当前位置:文档之家› 变压器差动保护基本原理

变压器差动保护基本原理

变压器差动保护基本原理

1 变压器差动保护

变压器差动保护是一种常用的配电网络欠压和故障短路的保护装置,是主变吸收故障线路的电流的原理。变压器差动保护的基本原理

是通过比较变压器的两侧的投入和输出线路的电流,当两者相差较大,则说明发生了故障,为了保障设备不受到损坏而采取断开操作,从而

减少可能受损的部分及保护整个配电网络安全。

2 变压器差动保护原理

变压器差动保护基于主变电流平衡原理,当变压器的电流不平衡时,即产生了潜在的危险,可能发生的危害是由于变压器构成的元件

的局部过热导致的危险。当发生短路或其他过载故障时,被损坏的线

路的电流大大超过正常电流,另一侧的电流减少或甚至消失,因此两

侧电流之间就产生了不平衡,此时就会触发变压器差动保护装置,通

过控制跳开保护装置断开故障线路,从而有效的保护变压器的安全运行,同时也对其它的设备也具有保护作用。

3 变压器差动保护机制

变压器差动保护机制的工作基本原理是将变压器的两端的电流被

分开检测统计,并将两路电流的差值越小,或者状况接近于一致,就

表示差动保护装置处于正常状态,而当两路电流之间存在差别时,说

明发生故障,变压器差动保护器就会触发,进行断开操作,以保护变

压器及其它设备不受损坏。

4 小结

变压器差动保护是一种常用的配电网络欠压和故障短路的保护装置,它通过比较变压器的两侧的投入和输出线路的电流,当两者相差较大,就会触发变压器差动保护器进行断开操作,准确的判断故障的类型,为变压器及其它设备的安全运行提供有效的防护。

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等. 例如图8—5所示的双绕组变压器,应使 8。3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm.但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8—7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器差动保护原理图解

变压器差动保护原理图解 差动爱护是依据被爱护区域内的电流变化差额而动作的。它广泛用来爱护大容量的电力变压器、变电所母线、高压电动机等。如右图所示是电力变压器的差动爱护原理图。 电流互感器TA1和TA2之间的区域就是差动爱护区,当爱护区内发生短路故障时,即变压器内部(如dl点),电流继电器KA中将产生较大的启动电流使爱护装置动作,而当爱护区外短路时,即变压器外部如(d2点),电流继电器中只流过一较小的不平稳电流,爱护装置不会动作。 所谓变压器的纵联差动爱护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的爱护。纵联差动爱护装置,一般用来爱护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。对于变压器线圈的匝间短路等内部故障,通常只作后备爱护。纵联差动爱护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。在正常状况下或爱护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但假如在爱护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到爱护作用。变压器纵差爱护是根据循环电流原理构成的,变

压器纵差爱护的原理要求变压器在正常运行和纵差爱护区(纵差爱护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差爱护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差爱护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

变压器差动保护

变压器差动保护 一、差动保护原理 变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电 流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。三绕组变压 器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接人差动继电 器KD ,这里不再赘述。 电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。 如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动 回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即I ,= I', 1 2 流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和 幅值调整。具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自 然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形 接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线 的电流互感器变比调整为原来的倍。微型机变压器差动保护,可以通过软件 计算实现相位校正。 1. 变压器正常运行或外部故障 根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧 电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补 偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作, 差动保护不动作。此时流人差动继电器的电流为 式中 n 1TA ——电流互感器1TA 、2TA 的变比; 、油—一流人差动继电器的不平衡电流。 2. 变压器内部故障 I KD I / —1— — ―2— n iTA ^TA =I unb (4—1)

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障 ,差动保护是输入的两端CT电流矢量差,当两端CT电流矢量差达到设定的动作值时启动动作元件. 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零.驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源. 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的.为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂. (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律, = ∑•I;式中∑•I表示变压器各侧电流的向量和,其物理意义是:变压 器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1。5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图 1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器. 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

