非线性方程组的解法
- 格式:ppt
- 大小:1.79 MB
- 文档页数:48
20世纪60年代中期以后,发展了两种求解非线性方程组(1)的新方法。
一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。
这是区间迭代法的主要优点,其缺点是计算量大。
另一种方法称为不动点算法或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。
这种方法优点是,不要求f(□)的导数存在,也不用求逆,且具有大范围收敛性,缺点是计算量大编辑摘要目录• 1 正文• 2 牛顿法及其变形• 3 割线法• 4 布朗方法• 5 拟牛顿法•非线性方程组数值解法 - 正文n个变量n个方程(n >1)的方程组表示为(1)式中ƒi(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。
若ƒi中至少有一个非线性函数,则称(1)为非线性方程组。
在R n中记ƒ=则(1)简写为ƒ(尣)=0。
若存在尣*∈D,使ƒ(尣*)=0,则称尣*为非线性方程组的解。
方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。
对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。
除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。
根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。
非线性方程组数值解法 - 牛顿法及其变形牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序:(2)式中是ƒ(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。
这个程序至少具有2阶收敛速度。
由尣k算到尣k+的步骤为:①由尣k算出ƒ(尣k)及;②用直接法求线性方程组的解Δ尣k;③求。
由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。
高考数学中的非线性方程组解析技巧数学是高考必考的科目,而数学中解析几何的一些内容,如直线、平面、圆锥曲线等知识点会涉及到非线性方程组的解法。
如何解决非线性方程组成为考生必须掌握的考点之一。
非线性方程组的解题需要逐步推导出未知量的值,而其中解析的技巧必不可少。
本篇文章将介绍一些高考数学中的非线性方程组解析技巧。
I. 消元法在高考中,消元法是求解一元或多元非线性方程组的常用方法。
以 $n$ 元非线性方程组为例:$$ \begin{cases} F_1(x_1, x_2, ..., x_n) = 0 \\ F_2(x_1, x_2, ..., x_n) = 0 \\ ... \\ F_n(x_1, x_2, ..., x_n) = 0 \end{cases} $$通过消元法,我们可以将复杂的方程组转化为简单的一元方程。
例如,假设我们要解决如下非线性方程组:$$\begin{cases} x^2+y^2=1 \\ x+y=1 \end{cases} $$We can solve this system of equations by using the elimination method. Adding the equations together, we get:$$x^2 + 2xy + y^2 = 2$$Since $x^2+y^2=1$, we can substitute this into the above equation and obtain:$$2xy = 1$$Then, we can substitute $y=1-x$ into the above equation and obtain:$$2x(1-x) = 1$$This is a quadratic equation that we can solve using the quadratic formula:$$x^2 - x + \frac{1}{2} = 0$$Solving the above quadratic equation, we get:$$x = \frac{1 \pm \sqrt{3}}{2}$$Substituting these values of $x$ into $y=1-x$, we get:$$(x, y) = \left(\frac{1+\sqrt{3}}{2}, \frac{1-\sqrt{3}}{2}\right) \text{ and } \left(\frac{1-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}\right)$$消元法可谓是非线性方程组解法的基础,要牢牢掌握。
非线性方程组求解方法的比较与优化非线性方程组的求解在科学计算、工程领域以及其他许多实际问题中扮演着重要的角色。
在实际应用中,往往需要高效准确地求解非线性方程组,以获得所需的结果。
本文将对几种常用的非线性方程组求解方法进行比较,并探讨如何进一步优化这些方法,以提高求解效率。
一、牛顿法(Newton's Method)牛顿法是最常用的非线性方程组求解方法之一。
该方法基于泰勒级数展开,通过迭代逼近非线性方程组的解。
具体而言,给定初始猜测值x0,牛顿法通过以下迭代公式进行求解:x^(k+1) = x^k - [J(x^k)]^(-1) * F(x^k)其中,J(x^k)表示方程组F(x)的雅可比矩阵,F(x^k)表示方程组的值向量。
牛顿法通常具有快速收敛的特点,但在某些情况下可能出现发散或收敛速度慢的问题。
二、拟牛顿法(Quasi-Newton Methods)拟牛顿法是对牛顿法的改进和优化。
由于求解雅可比矩阵的逆矩阵相对困难且计算量大,拟牛顿法通过逼近雅可比矩阵的逆矩阵,避免了对逆矩阵的直接求解。
其中,最著名的拟牛顿法是DFP算法和BFGS算法。
DFP算法通过计算Hessian矩阵的逆矩阵的逼近,不断更新该逼近矩阵,以逼近真实的Hessian矩阵的逆矩阵。
BFGS算法同样通过逼近矩阵的更新来求解方程组,但采用了更加复杂的更新策略,相较于DFP算法在某些问题上具有更好的性能。
拟牛顿法通过避免直接计算逆矩阵,一定程度上提高了计算效率,但其迭代过程中的计算相对复杂,因此在实际问题中需要综合考虑。
三、Levenberg-Marquardt算法Levenberg-Marquardt算法是一种解决非线性最小二乘问题的方法,也可用于求解非线性方程组。
该算法基于牛顿法,利用信赖域思想进行调整,以提高求解的稳定性和收敛性。
Levenberg-Marquardt算法通过在牛顿迭代中引入一个参数,将其视为步长的控制因子,从而在迭代过程中实现步长的自适应调整。
第三章 非线性方程(组)的数值解法一.取步长1h =,试用搜索法确立3()25f x x x =--含正根的区间,然后用二分法求这个正根,使误差小于310-。
【详解】由于是要寻找正根,因此,可选含根区间的左端点为0。
(0)5f =-,(1)5f =-,(2)1f =-,(3)16f =,因此,(2,3)中有一个正根。
这就确立了含根区间。
接下来,我们用二分法求这个正根,使误差小于310-,计算结果如下表 迭代次数k a k b k x0 2 3 2.5 1 2 2.5000 2.250 0 2 2 2.2500 2.125 0 3 2 2.1250 2.062 5 4 2.0625 2.1250 2.093 8 5 2.0938 2.1250 2.109 4 6 2.0938 2.1094 2.101 6 7 2.0938 2.1016 2.097 7 8 2.0938 2.0977 2.095 7 9 2.09382.09572.094 7二.对方程2()2sin 20f x x x =--=,用二分法求其在区间[]1.5,2内的根,要求误差小于0.01。
【详解】用二分法求解方程在[]1.5,2内的根,要求误差小于0.01,计算结果如下表: 迭代次数k ak bk x0 1.5 2 1.75 1 1.7500 2.0000 1.875 0 2 1.8750 2.0000 1.937 5 3 1.9375 2.0000 1.968 8 4 1.9375 1.9688 1.953 1 51.95311.96881.960 9三.用不动点迭代法,建立适当的迭代格式,求方程3()10f x x x =--=在0 1.5x =附近的根,要求误差小于610-。
【详解】310x x --=,等价于x =。
这样,可以建立不动点迭代格式1k x +=当0x ≥时,总有23110(1)133x -'<=+≤<,因此,迭代格式对于任意初始值00x ≥总是收敛的。