两接收探头间距为0.20m。
随钻测井介绍-图文2022-9-1摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。
通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。
通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。
主题词:随钻测井;钻井;钻井液;侵入深度;技术一、引言LWD随钻记录的中子—密度(μN-ρb)与电缆测井值存在一定的系统误差(不同厂商的仪器均存在差别)。
但LWD的ρb测井值由于少受扩径的影响,其岩性值域区间远比后者清晰(图1-b、c,图2)。
三、实例分析LWD随钻测量的电阻率是在钻头破岩后1~2h开始测量(中等硬度的碎屑岩),此时的井壁破损率和钻井液径向侵入都非常小,所以,基本是“原状”地层的测井值。
1.实例一D井是一口直井(图3),为欠平衡钻井,CWR的测量点距钻头5.1in,钻速4m/h,钻头破岩后1.25h就可以记录到地层的电阻率,图中实时记录的所有4条电阻率曲线,不同岩性参数处均为重合状,说明地层几乎未被钻井液侵入。
起钻时,又进行重复测量(破岩42h之后),除泥岩段外,所有砂质岩层都受到了增阻侵入的影响。
但R55A并未发生变化,据计算,此时侵入深度达55in。
2.实例二B井是一口定向井的导眼段(近似直井,图2),该段使用了LWD,上部的砂岩段中实时记录的电阻率基本为水层特征(负差异或重合),泥岩段4条曲线则完全重合。
但顶部某740.5~某742.0m电阻率呈正差异(R55A>R25A),R55A=1.3Ω2m,为油层特征。
该井完井后,此段地层已浸泡了24d,这时又进行了电缆测井(双感应、中子、密度、自然伽马、井径等)。
APSLWD随钻测井系统原理及应用摘要:随钻测井把钻井技术、测井技术及油藏工程技术融为一体,用无线短传方式把井底工程地质参数传至地面,适时做出解释与决策,实施随钻控制。
本文以APS公司生产的LWD随钻测井系统为例,介绍其工作原理、结构组成和技术特点,及其在辽河油田和吉林油田的应用效果。
关键词:随钻测井APS 应用一、引言随着随钻测井LWD(Logging While Drilling)技术的发展和应用,大斜度井和水平井技术得到进一步提高。
LWD是在钻井过程中实时测量地质工程参数和测井曲线,地质工程师可以依据获取的自然伽马、电阻率等地质参数,对地层变化情况做出及时准确的判断,精细调整钻井轨迹,指导定向施工,确保井眼轨迹命中油气层并在最佳油气层中钻进,提高油气层钻遇率,优化和完善钻井过程。
此外,在随钻测井条件下地层尚未或很少受井内泥浆滤液侵入的影响,与电缆测井相比,更容易测出原状地层的真实参数[1][2]。
APS公司生产的LWD系统可实时测量井斜、方位、工具面、环空压力、自然伽马和电阻率等地质和工程参数,采用泥浆正脉冲信号传输方式,提供实时补偿测量并消除井筒因素的影响来提高数据的精度,在各种类型的泥浆和井眼中可进行地质导向、井眼校正、孔隙压力趋势分析和测井等作业,为现场工程师和解释人员提供可靠的数据来源,是一种先进的无线随钻测量系统。
二、APS LWD随钻测井系统简介(一)随钻电磁波电阻率测井仪工作原理APS电磁波电阻率WPR(Wave Propagation Resistivity Sub)是一种双频率(400kHz和2MHz)、双源距、可进行实时补偿的随钻测井工具,其一般原理如下:从发射极发出的电磁波,通过地层到达中间的接收天线,由于地层的导电性不同,电磁波到达接收天线处出现相位差和幅度差,不同的地层出现相位差和幅度衰减不同,故可以判别地层。
WPR的4个发射天线T1、T2、T3、T4按照程序设定的方式分别发送400KHz、2MHz的电磁波信号,穿越地层后被2个接收天线R1、R2接收,如图1所示。
随钻测井一、随钻测井的引入在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。
一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量. 遇到的问题:1、某些情况下,如井的斜度超过65 度的大斜度井甚至水平井,用电缆很难将仪器放下去2、井壁状况不好易发生坍塌或堵塞3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层二、随钻测井的概念随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井):是在钻开地层的同时, 对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术.首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。
其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性.而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。
另外,近二十年来海洋定向钻井大量增加。
采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化(现代随钻测井技术大致可分为三代)●20 世纪80 年代后期以前属于第一代可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
●20 世纪90 年代初至90 年代中期属于第二代过地质导向精确地确定井眼轨迹;司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据发现目标位臵。
这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
科技成果——随钻声波测井关键技术技术开发单位中国科学院声学研究所适用范围油田勘探与开发成果简介(1)课题来源与背景:随钻声波测井技术在我国油田勘探与开发,特别是在非常规油气藏的水平井钻井测井中有着重大需求。
她可以实时评价地层岩性和孔隙性,进行地层孔隙压力异常预测,给出岩石力学参数,为钻井施工安全提供决策依据。
在我国该项技术与装备属于技术空白,一直被对国外油田技术服务公司长期垄断。
(2)技术原理及性能指标:随钻声波测井基本测量原理主要是由发射换能器产生声波,经过钻井泥浆进入地层,在地层中传播,再由接收换能器组合通过泥浆接收到包含地层信息的压力信号。
然后通过数字处理的方法,分析和提取地层信息。
存储式单极子随钻声波测井实验样机主要包括发射换能器1只、接收换能器4只、隔声体1个、电池插件1个、发射电路插件1个、数据采集与处理电路插件1个。
仪器主要性能指标:最高耐温150℃,最高耐压100MPa,工作频率10-15kHz。
(3)技术的创造性与先进性:仪器核心部件如换能器技术获得发明专利1项,申请在审1项,机械结构短节测量装置获得实用新型专利3项;在我国较早地获得了随钻声波测井实际资料,填补了国内空白。
(4)技术的成熟程度,适用范围和安全性:目前该项技术处在工程应用示范阶段。
(5)应用情况及存在的问题:该项技术已经在我国某油田完成了三口井的测试检验,最大井深1250米,承受住了井下连续工作72小时、耐高温、耐高压、强震动和泥浆冲蚀等恶劣环境考验,并且能在井下存在钻柱系统的振动与冲击的实时钻进过程中依然可以正常工作。
在我国,我们较早地获取了第一手的随钻声波测井资料,目前处于国内领先水平,具有较强的应用前景。
(6)历年获奖情况:“随钻声波测井关键技术及实验样机研发”项目曾获得2015年度中国科学院声学研究所“科研项目重大进展奖”。
效益分析由于国内石油公司对随钻声波测井技术存在着迫切需求,势必会加速推动该成果的应用示范与成果转化,这将节省钻井成本,应用前景十分广阔。