变压器差动保护原理

(一)变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,降压变,具体参数如下:主变高压侧电 压U高=110KV,主变低压侧电压U低=10KV,变压器容量Sn=240000KV A, 高压侧CT变比1000/5,低压侧的CT变比是1500/5.计算平衡系数。 I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就

变压器差动保护原理

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,降压变,具体参数如下:主变高压侧电压U高=110KV,主变低压侧电压U低=10KV,变压器容量Sn=240000KV A, 高压侧CT变比1000/5,低压侧的CT变比是1500/5.计算平衡系数。 I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT2的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障; 四:差动的特性 比率制动:如图二所示,为差动保护比率特性的曲线图: 动保护的比率特性:

o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下:差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法,施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7,所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之进行二次谐波判别,500kv及以上变压器,则还需进行5次谐波判别。以二次谐波为例:二次谐波系数=差电流中的二次谐波分量与基波分量的比值。当谐波系数大于整定值时,保护被闭锁;小于整定值时,保护被开放;根据经验,二次谐波制动比可整定为0.15~0.2; 五、不平衡电流 实际上,差动保护比率制动也好,谐波制动也好,归根结底都是要躲过变压器的不平衡电流,而不平衡电流,也正是可能引起差动保护误动的最重要因素之一。 产生变压器不平衡电流有以下几个重要的原因: 由变压器励磁涌流Ily所产生的不平衡电流; 励磁涌流主要是由于在变压器空投时产生的含有大量高次谐波含量的电流,其中以2次谐波为主。我们的800变压器差动保护中有“二次谐波制动系数”一项定值,用来防止此原因造成的差动误动。 二次谐波制动系数:差电流中的二次谐波分量与基波分量的比值; 根据经验,此系数可整定为15%~25% 由于变压器两侧电流相位不同而产生的不平衡电流; 由于变压器常采用Y,d11的接线方式,因此,如果两侧的电流互感器仍采用通常的接线方式,则二次侧电流由于相位不同,也会有一个差电流流入我们的保护装置。为了消除这种不平衡电流的影响,通常都是将变压器星星侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形,并适当考虑联结方式后即可把二次电流的相位校正过来。 但我们的保护要求现场二次侧电流互感器的接线都接为星形接线,因此,一次侧为Y,d11的接线方式的变压器将产生差流,差动保护靠程序将此不平衡电流补偿掉,具体方法如下: 如图所示为Y,d11两卷变压器两侧绕组及电流互感器接线方式及其中通过的一次、二次电流流

变压器差动保护

变压器差动保护 一、引言 变压器作为电力系统中不可缺少的一部分,其稳定性和安全性对整个电力系统的稳定运行产生至关重要的影响。为了保障变压器的安全运行,需要使用差动保护装置对变压器进行保护。差动保护装置是一种利用电流互感器实现电流变化的检测,能够对变压器的内部故障进行检测和保护的一种电气装置。本文将主要介绍变压器差动保护。 二、变压器差动保护的基本原理 变压器差动保护的基本原理是利用变压器两侧的电流互感器检测电流,对两侧电流进行比较,如果两侧电流之和不为零,则表明变压器出现了故障,此时差动保护装置会立即对变压器进行动作,以保护变压器的安全运行。 三、变压器差动保护装置的组成 变压器差动保护装置由以下几个部分组成: 1、差动保护继电器 差动保护继电器是差动保护装置的核心部分,可检测变压器两侧电流大小的差异,当两侧电流之和不为零时,继电器便会立即对变压器进行保护,避免出现故障。 2、电流互感器

电流互感器是差动保护装置的重要组成部分,能够检测输入电流的变化。电流互感器以变压器的一侧为基准点,输出测量电流,以另一侧为比较点,输出比较电流。将变压器两侧的电流互感器连接到差动保护继电器上,就可以通过差动保护继电器对变压器进行保护。 3、控制装置 控制装置主要用于对差动保护装置进行控制和监测,以确保差动保护装置的可靠运行。控制装置中包含差动保护继电器的操作部分和控制供电部分。 4、通讯系统(可选) 通讯系统将变压器差动保护装置和其他设备连接起来,实现信息的传输和交换,以便及时了解变压器的工作状况。通讯系统能够帮助用户对变压器差动保护装置进行远程操作和监测。 四、变压器差动保护装置的工作流程 当变压器在运行过程中发生故障或出现电流异常时,差动保护装置能够快速检测到变压器两侧电流的差异,同时依靠差动保护继电器对变压器进行保护。具体的工作流程如下: 1、电流互感器检测输出的电流。 2、差动保护继电器对输入电流进行比较,计算两侧电流差值。 3、差动保护继电器输出信号,控制开关进行动作,以保护变压器运行的安全。 五、常见问题及解决方法

变压器保护整定中的差动保护原理与实现

变压器保护整定中的差动保护原理与实现差动保护是变压器保护中常用的一种保护方式。它的原理是利用变压器两侧的电流进行比较,以判断是否存在故障。本文将详细介绍差动保护的原理与实现方法。 一、差动保护的原理 差动保护的原理基于电流的守恒定律,即在一个封闭的回路中,进入该回路的总电流等于流出该回路的总电流。对于变压器来说,由于变压器是一个闭合的回路,因此进入变压器的电流应等于流出变压器的电流。 当变压器正常运行时,变压器两侧的电流应处于平衡状态,即进入变压器的电流等于流出变压器的电流。这时差动保护的比较器输出为零,说明该变压器正常工作。然而,当变压器存在故障时,进入变压器的电流将不等于流出变压器的电流,这时比较器将会输出非零电信号,触发告警或断开变压器电路,以保护变压器及其周围设备。 二、差动保护的实现方法 差动保护的实现需要使用差动继电器或差动保护装置。下面将分别介绍两种实现方法: 1. 差动继电器 差动继电器是差动保护最基本的实现方式。它由一个比较器和一个激励回路组成。比较器接收变压器两侧电流信号,并进行比较。如果

两侧电流相等,则比较器输出为零,继电器保持关闭状态;如果存在电流差异,则比较器输出非零信号,继电器将吸合,触发保护装置进行相应的保护操作。 2. 差动保护装置 差动保护装置是一种集成了差动继电器以及其他辅助保护功能的综合装置。通过差动保护装置,可以实现更为灵活和可靠的差动保护。比如,差动保护装置可以通过设置差动电流阈值,精确地检测电流差异,并进行快速响应。 此外,差动保护装置还可以与通信系统连接,实现对变压器状态的实时监测和远程通信功能。这样的话,一旦发生变压器故障,监测系统可以即时接收到故障信息,并触发相应的保护操作,有效避免了对系统设备的进一步损害。 三、差动保护的应用 差动保护广泛应用于变压器保护中。它能够对变压器的内部短路、缺相和接地故障等进行有效保护,提高了变压器的安全性和可靠性。此外,差动保护还可以应用于其他电力设备的保护中,如发电机、电缆等。 需要注意的是,正确设置差动保护的参数对其保护效果至关重要。参数的设置应考虑到变压器的特性以及系统的运行条件。此外,差动保护装置的定期维护和检测也是保证差动保护正常运行的重要环节。 总结:

变压器分侧差动保护原理

变压器分侧差动保护原理 变压器分侧差动保护是一种常用的电力系统保护方式,用于保护变压器的正常运行和防止故障发生。它基于差动保护原理,通过比较变压器两侧电流的差值来判断是否存在故障,并及时采取保护动作,以保护变压器和电力系统的安全稳定运行。 变压器分侧差动保护的原理是利用变压器两侧电流之差来判断是否存在故障。在正常情况下,变压器的输入电流等于输出电流,即变压器两侧电流之差为零。而当变压器发生故障时,如短路或接地故障,会导致变压器两侧电流不平衡,即电流差值不为零。因此,通过监测变压器两侧电流的差值,可以及时发现故障并采取相应的保护措施。 为了实现变压器分侧差动保护,通常需要安装差动保护装置。差动保护装置由差动继电器和电流互感器组成。电流互感器用于测量变压器两侧的电流,并将电流信号传输给差动继电器。差动继电器则负责比较变压器两侧电流的差值,并根据设定的保护动作条件来判断是否需要进行保护动作。 在差动保护装置中,常用的保护动作条件包括电流差值超过设定值、电流差值持续时间超过设定时间等。当满足保护动作条件时,差动继电器会发出保护信号,触发保护动作装置,如断路器或隔离开关,切断故障电路,以保护变压器和电力系统的安全运行。

为了提高变压器分侧差动保护的可靠性和灵敏度,通常还会采取一些辅助措施。例如,可以在变压器两侧各安装一个零序电流互感器,用于检测变压器的零序电流,以提高对接地故障的检测能力。此外,还可以采用通信技术,将差动保护装置与其他保护装置进行联动,实现更全面的保护功能。 变压器分侧差动保护是一种重要的电力系统保护方式,通过比较变压器两侧电流的差值来判断是否存在故障,并及时采取保护动作。它能够有效保护变压器和电力系统的安全稳定运行,提高电力系统的可靠性和稳定性。在实际应用中,还可以结合其他保护装置和通信技术,进一步提高保护的可靠性和灵敏度。

主变差动保护的基本原理

主变差动保护的基本原理 主变差动保护是一种用于保护电力系统主变压器的重 要保护装置。它通过检测主变两侧电流的差值,判断主变压器是否发生故障,并根据判断结果进行相应的保护动作。主变差动保护具有灵敏、可靠、快速等特点,是保护主变压器安全运行的主要手段之一。 主变差动保护的基本原理如下: 1.差动电流原理:主变差动保护是基于差动电流原理工作的。在正常情况下,主变两侧的电流应当是相等的,即差动电流为零。而当主变发生故障时,例如短路、接地等,主变两侧的电流就会发生不平衡,即出现差动电流。 2.电流传感器:主变差动保护装置通过电流传感器获取主变两侧的电流信息,这些电流传感器通常是电流互感器。主变差动保护通常使用两个电流传感器,分别连接到主变两侧的线路上。 3.电流比较:主变差动保护对两侧电流进行比较,以判断是否发生故障。通常,差动保护器会对两侧电流进行相位和幅值的比较。如果主变两侧电流相等,没有差动电流,差动保护器则认为主变正常;而如果主变两侧电流不相等,存在

差动电流,差动保护器则判断主变发生故障。 4.差动保护动作:当差动保护器判断主变发生故障时,它会触发保护动作,以隔离故障点并保护主变。差动保护器的保护动作通常通过输出一个或多个触发信号来实现,触发信号可以用来操作断路器、闸刀等设备。 5.可靠性增强技术:为了提高主变差动保护的可靠性,常常采用一些增强技术。例如,差动保护器可以通过设置延时、滞后等功能来抑制瞬时故障误动作。此外,还可以使用同步电流补偿、零序电流补偿等技术来提高保护的精度和可靠性。 总结起来,主变差动保护通过检测主变两侧电流的差异,来判断主变是否发生故障,并触发相应的保护动作。它具有灵敏、可靠的特点,是保护主变压器运行安全的重要手段之一。同时,通过采用增强技术,可以进一步提高保护的可靠性和精度。

变压器差动保护的原理

变压器差动保护的原理 变压器差动保护是电力系统中常用的一种保护设备,它能够有效地检测和保护变压器的正常运行。其原理是通过比较变压器的输入和输出电流之间的差值,来判断是否存在故障或异常情况,并及时采取相应的措施保护变压器。 变压器差动保护的基本原理是基于基尔霍夫电流定律。根据这个定律,电流在闭合的电路中是守恒的,即输入电流等于输出电流。对于变压器来说,输入电流等于输出电流,只有在正常工作状态下才能满足这个条件。一旦发生故障或异常情况,如短路或相间短路,输入和输出电流之间就会存在差值。 为了实现变压器差动保护,需要在变压器的输入和输出侧分别安装电流互感器,用于测量输入和输出电流。这些电流互感器将测量到的电流信号传输到差动保护装置中进行处理。 差动保护装置首先对输入和输出电流进行比较,计算它们之间的差值。如果差值很小,即在设定的误差范围内,差动保护装置会认为变压器工作正常,不采取任何动作。然而,如果差值超过设定的误差范围,差动保护装置就会判断存在故障或异常情况,并触发相应的保护动作。 为了提高差动保护的可靠性和抗干扰能力,通常还会采用一些辅助措施。例如,差动保护装置可以设置时间延迟,以排除短暂的过电

流或过负荷情况。此外,还可以根据变压器的额定容量和负载情况,设置不同的差动保护动作值,以适应不同的工作条件。 总的来说,变压器差动保护利用输入和输出电流之间的差值来判断变压器的运行状态,一旦发现故障或异常情况,及时采取保护措施,避免进一步损坏变压器。这种保护装置在电力系统中得到了广泛应用,提高了系统的可靠性和稳定性。通过不断改进差动保护装置的技术,提高其灵敏度和可靠性,可以进一步提高电力系统的运行效率和安全性。

差动保护的工作原理

1、变压器差动保护的工作原理与线路纵差保护的原理一样,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不一样。因此,为了保证纵差动保护的正确工作,须适中选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 变压器纵差动保护的特点 1 、励磁涌流的特点及抑制励磁涌流的方法 〔1〕励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 〔2〕产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将到达2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,到达额定电流的6~8倍,形成励磁涌流。〔3〕励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现连续角。 表8-1 励磁涌流实验数据举例

〔4〕抑制励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用连续角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 〔1〕稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如以下图所示,Y侧电流滞后△侧电流30°,假设两侧的电流互感器采用一样的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

差动保护工作原理电力配电知识

差动爱护工作原理 - 电力配电学问 差动爱护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作抱负变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点供应短路电流,差动爱护感受到的二次电流和的正比于故障点电流,差动继电器动作。 差动爱护原理简洁、使用电气量单纯、爱护范围明确、动作不需延时,始终用于变压器做主爱护。另外差动爱护还有线路差动爱护、母线差动爱护等等。 变压器差动爱护是防止变压器内部故障的主爱护。其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,假如忽视不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。 假如内部故障,ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大查看开关位置显示及其电流表,确认主变跳闸,报调度,汇报初步现象。查看并记录光字牌,确认是主变差动爱护。停止站内的全部工作票,观看其它剩下的主变有无过负荷,油温有无过高,派人到现场把其他主变的冷却器全部投入,加强对主变的巡察和监视中心信号屏的主变负荷状况和油温。主变过负荷,可向调度汇报,要求压负荷。假如是#1主变跳闸,则应当检查站用变是否自投成功,站用电是否正常,充电机是否正常工作。还应当合上其它三台主变的其中一台的变高和变中中

性点接地刀闸。 在保证站内的其它设备不受事故影响其正常运行后,将主变及其三侧开关转换为检修,进行下列检查: 1)主变套管有无裂开放电现象; 2)在主变差动爱护区内有无短路或放电现象; 3)差动爱护接线、整定有无错误、电流互感器二次回路是否开路,旁路代主变开关时有无切换电流互感器二次回路; 4)向调度了解在跳闸的同时系统有无短路故障; 5)查看瓦斯继电器内有无气体,主变油位、油色、防爆装置有无特别。 检查结果确认差动爱护动作正确,但不是变压器内部故障引起,而是差动范围内变压器外的短路故障引起,若故障点在高压侧,则在故障处理完毕,检查变压器无特别后,经调度同意可将主变重新投入运行;若故障点在中低压侧,则应进行绕组变形测试、取油样化验、测直流电阻、绝缘电阻等,确认变压器正常,且故障处理完毕后,还必需经过总工程师同意才能将变压器重新投入运行; 检查结果确认是差动爱护误动作,在其它爱护(重瓦斯、复合过流)正常的状况下,经调度员同意可将差动爱护退出,恢复变压器运行。于动作电流,爱护动作断路器跳闸。

相关主题
文本预览
相关文档 最新文档